Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Blood Brain Barrier (BBB) provides a protective shield for the human nervous system, facilitating essential biochemical processes while also acting as a strong defense mechanism against pathogens and harmful substances, including drugs. While this barrier protects the brain, it makes it difficult to deliver therapeutics to treat cerebral diseases such as ischemia and acute arterial thrombosis, both of which cause significant global mortality and morbidity. The urgent need for thrombolytic agents to treat cerebral ischemia emphasizes the importance of drugs that can efficiently penetrate the BBB. However, conventional thrombolytics have limitations due to low BBB permeability. To overcome this barrier, various nanoparticle-based targeting strategies have been developed. These nano-technological solutions provide advantages such as enhanced permeability, decreased toxicity risks, and increased bioavailability when compared to other drug delivery methods.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615301487240829103021
2024-09-02
2026-01-03
Loading full text...

Full text loading...

References

  1. DomínguezA. ÁlvarezA. HilarioE. Suarez-MerinoB. Goñi-de-CerioF. Central nervous system diseases and the role of the blood-brain barrier in their treatment.Neurosci.Disc.201311310.7243/2052‑6946‑1‑3
    [Google Scholar]
  2. ManfrediniR. GalleraniM. PortaluppiF. SalmiR. FersiniC. Chronobiological patterns of onset of acute cerebrovascular diseases.Thromb. Res.199788645146310.1016/S0049‑3848(97)00286‑79610956
    [Google Scholar]
  3. KalariaR.N. AkinyemiR. IharaM. Stroke injury, cognitive impairment and vascular dementia.Biochim. Biophys. Acta Mol. Basis Dis.20161862591592510.1016/j.bbadis.2016.01.01526806700
    [Google Scholar]
  4. PulicherlaK.K. VermaM.K. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements.AAPS PharmSciTech201516222323310.1208/s12249‑015‑0287‑z25613561
    [Google Scholar]
  5. GorelickP.B. The global burden of stroke: persistent and disabling.Lancet Neurol.201918541741810.1016/S1474‑4422(19)30030‑430871943
    [Google Scholar]
  6. PowersW.J. RabinsteinA.A. AckersonT. AdeoyeO.M. BambakidisN.C. BeckerK. BillerJ. BrownM. DemaerschalkB.M. HohB. JauchE.C. KidwellC.S. Leslie-MazwiT.M. OvbiageleB. ScottP.A. ShethK.N. SoutherlandA.M. SummersD.V. TirschwellD.L. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association.Stroke20195012e344e41810.1161/STR.000000000000021131662037
    [Google Scholar]
  7. AmarencoP. BogousslavskyJ. CaplanL.R. DonnanG.A. HennericiM.G. Classification of stroke subtypes.Cerebrovasc. Dis.200927549350110.1159/00021043219342825
    [Google Scholar]
  8. van AschC.J.J. LuitseM.J.A. RinkelG.J.E. van der TweelI. AlgraA. KlijnC.J.M. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis.Lancet Neurol.20109216717610.1016/S1474‑4422(09)70340‑020056489
    [Google Scholar]
  9. BarpandaS. Pathophysiology and Epidemiology of Cerebrovascular Disease.Int. J. Collab. Res. Intern. Med. Public Health20211312
    [Google Scholar]
  10. SantaguidaS. JanigroD. HossainM. ObyE. RappE. CuculloL. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: A permeability study.Brain Res.20061109111310.1016/j.brainres.2006.06.02716857178
    [Google Scholar]
  11. Cordon-CardoC. O’BrienJ.P. BocciaJ. CasalsD. BertinoJ.R. MelamedM.R. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues.J. Histochem. Cytochem.19903891277128710.1177/38.9.19749001974900
    [Google Scholar]
  12. JulianoR.L. LingV. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.Biochim. Biophys. Acta Biomembr.1976455115216210.1016/0005‑2736(76)90160‑7990323
    [Google Scholar]
  13. BartelsA.L. Blood-brain barrier P-glycoprotein function in neurodegenerative disease.Curr. Pharm. Des.201117262771277710.2174/13816121179744012221831040
    [Google Scholar]
  14. AlexanderA. AgrawalM. UddinA. SiddiqueS. ShehataA.M. ShakerM.A. Ata Ur RahmanS. AbdulM.I.M. ShakerM.A. Recent expansions of novel strategies towards the drug targeting into the brain.Int. J. Nanomedicine2019145895590910.2147/IJN.S21087631440051
    [Google Scholar]
  15. KastinA.J. PanW. ManessL.M. BanksW.A. Peptides crossing the blood–brain barrier: Some unusual observations.Brain Res.19998481-29610010.1016/S0006‑8993(99)01961‑710612701
    [Google Scholar]
  16. PardridgeW.M. EisenbergJ. YangJ. Human blood-brain barrier insulin receptor.J. Neurochem.19854461771177810.1111/j.1471‑4159.1985.tb07167.x2859355
    [Google Scholar]
  17. ZhangY. PardridgeW.M. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin.Brain Res.20018891-2495610.1016/S0006‑8993(00)03108‑511166685
    [Google Scholar]
  18. RabanelJ.M. AounV. ElkinI. MokhtarM. HildgenP. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers.Curr. Med. Chem.201219193070310210.2174/09298671280078470222612696
    [Google Scholar]
  19. DehouckB. FenartL. DehouckM.P. PierceA. TorpierG. CecchelliR. A new function for the LDL receptor: Transcytosis of LDL across the blood-brain barrier.J. Cell Biol.1997138487788910.1083/jcb.138.4.8779265653
    [Google Scholar]
  20. GabathulerR. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.02819664710
    [Google Scholar]
  21. DeaneR. BellR. SagareA. ZlokovicB. Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease.CNS Neurol. Disord. Drug Targets200981163010.2174/18715270978760186719275634
    [Google Scholar]
  22. MinnA. LeclercS. HeydelJ.M. MinnA.L. DenizotC. CattarelliM. NetterP. GradinaruD. Drug transport into the mammalian brain: The nasal pathway and its specific metabolic barrier.J. Drug Target.200210428529610.1080/71371445212164377
    [Google Scholar]
  23. PranayW. AtulV.K. SanjayY. AnkitaW. Providing a reliable source of scholarly data for developers.2022Available From: https://api.semanticscholar.org/
  24. LuissintA.C. FedericiC. GuillonneauF. ChrétienF. CamoinL. GlacialF. GaneshamoorthyK. CouraudP.O. Guanine nucleotide-binding protein Gαi2: A new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells.J. Cereb. Blood Flow Metab.201232586087310.1038/jcbfm.2011.20222333621
    [Google Scholar]
  25. TsukitaS. FuruseM. ItohM. Multifunctional strands in tight junctions.Nat. Rev. Mol. Cell Biol.20012428529310.1038/3506708811283726
    [Google Scholar]
  26. CereijidoM. ValdésJ. ShoshaniL. ContrerasR.G. Role of tight junctions in establishing and maintaining cell polarity.Annu. Rev. Physiol.199860116117710.1146/annurev.physiol.60.1.1619558459
    [Google Scholar]
  27. KokubuY. YamaguchiT. KawabataK. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.Biochem. Biophys. Res. Commun.2017486257758310.1016/j.bbrc.2017.03.09228336435
    [Google Scholar]
  28. ChenT. DaiS.H. LiX. LuoP. ZhuJ. WangY.H. FeiZ. JiangX.F. Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia.Redox Biol.20181422923610.1016/j.redox.2017.09.01628965081
    [Google Scholar]
  29. DollD.N. HuH. SunJ. LewisS.E. SimpkinsJ.W. RenX. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier.Stroke20154661681168910.1161/STROKEAHA.115.00909925922503
    [Google Scholar]
  30. De CockerL.J.L. LindenholzA. ZwanenburgJ.J.M. van der KolkA.G. ZwartbolM. LuijtenP.R. HendrikseJ. Clinical vascular imaging in the brain at 7 T.Neuroimage201816845245810.1016/j.neuroimage.2016.11.04427867089
    [Google Scholar]
  31. OhtsukiS. New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system.Biol. Pharm. Bull.200427101489149610.1248/bpb.27.148915467183
    [Google Scholar]
  32. DouglasS.J. DavisS.S. IllumL. Biodistribution of poly(butyl 2-cyanoacrylate) nanoparticles in rabbits.Int. J. Pharm.1986341-214515210.1016/0378‑5173(86)90021‑9
    [Google Scholar]
  33. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: state of the art.J Colloid Sci Biotechnol20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  34. BriugliaM.L. RotellaC. McFarlaneA. LamprouD.A. Influence of cholesterol on liposome stability and on in vitro drug release.Drug Deliv. Transl. Res.20155323124210.1007/s13346‑015‑0220‑825787731
    [Google Scholar]
  35. PapahadjopoulosD. JacobsonK. NirS. IsacI. Phase transitions in phospholipid vesicles Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol.Biochim. Biophys. Acta Biomembr.1973311333034810.1016/0005‑2736(73)90314‑34729825
    [Google Scholar]
  36. JinG.Z. ChakrabortyA. LeeJ.H. KnowlesJ.C. KimH.W. Targeting with nanoparticles for the therapeutic treatment of brain diseases.J. Tissue Eng.2020119746010.1177/204173141989746032180936
    [Google Scholar]
  37. UchiyamaK. NagayasuA. YamagiwaY. NishidaT. HarashimaH. KiwadaH. Effects of the size and fluidity of liposomes on their accumulation in tumors: A presumption of their interaction with tumors.Int. J. Pharm.1995121219520310.1016/0378‑5173(95)00015‑B
    [Google Scholar]
  38. YuanF. LeunigM. HuangS.K. BerkD.A. PapahadjopoulosD. JainR.K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft.Cancer Res.19945413335233568012948
    [Google Scholar]
  39. LiJ. TanT. ZhaoL. LiuM. YouY. ZengY. ChenD. XieT. ZhangL. FuC. ZengZ. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review.ACS Appl. Bio Mater.2020395500552810.1021/acsabm.0c0070535021787
    [Google Scholar]
  40. SoniV. KohliD.V. JainS.K. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil.J. Drug Target.200513424525010.1080/1061186050010740116051536
    [Google Scholar]
  41. PostmesT.J. HukkelhovenM. van den BogaardA.E.J.M. HaldersS.G. CoenegrachtJ. Passage through the blood-brain barrier of thyrotropin-releasing hormone encapsulated in liposomes.J. Pharm. Pharmacol.198032107227246107353
    [Google Scholar]
  42. HuwylerJ. PardridgeW.M. Examination of blood-brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries.J. Neurochem.199870288388610.1046/j.1471‑4159.1998.70020883.x9453586
    [Google Scholar]
  43. ShiN. ZhangY. ZhuC. BoadoR.J. PardridgeW.M. Brain-specific expression of an exogenous gene after i.v. administration.Proc. Natl. Acad. Sci. USA20019822127541275910.1073/pnas.22145009811592987
    [Google Scholar]
  44. DastpeymanM. SharifiR. AminA. KarasJ.A. CuicB. PanY. NicolazzoJ.A. TurnerB.J. ShabanpoorF. Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides.Int. J. Pharm.202159912039810.1016/j.ijpharm.2021.12039833640427
    [Google Scholar]
  45. SonkarR. Sonali JhaA. ViswanadhM.K. BurandeA.S. Narendra PawdeD.M. PatelK.K. SinghM. KochB. MuthuM.S. Gold liposomes for brain-targeted drug delivery: Formulation and brain distribution kinetics.Mater. Sci. Eng. C202112011165210.1016/j.msec.2020.11165233545820
    [Google Scholar]
  46. ImaizumiS. WoolworthV. KinouchiH. ChenS.F. FishmanR.A. ChanP.H. Liposome-entrapped Superoxide Dismutase Ameliorates Infarct Volume in Focal Cerebral Ischaemia.Brain Edema VIII. ReulenH-J. BaethmannA. FenstermacherJ. MarmarouA. SpatzM. ViennaSpringer Vienna199023623810.1007/978‑3‑7091‑9115‑6_79
    [Google Scholar]
  47. BruchG.E. FernandesL.F. BassiB.L.T. AlvesM.T.R. PereiraI.O. FrézardF. MassensiniA.R. Liposomes for drug delivery in stroke.Brain Res. Bull.201915224625610.1016/j.brainresbull.2019.07.01531323280
    [Google Scholar]
  48. LeachJ.K. PattersonE. O’RearE.A. Improving thrombolysis with encapsulated plasminogen activators and clinical relevance to myocardial infarction and stroke.Clin. Hemorheol. Microcirc.2004303-422522815258347
    [Google Scholar]
  49. WangR. ZhangX. ZhangJ. XiuR. Gene transfer of vascular endothelial growth factor plasmid/liposome complexes in glioma cells in vitro: The implication for the treatment of cerebral ischemic diseases.Clin. Hemorheol. Microcirc.2000232-430330611321455
    [Google Scholar]
  50. MikulikR. PetrokováH. MašekJ. KucharM. Vítecková WünschováA. ŠtikarováH. BartheldyováE. KulichP. HubatkaF. KotoucekJ. Turánek KnotigováP. VohlídalováE. MacaulayS. DyrJ.E. RaškaM. MalýP. TuránekJ. Abstract WP313: Liposomes With Anti-Fibrin Protein Binders to Target Clot in Stroke.Stroke202051Suppl. 1AWP31310.1161/str.51.suppl_1.WP313
    [Google Scholar]
  51. FrestaM. PuglisiG. Di GiacomoC. RussoA. Liposomes as in-vivo carriers for citicoline: Effects on rat cerebral post-ischaemic reperfusion.J. Pharm. Pharmacol.2011461297498110.1111/j.2042‑7158.1994.tb03252.x7714721
    [Google Scholar]
  52. LiuR. PanM.X. TangJ.C. ZhangY. LiaoH.B. ZhuangY. ZhaoD. WanQ. Role of neuroinflammation in ischemic stroke.Neuroimmunol. Neuroinflamm.20174815816610.20517/2347‑8659.2017.09
    [Google Scholar]
  53. ZhuW. YuL. ZhuZ. ZhangD. WangY. MaJ. Astragalus polysaccharide nano-liposomes modulate the inflammatory response and oxidative stress in stroke-associated pneumonia by increasing OIP5-AS1 to regulate the miR-128-3p/SIRT1 pathway.Nanosci. Nanotechnol. Lett.202012121422143010.1166/nnl.2020.3233
    [Google Scholar]
  54. SoP.W. EkonomouA. GalleyK. BrodyL. Sahuri-ArisoyluM. RattrayI. CashD. BellJ.D. Intraperitoneal delivery of acetate-encapsulated liposomal nanoparticles for neuroprotection of the penumbra in a rat model of ischemic stroke.Int. J. Nanomedicine2019141979199110.2147/IJN.S19396530936698
    [Google Scholar]
  55. ZebA. ChaJ.H. NohA.R. QureshiO.S. KimK.W. ChoeY.H. ShinD. ShahF.A. MajidA. BaeO-N. KimJ-K. Neuroprotective effects of carnosine-loaded elastic liposomes in cerebral ischemia rat model.J. Pharm. Investig.202050437338110.1007/s40005‑019‑00462‑y
    [Google Scholar]
  56. ChungG.Y. ShimK.H. KimH.J. MinS.K. ShinH.S. Chitosan-coated C-phycocyanin Liposome for Extending the Neuroprotective Time Window Against Ischemic Brain Stroke.Curr. Pharm. Des.201824171859186410.2174/138161282466618051512354329766794
    [Google Scholar]
  57. LiuW. LuH. RaoX. LiX. LuH. LiF. HeY. YuR. ZhongR. ZhangY. LuoX. XinH. Enhanced treatment for cerebral ischemia-reperfusion injury of puerarin loading liposomes through neutrophils-mediated targeted delivery.Nano Res.202114124634464310.1007/s12274‑021‑3395‑y
    [Google Scholar]
  58. PartoazarA. SeyyedianZ. ZamanianG. SaffariP.M. MuhammadnejadA. DehpourA.R. GoudarziR. Neuroprotective phosphatidylserine liposomes alleviate depressive-like behavior related to stroke through neuroinflammation attenuation in the mouse hippocampus.Psychopharmacology (Berl.)202123861531153910.1007/s00213‑021‑05783‑133569644
    [Google Scholar]
  59. YangX. WuS. N-oleoylethanolamine − phosphatidylcholine complex loaded, DSPE-PEG integrated liposomes for efficient stroke.Drug Deliv.20212812525253310.1080/10717544.2021.200805834842016
    [Google Scholar]
  60. JoutelA. CorpechotC. DucrosA. VahediK. ChabriatH. MoutonP. AlamowitchS. DomengaV. CécillionM. MaréchalE. MaciazekJ. VayssièreC. CruaudC. CabanisE.A. RuchouxM.M. WeissenbachJ. BachJ.F. BousserM.G. Tournier-LasserveE. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia.Nature1996383660270771010.1038/383707a08878478
    [Google Scholar]
  61. WangY. LiX. LiuY. GuoW. ChenJ. LuM. HuangS. PangT. ChenJ. KongX. Notch3 mutation detection in stroke patients and selective nanoliposome in stroke alleviation in a mouse model.J. Biomed. Nanotechnol.20211791735174410.1166/jbn.2021.314234688318
    [Google Scholar]
  62. GuoX. JinX. HanK. KangS. TianS. LvX. FengM. ZhengH. ZuoY. XuG. HuM. XuJ. LvP. ChangY. Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms.Free Radic. Biol. Med.2022182597210.1016/j.freeradbiomed.2022.02.01735202785
    [Google Scholar]
  63. DeGregorio-RocasolanoN. Martí-SistacO. GasullT. Deciphering the iron side of stroke: Neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis.Front. Neurosci.2019138510.3389/fnins.2019.0008530837827
    [Google Scholar]
  64. SochorJ. Ruttkay-NedeckyB. BabulaP. AdamV. HubalekJ. KizekR. Automation of methods for determination of lipid peroxidation.Lipid PeroxidationLondonInTechOpen201210.5772/45945
    [Google Scholar]
  65. MolinariA ColoneM CalcabriniA StringaroA ToccacieliL AranciaG Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma.Toxicol In Vitro2007212230410.1016/j.tiv.2006.09.006
    [Google Scholar]
  66. ZhaoM. ChangJ. FuX. LiangC. LiangS. YanR. LiA. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats.J. Drug Target.201220541642110.3109/1061186X.2011.65172622519867
    [Google Scholar]
  67. ThöleM. NobmannS. HuwylerJ. BartmannA. FrickerG. Uptake of cationzied albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries.J. Drug Target.200210433734410.1080/1061186029003184012164382
    [Google Scholar]
  68. MuripitiV. BrijeshL. RachamallaH.K. MarepallyS.K. BanerjeeR. PatriS.V. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection.Bioorg. Chem.20198217819110.1016/j.bioorg.2018.02.02530326400
    [Google Scholar]
  69. ElkholyN.S. ShafaaM.W. MohammedH.S. Biophysical characterization of lutein or beta carotene-loaded cationic liposomes.RSC Advances20201054324093242210.1039/D0RA05683A35685615
    [Google Scholar]
  70. ShiM. AnanthaM. WehbeM. BallyM.B. FortinD. RoyL.O. CharestG. RicherM. PaquetteB. SancheL. Liposomal formulations of carboplatin injected by convection-enhanced delivery increases the median survival time of F98 glioma bearing rats.J. Nanobiotechnol20181617710.1186/s12951‑018‑0404‑830290821
    [Google Scholar]
  71. ChenH TangL QinY YinY TangJ TangW Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery.Eur J Pharm Sci20104029410210.1016/j.ejps.2010.03.007
    [Google Scholar]
  72. BanoD. NicoteraP. Ca2+ signals and neuronal death in brain ischemia.Stroke2007382Suppl.67467610.1161/01.STR.0000256294.46009.2917261713
    [Google Scholar]
  73. ThompsonB.J. RonaldsonP.T. Drug delivery to the ischemic brain.Adv. Pharmacol.20147116520210.1016/bs.apha.2014.06.01325307217
    [Google Scholar]
  74. SarmahD. SarafJ. KaurH. PravalikaK. TekadeR. BorahA. KaliaK. DaveK. BhattacharyaP. Stroke Management: An Emerging Role of Nanotechnology.Micromachines (Basel)20178926210.3390/mi809026230400452
    [Google Scholar]
  75. González-NietoD. Fernández-SerraR. Pérez-RigueiroJ. PanetsosF. Martinez-MurilloR. GuineaG.V. Biomaterials to neuroprotect the stroke brain: A large opportunity for narrow time windows.Cells202095107410.3390/cells905107432357544
    [Google Scholar]
  76. CrielaardB.J. LammersT. MorganM.E. ChaabaneL. CarboniS. GrecoB. ZaratinP. KraneveldA.D. StormG. Macrophages and liposomes in inflammatory disease: Friends or foes?Int. J. Pharm.2011416249950610.1016/j.ijpharm.2010.12.04521238559
    [Google Scholar]
  77. HillR.A. ConnollyJ.D. Triterpenoids.Nat. Prod. Rep.201835121294132910.1039/C8NP00029H29993074
    [Google Scholar]
  78. ChangC.Z. WuS.C. LinC.L. KwanA.L. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model.Brain Res.2015160821522410.1016/j.brainres.2015.02.03925747863
    [Google Scholar]
  79. TianX.H. WangZ.G. MengH. WangY.H. FengW. WeiF. HuangZ.C. LinX. Lei Ren Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm.Int. J. Nanomedicine2013886587610.2147/IJN.S3995123576867
    [Google Scholar]
  80. KakkarV MuppuSK ChopraK KaurIP Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats.Eur J Pharm Biopharm2013853 Pt A3394510.1016/j.ejpb.2013.02.005
    [Google Scholar]
  81. BorgesA. de FreitasV. MateusN. FernandesI. OliveiraJ. Solid Lipid Nanoparticles as Carriers of Natural Phenolic Compounds.Antioxidants202091099810.3390/antiox910099833076501
    [Google Scholar]
  82. NevesA.R. QueirozJ.F. ReisS. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.J. Nanobiotechnology20161412710.1186/s12951‑016‑0177‑x27061902
    [Google Scholar]
  83. E ElerakyN. M OmarM. A MahmoudH. A Abou-TalebH. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study.Pharmaceutics202012545110.3390/pharmaceutics1205045132422903
    [Google Scholar]
  84. TsaiT.H. LiuS.C. TsaiP.L. HoL.K. ShumA.Y.C. ChenC.F. The effects of the cyclosporin A, a P‐glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: A microdialysis study.Br. J. Pharmacol.200213781314132010.1038/sj.bjp.070495912466241
    [Google Scholar]
  85. JainK.K. Nanobiotechnology-based strategies for crossing the blood-brain barrier.Nanomedicine (Lond.)2012781225123310.2217/nnm.12.8622931448
    [Google Scholar]
  86. LiJ. NieS. YangX. WangC. CuiS. PanW. Optimization of tocol emulsions for the intravenous delivery of clarithromycin.Int. J. Pharm.20083561-228229010.1016/j.ijpharm.2007.12.04618289806
    [Google Scholar]
  87. ChambinO. JanninV. Interest of multifunctional lipid excipients: Case of Gelucire 44/14.Drug Dev. Ind. Pharm.200531652753410.1080/0363904050021575016109625
    [Google Scholar]
  88. ParkS.J. KimD.H. KimJ.M. ShinC.Y. CheongJ.H. KoK.H. RyuJ.H. Mismatch between changes in baicalein-induced memory-related biochemical parameters and behavioral consequences in mouse.Brain Res.2010135514115010.1016/j.brainres.2010.07.09820691671
    [Google Scholar]
  89. LiuC. WuJ. GuJ. XiongZ. WangF. WangJ. WangW. ChenJ. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats.Pharmacol. Biochem. Behav.200786342343010.1016/j.pbb.2006.11.00517289131
    [Google Scholar]
  90. MuX. HeG.R. YuanX. LiX.X. DuG.H. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice.Pharmacol. Biochem. Behav.201198228629110.1016/j.pbb.2011.01.01121262257
    [Google Scholar]
  91. TsaiM.J. WuP.C. HuangY.B. ChangJ.S. LinC.L. TsaiY.H. FangJ.Y. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting.Int. J. Pharm.2012423246147010.1016/j.ijpharm.2011.12.00922193056
    [Google Scholar]
  92. HassanzadehP. ArbabiE. AtyabiF. DinarvandR. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries.Life Sci.2018193647610.1016/j.lfs.2017.11.04629196052
    [Google Scholar]
  93. ZhouZ. WangY. YanY. ZhangQ. ChengY. Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumor ablation.ACS Nano20161044863487210.1021/acsnano.6b0205827054555
    [Google Scholar]
  94. GothwalA KumarH NakhateKT Lactoferrin coupled lower generation pamam dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced alzheimer's disease in mice.Bioconjug Chem2019301025732583
    [Google Scholar]
  95. PradhanD. TambeV. RavalN. GondaliaP. BhattacharyaP. KaliaK. TekadeR.K. Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study.Colloids Surf. B Biointerfaces201918411048810.1016/j.colsurfb.2019.11048831541894
    [Google Scholar]
  96. LiY. ZhangX. QiZ. GuoX. LiuX. ShiW. LiuY. DuL. The enhanced protective effects of salvianic acid A: A functionalized nanoparticles against ischemic stroke through increasing the permeability of the blood-brain barrier.Nano Res.202013102791280210.1007/s12274‑020‑2930‑6
    [Google Scholar]
  97. ZiembaB. Franiak-PietrygaI. PionM. AppelhansD. Muñoz-FernándezM.Á. VoitB. BryszewskaM. Klajnert-MaculewiczB. Toxicity and proapoptotic activity of poly(propylene imine) glycodendrimers in vitro: Considering their contrary potential as biocompatible entity and drug molecule in cancer.Int. J. Pharm.20144611-239140210.1016/j.ijpharm.2013.12.01124361266
    [Google Scholar]
  98. LeeY LeeJ KimM KimG ChoiJS LeeM Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy.J Control Release202133090791910.1016/j.jconrel.2020.10.064
    [Google Scholar]
  99. OrtizN VásquezPA VidalF DíazCF GuzmánJL Polyamidoamine-based nanovector for the efficient delivery of methotrexate to U87 glioma cells.Nanomedicine (Lond)202015282771278410.2217/nnm‑2020‑0305
    [Google Scholar]
  100. KhanAR YangX FuM ZhaiG Recent progress of drug nanoformulations targeting to brain.J Control Release2018291364610.1016/j.jconrel.2018.10.004
    [Google Scholar]
  101. JainK. KesharwaniP. GuptaU. JainN.K. Dendrimer toxicity: Let’s meet the challenge.Int. J. Pharm.20103941-212214210.1016/j.ijpharm.2010.04.02720433913
    [Google Scholar]
  102. LakkadwalaS. dos Santos RodriguesB. SunC. SinghJ. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo.Nanomedicine20202310211210.1016/j.nano.2019.10211231669083
    [Google Scholar]
  103. EiseltÉ. OtisV. BellevilleK. YangG. LarocqueA. RéginaA. DemeuleM. SarretP. GendronL. Use of a Noninvasive Brain-Penetrating Peptide-Drug Conjugate Strategy to Improve the Delivery of Opioid Pain Relief Medications to the Brain.J. Pharmacol. Exp. Ther.20203741526110.1124/jpet.119.26356632327529
    [Google Scholar]
  104. LuQ. CaiX. ZhangX. LiS. SongY. DuD. DuttaP. LinY. Synthetic Polymer Nanoparticles Functionalized with Different Ligands for Receptor-Mediated Transcytosis across the Blood–Brain Barrier.ACS Appl. Bio Mater.2018151687169410.1021/acsabm.8b0050231815251
    [Google Scholar]
  105. LiS. AmatD. PengZ. VanniS. RaskinS. De AnguloG. OthmanA.M. GrahamR.M. LeblancR.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells.Nanoscale2016837166621666910.1039/C6NR05055G27714111
    [Google Scholar]
  106. de BoerA.G. GaillardP.J. Drug targeting to the brain.Annu. Rev. Pharmacol. Toxicol.200747132335510.1146/annurev.pharmtox.47.120505.10523716961459
    [Google Scholar]
  107. UlbrichK. KnoblochT. KreuterJ. Targeting the insulin receptor: Nanoparticles for drug delivery across the blood–brain barrier (BBB).J. Drug Target.201119212513210.3109/1061186100373400120387992
    [Google Scholar]
  108. ColomaM.J. LeeH.J. KuriharaA. LandawE.M. BoadoR.J. MorrisonS.L. PardridgeW.M. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor.Pharm. Res.200017326627410.1023/A:100759272079310801214
    [Google Scholar]
  109. MacdonaldJ. DenoyerD. HenriJ. JamiesonA. BurvenichI.J.G. PouliotN. ShigdarS. Bifunctional Aptamer–Doxorubicin Conjugate Crosses the Blood–Brain Barrier and Selectively Delivers Its Payload to EpCAM-Positive Tumor Cells.Nucleic Acid Ther.202030211712810.1089/nat.2019.080732027209
    [Google Scholar]
  110. MoosT. MorganE.H. Transferrin and transferrin receptor function in brain barrier systems.Cell. Mol. Neurobiol.2000201779510.1023/A:100694802767410690503
    [Google Scholar]
  111. ChenY. LiuL. Modern methods for delivery of drugs across the blood–brain barrier.Adv. Drug Deliv. Rev.201264764066510.1016/j.addr.2011.11.01022154620
    [Google Scholar]
  112. CabralJ.D. RoxburghM. ShiZ. LiuL. McConnellM. WilliamsG. EvansN. HantonL.R. SimpsonJ. MorattiS.C. RobinsonB.H. WormaldP.J. RobinsonS. Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention.J. Mater. Sci. Mater. Med.201425122743275610.1007/s10856‑014‑5292‑325085242
    [Google Scholar]
  113. NanD. JinH. YangD. YuW. JiaJ. YuZ. Combination of Polyethylene Glycol-Conjugated Urokinase Nanogels and Urokinase for Acute Ischemic Stroke Therapeutic Implications.202112844857
    [Google Scholar]
  114. LiuX. JinL.L. ZhaoL.L. WangY.C. ZhangL. HuangZ.Z. JinH-Q. LiuJ-Y. LiangZ-J. LiuX. TanH. RenL-J. In-vivo thrombolytic efficacy of RGD modified protein-polymer conjugated urokinase nanogels.Polym. Test.202110410739210.1016/j.polymertesting.2021.107392
    [Google Scholar]
  115. TengY. JinH. NanD. LiM. FanC. LiuY. LvP. CuiW. SunY. HaoH. QuX. YangZ. HuangY. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model.Bioact. Mater.20183110210910.1016/j.bioactmat.2017.08.00129744447
    [Google Scholar]
  116. KuoY.C. WangC.C. Cationic solid lipid nanoparticles with primary and quaternary amines for release of saquinavir and biocompatibility with endothelia.Colloids Surf. B Biointerfaces201310110110510.1016/j.colsurfb.2012.06.00222796778
    [Google Scholar]
  117. ZhangH. ZhaiY. WangJ. ZhaiG. New progress and prospects: The application of nanogel in drug delivery.Mater. Sci. Eng. C20166056056810.1016/j.msec.2015.11.04126706564
    [Google Scholar]
  118. LalatsaA. LeiteD.M. FigueiredoM.F. O’ConnorM. Nanotechnology in Brain Tumor Targeting: Efficacy and Safety of Nanoenabled Carriers Undergoing Clinical Testing.Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. KesharwaniP. GuptaU. Cambridge, MassachusettsAcademic Press2018111145
    [Google Scholar]
  119. KarthivashanG. GanesanP. ParkS.Y. KimJ.S. ChoiD.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease.Drug Deliv.201825130732010.1080/10717544.2018.142824329350055
    [Google Scholar]
  120. CellotG. BalleriniL. PratoM. BiancoA. Neurons are able to internalize soluble carbon nanotubes: New opportunities or old risks?Small20106232630263310.1002/smll.20100090620859949
    [Google Scholar]
  121. LeeW. ParpuraV. Carbon nanotubes as substrates/scaffolds for neural cell growth.Prog. Brain Res.200918011012510.1016/S0079‑6123(08)80006‑420302831
    [Google Scholar]
  122. BokaraK.K. KimJ.Y. LeeY.I. YunK. WebsterT.J. LeeJ.E. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries.Anat. Cell Biol.2013462859210.5115/acb.2013.46.2.8523869255
    [Google Scholar]
  123. KafaH WangJT RubioN KlippsteinR CostaPM HassanHA Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo.J Control Release201622521722910.1016/j.jconrel.2016.01.031
    [Google Scholar]
  124. KafaH. WangJ.T.W. RubioN. VennerK. AndersonG. PachE. BallesterosB. PrestonJ.E. AbbottN.J. Al-JamalK.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo.Biomaterials20155343745210.1016/j.biomaterials.2015.02.08325890741
    [Google Scholar]
  125. LeeH.J. ParkJ. YoonO.J. KimH.W. LeeD.Y. KimD.H. LeeW.B. LeeN.E. BonventreJ.V. KimS.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model.Nat. Nanotechnol.20116212112510.1038/nnano.2010.28121278749
    [Google Scholar]
  126. HigginsP. DawsonJ. WaltersM. Nanotubes reduce stroke damage.Nat. Nanotechnol.201162838410.1038/nnano.2011.521278751
    [Google Scholar]
  127. BardiG. NunesA. GherardiniL. BatesK. Al-JamalK.T. GaillardC. PratoM. BiancoA. PizzorussoT. KostarelosK. Functionalized carbon nanotubes in the brain: Cellular internalization and neuroinflammatory responses.PLoS One2013811e8096410.1371/journal.pone.008096424260521
    [Google Scholar]
  128. HassanzadehP. ArbabiE. AtyabiF. DinarvandR. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke.Life Sci.2017179152210.1016/j.lfs.2016.11.02927919823
    [Google Scholar]
  129. ReddyM.K. LabhasetwarV. Nanoparticle‐mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia‐reperfusion injury.FASEB J.20092351384139510.1096/fj.08‑11694719124559
    [Google Scholar]
  130. Al-JamalK.T. GherardiniL. BardiG. NunesA. GuoC. BussyC. HerreroM.A. BiancoA. PratoM. KostarelosK. PizzorussoT. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing.Proc. Natl. Acad. Sci. USA201110827109521095710.1073/pnas.110093010821690348
    [Google Scholar]
  131. JinQ. CaiY. LiS. LiuH. ZhouX. LuC. GaoX. QianJ. ZhangJ. JuS. LiC. Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability.Theranostics20177488489810.7150/thno.1821928382161
    [Google Scholar]
  132. HanL. CaiQ. TianD. KongD.K. GouX. ChenZ. StrittmatterS.M. WangZ. ShethK.N. ZhouJ. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles.Nanomedicine20161271833184210.1016/j.nano.2016.03.00527039220
    [Google Scholar]
  133. MorsiN.M. GhorabD.M. BadieH.A. Brain targeted solid lipid nanoparticles for brain ischemia: Preparation and in vitro characterization.Pharm. Dev. Technol.201318373674410.3109/10837450.2012.73451323477526
    [Google Scholar]
  134. WilsonB. Brain targeting PBCA nanoparticles and the blood-brain barrier.Nanomedicine (Lond.)20094549950210.2217/nnm.09.2919572813
    [Google Scholar]
  135. RizwanSB AssmusD BoehnkeA HanleyT BoydBJ RadesT Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines.Eur J Pharm Biopharm2011791152210.1016/j.ejpb.2010.12.034
    [Google Scholar]
  136. RizwanSB McBurneyWT YoungK HanleyT BoydBJ RadesT Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses.J Control Release20161651162110.1016/j.jconrel.2012.10.020
    [Google Scholar]
  137. RizwanSB DongYD BoydBJ RadesT HookS Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron (Oxford, England : 1993)20073847885
    [Google Scholar]
  138. Escudé Martinez de CastillaP. TongL. HuangC. SofiasA.M. PastorinG. ChenX. StormG. SchiffelersR.M. WangJ.W. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies.Adv. Drug Deliv. Rev.202117511380110.1016/j.addr.2021.05.01134015418
    [Google Scholar]
  139. PercheF. UchidaS. AkibaH. LinC.Y. IkegamiM. DirisalaA. NakashimaT. ItakaK. TsumotoK. KataokaK. Improved Brain Expression of Anti-Amyloid β scFv by Complexation of mRNA Including a Secretion Sequence with PEG-based Block Catiomer.Curr. Alzheimer Res.201714329530210.2174/156720501366616110811003127829339
    [Google Scholar]
  140. XieJ. Gonzalez-CarterD. TockaryT.A. NakamuraN. XueY. NakakidoM. AkibaH. DirisalaA. LiuX. TohK. YangT. WangZ. FukushimaS. LiJ. QuaderS. TsumotoK. YokotaT. AnrakuY. KataokaK. Dual-Sensitive Nanomicelles Enhancing Systemic Delivery of Therapeutically Active Antibodies Specifically into the Brain.ACS Nano20201466729674210.1021/acsnano.9b0999132431145
    [Google Scholar]
  141. AbbasiS UchidaS TohK TockaryTA DirisalaA HayashiK Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain.J Control Release2021332 26026810.1016/j.jconrel.2021.02.026
    [Google Scholar]
  142. FengX. ChenA. ZhangY. WangJ. ShaoL. WeiL. Central nervous system toxicity of metallic nanoparticles.Int. J. Nanomedicine2015104321434026170667
    [Google Scholar]
  143. AshaRaniP.V. HandeM.P. ValiyaveettilS. Anti-proliferative activity of silver nanoparticles.BMC Cell Biol.20091016510.1186/1471‑2121‑10‑6519761582
    [Google Scholar]
  144. RisomL. MøllerP. LoftS. Oxidative stress-induced DNA damage by particulate air pollution.Mutat. Res.20055921-211913710.1016/j.mrfmmm.2005.06.01216085126
    [Google Scholar]
  145. DonaldsonK. StoneV. Current hypotheses on the mechanisms of toxicity of ultrafine particles.Ann. Ist. Super. Sanita200339340541015098562
    [Google Scholar]
  146. Dąbrowska-BoutaB. ZiębaM. Orzelska-GórkaJ. SkalskaJ. SulkowskiG. Frontczak-BaniewiczM. TalarekS. ListosJ. StrużyńskaL. Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats.Toxicology2016363-364293610.1016/j.tox.2016.07.00727427492
    [Google Scholar]
  147. PetersenE.J. NelsonB.C. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA.Anal. Bioanal. Chem.2010398261365010.1007/s00216‑010‑3881‑720563891
    [Google Scholar]
  148. VermaA. StellacciF. Effect of surface properties on nanoparticle-cell interactions.Small201061122110.1002/smll.20090115819844908
    [Google Scholar]
  149. ChampionJ.A. MitragotriS. Role of target geometry in phagocytosis.Proc. Natl. Acad. Sci. USA2006103134930493410.1073/pnas.060099710316549762
    [Google Scholar]
  150. LeeM.K. LimS.J. KimC.K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles.Biomaterials200728122137214610.1016/j.biomaterials.2007.01.01417257668
    [Google Scholar]
  151. ParkK.H. ChhowallaM. IqbalZ. SestiF. Single-walled carbon nanotubes are a new class of ion channel blockers.J. Biol. Chem.200327850502125021610.1074/jbc.M31021620014522977
    [Google Scholar]
  152. HirstS.M. KarakotiA. SinghS. SelfW. TylerR. SealS. ReillyC.M. Bio‐distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.Environ. Toxicol.201328210711810.1002/tox.2070421618676
    [Google Scholar]
  153. MahmoudiM. LaurentS. ShokrgozarM.A. HosseinkhaniM. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell “vision” versus physicochemical properties of nanoparticles.ACS Nano2011597263727610.1021/nn202108821838310
    [Google Scholar]
  154. DikpatiA. GaudreaultN. ChénardV. GrenierP. BoisselierÉ. BertrandN. Size Exclusion of Radioactive Polymers (SERP) informs on the biodegradation of trimethyl chitosan and biodegradable polymer nanoparticles in vitro and in vivo.J. Control. Release2022346203110.1016/j.jconrel.2022.04.00935405163
    [Google Scholar]
  155. NewmanL. RodriguesA.F. JasimD.A. VacchiI.A. Ménard-MoyonC. BiancoA. BussyC. KostarelosK. Nose-to-brain translocation and cerebral biodegradation of thin graphene oxide nanosheets.Cell Reports Phys Sci20201910017610.1016/j.xcrp.2020.100176
    [Google Scholar]
  156. WaggonerL.E. KangJ. ZuidemaJ.M. VijayakumarS. HurtadoA.A. SailorM.J. KwonE.J. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury.Bioconjug. Chem.20223391685169710.1021/acs.bioconjchem.2c0030536017941
    [Google Scholar]
  157. VlasovaI.I. KapralovA.A. MichaelZ.P. BurkertS.C. ShurinM.R. StarA. ShvedovaA.A. KaganV.E. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications.Toxicol. Appl. Pharmacol.2016299586910.1016/j.taap.2016.01.00226768553
    [Google Scholar]
  158. SureshbabuA.R. KurapatiR. RussierJ. Ménard-MoyonC. BartoliniI. MeneghettiM. KostarelosK. BiancoA. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.Biomaterials201572202810.1016/j.biomaterials.2015.08.04626342557
    [Google Scholar]
  159. KumarP. WuH. McBrideJ.L. JungK.E. Hee KimM. DavidsonB.L. Kyung LeeS. ShankarP. ManjunathN. Transvascular delivery of small interfering RNA to the central nervous system.Nature20074487149394310.1038/nature0590117572664
    [Google Scholar]
  160. MohammadF. Engineering butylglyceryl-modified polysaccharides towards nanomedicines for brain drug delivery.Carbohydr Polym2020236116060
    [Google Scholar]
  161. VialeF. CiprandiM. LeoniL. SierriG. RendaA. BarbugianF. KochM. SesanaS. SalvioniL. ColomboM. MantegazzaF. RussoL. ReF. Biodegradable SPI-based hydrogel for controlled release of nanomedicines: A potential approach against brain tumors recurrence.J Drug Deliv Sci Technol202496105672
    [Google Scholar]
  162. AppiahE. NakamuraH. AssumangA. EtrychT. HaratakeM. Chemical modification of bradykinin-polymer conjugates for optimum delivery of nanomedicines to tumors.Nanomedicine202457102744
    [Google Scholar]
  163. DashB.S. LuY.J. HuangY.S. ChenJ.P. Chitosan-coated magnetic graphene oxide for targeted delivery of doxorubicin as a nanomedicine approach to treat glioblastoma.Int. J. Biol. Macromol.2024260Pt 112940110.1016/j.ijbiomac.2024.12940138224798
    [Google Scholar]
  164. VieiraACC ChavesLL PinheiroM LimaSAC FerreiraD SarmentoB ReisS Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages.Artif Cells Nanomed Biotechnol201846sup165366310.1080/21691401.2018.1434186
    [Google Scholar]
  165. CostaA. SarmentoB. SeabraV. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages.Eur. J. Pharm. Sci.201811410311310.1016/j.ejps.2017.12.00629229273
    [Google Scholar]
  166. BeraH. ZhaoC. TianX. CunD. YangM. Mannose-Decorated Solid-Lipid Nanoparticles for Alveolar Macrophage Targeted Delivery of Rifampicin.Pharmaceutics202416342910.3390/pharmaceutics1603042938543323
    [Google Scholar]
  167. LewickyJ.D. FraleighN.L. BoramanA. MartelA.L. NguyenT.M.D. SchillerP.W. ShiaoT.C. RoyR. MontautS. LeH.T. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain.Eur. J. Pharm. Biopharm.202015429029610.1016/j.ejpb.2020.07.02132717389
    [Google Scholar]
  168. WuL-P. WangD. LiZ. Grand challenges in nanomedicine.Mater Sci Eng C Mater Biol Appl2020106110302
    [Google Scholar]
  169. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. PatelR.J. Ajazuddin RavichandiranV. MurtyU.S. AlexanderA. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.02032061621
    [Google Scholar]
  170. KhanAA AllemailemKS AlmatroodiSA AlmatroudiA RahmaniAH Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications.3 Biotech.202010163
    [Google Scholar]
  171. UthamanS. MayaS. JayakumarR. ChoC.S. ParkI.K. Carbohydrate-based nanogels as drug and gene delivery systems.J. Nanosci. Nanotechnol.201414169470410.1166/jnn.2014.890424730290
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615301487240829103021
Loading
/content/journals/cnm/10.2174/0124054615301487240829103021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test