Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Cancer ranks as the second leading cause of death globally. Cancer can be addressed through several primary methods, including radiation therapy, chemotherapy, immunotherapy, surgery, or a combination of these treatments. Conventional cancer therapies often fall short due to several critical issues: they lack specificity, leading to damage in both cancerous and healthy cells; exhibit high cytotoxicity, causing severe side effects; have a short half-life, necessitating frequent administration; suffer from poor solubility, reducing effectiveness; encounter multi-drug resistance, diminishing their efficacy; and struggle with the presence of stem-like cancer cells, which can cause recurrence and metastasis. The development of nanotechnology has brought about a revolutionary phase in cancer therapy, and nanocarriers have emerged as a game-changing method of delivering medications. This paper explores the groundbreaking developments in using nanocarriers as a cancer treatment tool. This also covers the various research published in the last few years, multiple patents filed, ongoing and completed clinical studies, and FDA-approved nanocarriers. Nanocarriers, a diverse group comprising liposomes, polymeric nanoparticles, dendrimers, gold nanoparticles, carbon nanotubes, etc., present distinctive advantages in cancer therapy. These represent an improvement in cancer therapy tactics, including targeted drug delivery, controlled release kinetics, and the ability to overcome multidrug resistance mechanisms. The promise of these nanoscale vehicles in cancer is demonstrated by clinical achievements like those of Doxil, Abraxane, and Onivyde. These technologies will be improved by further research. Nanocarriers can effectively treat various cancers by the mechanism of active and passive targeting. The various applications of nanocarriers in diagnostic medicine, preventive medicine, and therapeutic medicine further improve their clinical applicability. Despite the vast amount of research being conducted in this area, several obstacles remain, including technological, biological, and regulatory challenges. Researchers are trying their best to find a way out of these difficulties. Further research on this topic will help to improve the clinical translation of nanocarriers.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615335110250115053941
2025-12-01
2026-01-02
Loading full text...

Full text loading...

References

  1. World Health Organization.2019Available from: https://www.who.int/health-topics/cancer#tab=tab_1
  2. World Health Organization Global cancer burden growing, amidst mounting need for services.Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mountingneed-for-services 2024
  3. KimJ De JesusO Medication routes of administration.StatPearlsStatPearls PublishingTreasure Island (FL)2024
    [Google Scholar]
  4. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  5. MaroniA. ZemaL. CereaM. FoppoliA. PaluganL. GazzanigaA. Erodible drug delivery systems for time-controlled release into the gastrointestinal tract.J. Drug Deliv. Sci. Technol.20163222923510.1016/j.jddst.2015.10.001
    [Google Scholar]
  6. FanLT SinghSK FanLT SinghSK Diffusion-controlled release.controlled release: A quantitative treatmentSpringerBerlin, Heidelberg19891398810.1007/978‑3‑642‑74507‑2_2
    [Google Scholar]
  7. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  8. AlmoshariY. Osmotic pump drug delivery systems—A comprehensive review.Pharmaceuticals20221511143010.3390/ph1511143036422560
    [Google Scholar]
  9. LitterMI AhmadA The world of nanotechnology.Industrial applications of nanoparticles CRC Press202311510.1201/9781003183525‑1
    [Google Scholar]
  10. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  11. KaushikN. BorkarS.B. NandanwarS.K. PandaP.K. ChoiE.H. KaushikN.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.J. Nanobiotechnology202220115210.1186/s12951‑022‑01364‑235331246
    [Google Scholar]
  12. ZhaoX. BaiJ. YangW. Stimuli-responsive nanocarriers for therapeutic applications in cancer.Cancer Biol. Med.202118231933510.20892/j.issn.2095‑3941.2020.049633764711
    [Google Scholar]
  13. CaputoD. PozziD. FarolfiT. PassaR. CoppolaR. CaraccioloG. Nanotechnology and pancreatic cancer management: State of the art and further perspectives.World J. Gastrointest. Oncol.202113423123710.4251/wjgo.v13.i4.23133889275
    [Google Scholar]
  14. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nano-Eabled Medical Applications.1st edJenny Stanford Publishing202023619110.1201/9780429399039‑2
    [Google Scholar]
  15. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  16. LiS. XuS. LiangX. XueY. MeiJ. MaY. LiuY. LiuY. Nanotechnology: Breaking the current treatment limits of lung cancer.Adv. Healthc. Mater.20211012210007810.1002/adhm.20210007834019739
    [Google Scholar]
  17. AllahverdiyevAM ParlarE DinparvarS BagirovaM AbamorEŞ Current aspects in treatment of breast cancer based on nanodrug delivery systems and future prospects.Artif. Cells Nanomed. Biotechnol.2018Nov1246sup375576210.1080/21691401.2018.1511573
    [Google Scholar]
  18. BaraniM. BilalM. SabirF. RahdarA. KyzasG.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment.Life Sci.202126611891410.1016/j.lfs.2020.11891433340527
    [Google Scholar]
  19. ZhangJ. DingH. ZhangF. XuY. LiangW. HuangL. New trends in diagnosing and treating ovarian cancer using nanotechnology.Front. Bioeng. Biotechnol.202311116098510.3389/fbioe.2023.116098537082219
    [Google Scholar]
  20. RajR. MongiaP. Kumar SahuS. RamA. Nanocarriers based anticancer drugs: Current scenario and future perceptions.Curr. Drug Targets201617220622810.2174/138945011666615072214160726201484
    [Google Scholar]
  21. LinG. MiP. ChuC. ZhangJ. LiuG. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics.Adv. Sci.2016311160013410.1002/advs.20160013427980988
    [Google Scholar]
  22. SpringB.Q. RizviI. XuN. HasanT. The role of photodynamic therapy in overcoming cancer drug resistance.Photochem. Photobiol. Sci.20151481476149110.1039/c4pp00495g25856800
    [Google Scholar]
  23. Dhilip KumarS.S. AbrahamseH. Biocompatible nanocarriers for enhanced cancer photodynamic therapy applications.Pharmaceutics20211311193310.3390/pharmaceutics1311193334834348
    [Google Scholar]
  24. AkhtarF. MisbaL. KhanA.U. The dual role of photodynamic therapy to treat cancer and microbial infection.Drug Discov. Today202429810409910.1016/j.drudis.2024.10409939002771
    [Google Scholar]
  25. GuptaP. NeupaneY.R. ParvezS. KohliK. Recent advances in targeted nanotherapeutic approaches for breast cancer management.Nanomedicine202116292605263110.2217/nnm‑2021‑028134854336
    [Google Scholar]
  26. WangC. FanW. ZhangZ. WenY. XiongL. ChenX. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy.Adv. Mater.20193149190432910.1002/adma.20190432931538379
    [Google Scholar]
  27. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  28. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  29. DadwalM. SolanD. PradeshH. Polymeric nanoparticles as promising novel carriers for drug delivery: An overview.J. Adv. Pharm. Educ. Res.201441
    [Google Scholar]
  30. LemboD. CavalliR. Nanoparticulate delivery systems for antiviral drugs.Antivir. Chem. Chemother.2010212537010.3851/IMP168421107015
    [Google Scholar]
  31. ShindeN.C. KeskarN.J. ArgadeP.D. Nanoparticles: Advances in drug delivery systems.Res. J. Pharm. Biol. Chem. Sci.201231922929
    [Google Scholar]
  32. LambertiM. ZappavignaS. SannoloN. PortoS. CaragliaM. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers.Expert Opin. Drug Deliv.20141171087110110.1517/17425247.2014.91356824773227
    [Google Scholar]
  33. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  34. NiculescuA.G. GrumezescuA.M. Novel tumor-targeting nanoparticles for cancer treatment—A review.Int. J. Mol. Sci.2022239525310.3390/ijms2309525335563645
    [Google Scholar]
  35. SaleemJ. WangL. ChenC. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment.Adv. Healthc. Mater.2018720180052510.1002/adhm.20180052530073803
    [Google Scholar]
  36. ZaheerU. HassainN.A. BanuS. MathewS. Oncolytic viruses as nanomedicines against the tumor microenvironment.Biointerface Res. Appl. Chem.2021116148251485210.33263/BRIAC116.1482514852
    [Google Scholar]
  37. BelfioreL. SaundersD.N. RansonM. ThurechtK.J. StormG. VineK.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities.J. Control. Release201827711310.1016/j.jconrel.2018.02.04029501721
    [Google Scholar]
  38. NakamuraY. MochidaA. ChoykeP.L. KobayashiH. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer?Bioconjug. Chem.201627102225223810.1021/acs.bioconjchem.6b0043727547843
    [Google Scholar]
  39. KenchegowdaM. RahamathullaM. HaniU. BegumM.Y. GuruswamyS. OsmaniR.A.M. GowravM.P. AlshehriS. GhoneimM.M. AlshlowiA. GowdaD.V. Smart nanocarriers as an emerging platform for cancer therapy: A review.Molecules202127114610.3390/molecules2701014635011376
    [Google Scholar]
  40. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  41. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  42. IyerA.K. KhaledG. FangJ. MaedaH. Exploiting the enhanced permeability and retention effect for tumor targeting.Drug Discov. Today20061117-1881281810.1016/j.drudis.2006.07.00516935749
    [Google Scholar]
  43. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.00419837467
    [Google Scholar]
  44. GullottiE. YeoY. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery.Mol. Pharm.2009641041105110.1021/mp900090z19366234
    [Google Scholar]
  45. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti- cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  46. PelicanoH. MartinD.S. XuR-H. HuangP. Glycolysis inhibition for anticancer treatment.Oncogene200625344633464610.1038/sj.onc.120959716892078
    [Google Scholar]
  47. AdamsG.P. SchierR. McCallA.M. SimmonsH.H. HorakE.M. AlpaughR.K. MarksJ.D. WeinerL.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules.Cancer Res.200161124750475511406547
    [Google Scholar]
  48. GoskS. MoosT. GottsteinC. BendasG. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo.Biochim. Biophys. Acta Biomembr.20081778485486310.1016/j.bbamem.2007.12.02118211818
    [Google Scholar]
  49. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.00518840489
    [Google Scholar]
  50. TianH. ZhangT. QinS. HuangZ. ZhouL. ShiJ. NiceE.C. XieN. HuangC. ShenZ. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies.J. Hematol. Oncol.202215113210.1186/s13045‑022‑01320‑536096856
    [Google Scholar]
  51. LiY. ZhangP. TangW. McHughK.J. KershawS.V. JiaoM. HuangX. KalytchukS. PerkinsonC.F. YueS. QiaoY. ZhuL. JingL. GaoM. HanB. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer.ACS Nano20221658076809410.1021/acsnano.2c0115335442624
    [Google Scholar]
  52. RaveendranR. ChenF. KentB. StenzelM.H. Estrone-decorated polyion complex micelles for targeted melittin delivery to hormone-responsive breast cancer cells.Biomacromolecules20202131222123310.1021/acs.biomac.9b0168132022540
    [Google Scholar]
  53. DongJ. ZhuC. ZhangF. ZhouZ. SunM. “Attractive/adhesion force” dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer.J. Control. Release202234189290310.1016/j.jconrel.2021.12.02634953982
    [Google Scholar]
  54. NerantzakiM. MichelA. PetitL. GarnierM. MénagerC. GriffeteN. Biotinylated magnetic molecularly imprinted polymer nanoparticles for cancer cell targeting and controlled drug delivery.Chem. Commun.202258375642564510.1039/D2CC00740A35439806
    [Google Scholar]
  55. LuoZ. LuL. XuW. MengN. WuS. ZhouJ. XuQ. XieC. LiuY. LuW. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy.J. Control. Release2022346324210.1016/j.jconrel.2022.03.05835378211
    [Google Scholar]
  56. HaM.J. Singareeka RaghavendraA. KettnerN.M. QiaoW. DamodaranS. LaymanR.M. HuntK.K. ShenY. TripathyD. KeyomarsiK. Palbociclib plus endocrine therapy significantly enhances overall survival of HR +/ HER2 - metastatic breast cancer patients compared to endocrine therapy alone in the second-line setting: A large institutional study.Int. J. Cancer2022150122025203710.1002/ijc.3395935133007
    [Google Scholar]
  57. NianD. ShiP. SunJ. RenL. HaoX. HanJ. Application of luteinizing hormone-releasing hormone–ferrosoferric oxide nanoparticles in targeted imaging of breast tumors.J. Int. Med. Res.20194741749175710.1177/030006051983445730880516
    [Google Scholar]
  58. EssaM.L. ElashkarA.A. HanafyN.A.N. SaiedE.M. El-KemaryM. Dual targeting nanoparticles based on hyaluronic and folic acids as a promising delivery system of the encapsulated 4-Methylumbelliferone (4-MU) against invasiveness of lung cancer in vivo and in vitro.Int. J. Biol. Macromol.202220646748010.1016/j.ijbiomac.2022.02.09535202638
    [Google Scholar]
  59. LiaoL. CenB. LiG. WeiY. WangZ. HuangW. HeS. YuanY. JiA. A bivalent cyclic RGD–siRNA conjugate enhances the antitumor effect of apatinib via co-inhibiting VEGFR2 in non-small cell lung cancer xenografts.Drug Deliv.20212811432144210.1080/10717544.2021.193738134236267
    [Google Scholar]
  60. LiZ. ChenG. DingL. WangY. ZhuC. WangK. LiJ. SunM. OupickyD. Increased survival by pulmonary treatment of established lung metastases with dual STAT3/CXCR4 inhibition by siRNA nanoemulsions.Mol. Ther.201927122100211010.1016/j.ymthe.2019.08.00831481310
    [Google Scholar]
  61. Rodriguez-MelendezR. ZempleniJ. Regulation of gene expression by biotin- (review).J. Nutr. Biochem.2003141268069010.1016/j.jnutbio.2003.07.00114690760
    [Google Scholar]
  62. HaoT. FuY. YangY. YangS. LiuJ. TangJ. RidwanK.A. TengY. LiuZ. LiJ. GuoN. YuP. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis.Eur. J. Med. Chem.202121911343010.1016/j.ejmech.2021.11343033865152
    [Google Scholar]
  63. HellstenR. LilljebjörnL. JohanssonM. LeanderssonK. BjartellA. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors.Prostate201979141611162110.1002/pros.2388531348843
    [Google Scholar]
  64. HaoZ. FanW. HaoJ. WuX. ZengG.Q. ZhangL.J. NieS.F. WangX.D. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo .Drug Deliv.201623386487110.3109/10717544.2014.92005924892627
    [Google Scholar]
  65. Ramezani FaraniM. AzarianM. Heydari Sheikh HosseinH. AbdolvahabiZ. Mohammadi AbgarmiZ. MoradiA. MousaviS.M. AshrafizadehM. MakvandiP. SaebM.R. RabieeN. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer.ACS Appl. Bio Mater.2022531305131810.1021/acsabm.1c0131135201760
    [Google Scholar]
  66. ZafarA. AlruwailiN.K. ImamS.S. AlharbiK.S. AfzalM. AlotaibiN.H. YasirM. ElmowafyM. AlshehriS. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review.J. Drug Deliv. Sci. Technol.20216110219810.1016/j.jddst.2020.102198
    [Google Scholar]
  67. VarshosazJ. FarzanM. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.World J. Gastroenterol.20152142120221204110.3748/wjg.v21.i42.1202226576089
    [Google Scholar]
  68. GhanemI. RiveiroM.E. ParadisV. FaivreS. de PargaP.M. RaymondE. Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis.Am. J. Transl. Res.20146434035225075251
    [Google Scholar]
  69. BonferoniM.C. GaviniE. RassuG. MaestriM. GiunchediP. Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting.Nanomaterials202010587010.3390/nano1005087032365938
    [Google Scholar]
  70. LiY.L. ZhuX.M. LiangH. OrvigC. ChenZ.F. Recent advances in asialoglycoprotein receptor and glycyrrhetinic acid receptor-mediated and/or pH-responsive hepatocellular carcinoma-targeted drug delivery.Curr. Med. Chem.20212881508153410.2174/092986732766620050508575632368967
    [Google Scholar]
  71. NewtonD.L. HansenH.J. LiuH. RubyD. IordanovM.S. MagunB.E. GoldenbergD.M. RybakS.M. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents.Crit. Rev. Oncol. Hematol.2001391-2798610.1016/S1040‑8428(01)00116‑011418304
    [Google Scholar]
  72. Sullivan-ChangL. O’DonnellR.T. TuscanoJ.M. Targeting CD22 in B-cell malignancies: Current status and clinical outlook.BioDrugs201327429330410.1007/s40259‑013‑0016‑723696252
    [Google Scholar]
  73. CostacheM.I. IoanaM. IordacheS. EneD. CostacheC.A. SăftoiuA. VEGF expression in pancreatic cancer and other malignancies: A review of the literature.Rom. J. Intern. Med.201553319920810.1515/rjim‑2015‑002726710495
    [Google Scholar]
  74. YangY. CaoY. The impact of VEGF on cancer metastasis and systemic disease.Semin. Cancer Biol.202286Pt 325126110.1016/j.semcancer.2022.03.01135307547
    [Google Scholar]
  75. SongX. TraubB. ShiJ. KornmannM. Possible roles of interleukin-4 and-13 and their receptors in gastric and colon cancer.Int. J. Mol. Sci.202122272710.3390/ijms2202072733450900
    [Google Scholar]
  76. ShiJ. SongX. TraubB. LuxenhoferM. KornmannM. Involvement of IL-4, IL-13 and their receptors in pancreatic cancer.Int. J. Mol. Sci.2021226299810.3390/ijms2206299833804263
    [Google Scholar]
  77. LiangR. WuC. LiuS. ZhaoW. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers.Drug Deliv.20222911620163010.1080/10717544.2022.207598635612318
    [Google Scholar]
  78. YuanB. WangG. TangX. TongA. ZhouL. Immunotherapy of glioblastoma: Recent advances and future prospects.Hum. Vaccin. Immunother.2022185205541710.1080/21645515.2022.205541735344682
    [Google Scholar]
  79. BialvesT.S. Bastos JuniorC.L.Q. CordeiroM.F. BoyleR.T. Snake venom, a potential treatment for melanoma. A systematic review.Int. J. Biol. Macromol.202323112336710.1016/j.ijbiomac.2023.12336736690229
    [Google Scholar]
  80. SteigerK. QuigleyN.G. GrollT. RichterF. ZierkeM.A. BeerA.J. WeichertW. SchwaigerM. KossatzS. NotniJ. There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography.EJNMMI Res.202111110610.1186/s13550‑021‑00842‑234636990
    [Google Scholar]
  81. AlqosaibiA.I. Nanocarriers for anticancer drugs: Challenges and perspectives.Saudi J. Biol. Sci.202229610329810.1016/j.sjbs.2022.10329835645591
    [Google Scholar]
  82. MushtaqA. LiL. AA. GrøndahlL. Chitosan nanomedicine in cancer therapy: Targeted delivery and cellular uptake.Macromol. Biosci.2021215210000510.1002/mabi.20210000533738977
    [Google Scholar]
  83. Bamburowicz-KlimkowskaM. PoplawskaM. GrudzinskiI.P. Nanocomposites as biomolecules delivery agents in nanomedicine.J. Nanobiotechnology20191714810.1186/s12951‑019‑0479‑x30943985
    [Google Scholar]
  84. BastiancichC. BozzatoE. LuytenU. DanhierF. BastiatG. PréatV. Drug combination using an injectable nanomedicine hydrogel for glioblastoma treatment.Int. J. Pharm.201955922022710.1016/j.ijpharm.2019.01.04230703501
    [Google Scholar]
  85. ShnaikatS.G. ShakyaA.K. BardaweelS.K. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines.Saudi Pharm. J.202432710209910.1016/j.jsps.2024.10209938817822
    [Google Scholar]
  86. SharmaM. Sudha AmbadipudiS.S.S.S. Kumar ChouhanN. Lakshma NayakV. PabbarajaS. Balaji AndugulapatiS. SistlaR. Design, synthesis and biological evaluation of novel cationic liposomes loaded with melphalan for the treatment of cancer.Bioorg. Med. Chem. Lett.20249712954910.1016/j.bmcl.2023.12954937952597
    [Google Scholar]
  87. SubasicC.N. SimpsonF. MinchinR.F. KaminskasL.M. A PEGylated liposomal formulation of prochlorperazine that limits brain exposure but retains dynamin II activity: A potential adjuvant therapy for cancer patients receiving chemotherapeutic mAbs.Nanomedicine20245610273310.1016/j.nano.2024.10273338199450
    [Google Scholar]
  88. MarkowskiA. Zaremba-CzogallaM. JarominA. OlczakE. ZygmuntA. EtezadiH. BoydB.J. GubernatorJ. Novel liposomal formulation of baicalein for the treatment of pancreatic ductal adenocarcinoma: Design, characterization, and evaluation.Pharmaceutics202315117910.3390/pharmaceutics1501017936678808
    [Google Scholar]
  89. WangX. CaiH. HuangX. LuZ. ZhangL. HuJ. TianD. FuJ. ZhangG. MengY. ZhengG. ChangC. Formulation and evaluation of a two-stage targeted liposome coated with hyaluronic acid for improving lung cancer chemotherapy and overcoming multidrug resistance.J. Biomater. Sci. Polym. Ed.202334141928195110.1080/09205063.2023.220181537060335
    [Google Scholar]
  90. ParveenS. KumarS. PalS. YadavN.P. RajawatJ. BanerjeeM. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery.Int. J. Pharm.202364312321210.1016/j.ijpharm.2023.12321237429561
    [Google Scholar]
  91. SawantS.S. PatilS.M. ShuklaS.K. KulkarniN.S. GuptaV. KundaN.K. Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: Formulation development and in vitro evaluation.Drug Deliv. Transl. Res.202212102474248710.1007/s13346‑021‑01088‑034816394
    [Google Scholar]
  92. AbdulkareemS.J. Jafari-GharabaghlouD. Farhoudi-Sefidan-JadidM. Salmani-JavanE. ToroghiF. ZarghamiN. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: Potential anti-cancer effect in treatment of lung cancer cells.Daru202432113314410.1007/s40199‑023‑00495‑738168007
    [Google Scholar]
  93. SaharkhizS. NasriN. NaderiN. DiniG. GhalehshahiS.S. FiroozbakhtF. Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells.Int. J. Pharm. X2024710023710.1016/j.ijpx.2024.10023738516198
    [Google Scholar]
  94. AlsarayrehN. AbdelghanyS. AlqudahD. AbuarqoubD. AlshaerW. Gemcitabine-loaded niosomes: Optimization, characterization, and in vitro efficacy against invasive malignancies.J. Drug Deliv. Sci. Technol.20249510561710.1016/j.jddst.2024.105617
    [Google Scholar]
  95. PashizehF. MansouriA. BazzazanS. AbdihajiM. KhaleghianM. BazzazanS. RezeiN. EskandariA. MashayekhiF. HeydariM. Tavakkoli YarakiM. Bioresponsive gingerol-loaded alginate-coated niosomal nanoparticles for targeting intracellular bacteria and cancer cells.Int. J. Biol. Macromol.2024258Pt 212895710.1016/j.ijbiomac.2023.12895738154726
    [Google Scholar]
  96. ZarepourA. EgilA.C. Cokol CakmakM. Esmaeili RadM. CetinY. AydinlikS. Ozaydin InceG. ZarrabiA. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment.Polymers202315229810.3390/polym1502029836679179
    [Google Scholar]
  97. CetinE.O. SalmanogluD.S. OzdenI. Ors-KumogluG. AkarS. DemirozerM. KarabeyF. KilicK.D. KirilmazL. UyanikgilY. Sevimli-GurC. Preparation of ethanol extract of propolis loaded niosome formulation and evaluation of effects on different cancer cell lines.Nutr. Cancer202274126527710.1080/01635581.2021.187688933590797
    [Google Scholar]
  98. ManglaB. MittalP. KumarP. JavedS. AhsanW. AggarwalG. Development of erlotinib-loaded nanotransferosomal gel for the topical treatment of ductal carcinoma in situ. Nanomedicine2024191085587410.2217/nnm‑2023‑026038440976
    [Google Scholar]
  99. FernandesN.B. VelagacherlaV. SpandanaK.J. NB. MehtaC.H. GadagS. SabhahitJ.N. NayakU.Y. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy.Int. J. Pharm.202465012368610.1016/j.ijpharm.2023.12368638070658
    [Google Scholar]
  100. WadherK. TrivediS. RarokarN. UmekarM. Development and assessment of rutin loaded transfersomes to improve ex vivo membrane permeability and in vitro efficacy.Hybrid Advances2024510014410.1016/j.hybadv.2024.100144
    [Google Scholar]
  101. ShamimM.A. ShahidA. SardarP.K. YeungS. ReyesJ. KimJ. ParsaC. OrlandoR. WangJ. KellyK.M. MeyskensF.L.Jr AndresenB.T. HuangY. Transfersome encapsulated with the R-carvedilol enantiomer for skin cancer chemoprevention.Nanomaterials202313592910.3390/nano1305092936903807
    [Google Scholar]
  102. GayathriH. SangeethaS. Pharmaceutical development of tamoxifen citrate loaded transferosomal gel for skin cancer by doe approach.J. Posit. Sch. Psychol.2022218791890
    [Google Scholar]
  103. KayaS. SolakE.K. DoğanS.Y. DemirkayaA. CelepA.G.S. Designing of polymeric nanoparticles for enhanced breast cancer therapy: Combining paclitaxel, boric acid and tannic acid for controlled drug delivery.ChemistrySelect202497e20230467210.1002/slct.202304672
    [Google Scholar]
  104. DartoraV.F.C. PassosJ.S. Costa-LotufoL.V. LopesL.B. PanitchA. Thermosensitive polymeric nanoparticles for drug co-encapsulation and breast cancer treatment.Pharmaceutics202416223110.3390/pharmaceutics1602023138399285
    [Google Scholar]
  105. AlmoustafaH.A. AlshawshM.A. Al-SuedeF.S.R. AlshehadeS.A. Abdul MajidA.M.S. ChikZ. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice.Polymers202315228410.3390/polym1502028436679166
    [Google Scholar]
  106. BhattacharyaS. AnjumM.M. PatelK.K. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: Formulation, characterization, and targeted drug delivery.Drug Deliv.20222911060107410.1080/10717544.2022.205864535363113
    [Google Scholar]
  107. MohamedJ.M.M. AhmadF. El-SherbinyM. Al MohainiM.A. VenkatesanK. AlrashdiY.B.A. EldesoquiM.B. IbrahimA.E. DawoodA.F. IbrahimA.M. El DeebS. Optimization and characterization of quercetin-loaded solid lipid nanoparticles for biomedical application in colorectal cancer.Cancer Nanotechnol.20241511610.1186/s12645‑024‑00249‑3
    [Google Scholar]
  108. Garcia-FossaF. de JesusM.B. Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration.Nanotoxicology2024181365410.1080/17435390.2024.230761638300021
    [Google Scholar]
  109. RahmanM.A. AliA. RahamathullaM. SalamS. HaniU. WahabS. WarsiM.H. YusufM. AliA. MittalV. HarwanshR.K. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation.Polymers202315354210.3390/polym1503054236771843
    [Google Scholar]
  110. AlajamiH.N. FouadE.A. AshourA.E. KumarA. YassinA.E.B. Celecoxib-loaded solid lipid nanoparticles for colon delivery: Formulation optimization and in vitro assessment of anti-cancer activity.Pharmaceutics202214113110.3390/pharmaceutics1401013135057027
    [Google Scholar]
  111. SherifA.Y. HarisaG.I. AlanaziF.K. NasrF.A. AlqahtaniA.S. PEGylated SLN as a promising approach for lymphatic delivery of gefitinib to lung cancer.Int. J. Nanomedicine2022173287331110.2147/IJN.S36597435924261
    [Google Scholar]
  112. AbrishamiA. BahramiA.R. NekooeiS. Sh SaljooghiA. MatinM.M. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics.Commun. Biol.20247139310.1038/s42003‑024‑06043‑638561432
    [Google Scholar]
  113. ChittineediP. MohammedA. Abdul RazabM.K.A. Mat NawiN. PandrangiS.L. Polyherbal formulation conjugated to gold nanoparticles induced ferroptosis in drug-resistant breast cancer stem cells through ferritin degradation.Front. Pharmacol.202314113475810.3389/fphar.2023.113475837050902
    [Google Scholar]
  114. NosratiH. SeidiF. HosseinmirzaeiA. MousazadehN. MohammadiA. GhaffarlouM. DanafarH. CondeJ. SharafiA. Prodrug polymeric nanoconjugates encapsulating gold nanoparticles for enhanced X-Ray radiation therapy in breast cancer.Adv. Healthc. Mater.2022113210232110.1002/adhm.20210232134800003
    [Google Scholar]
  115. AkhtarS. AsiriS.M. KhanF.A. GundayS.T. IqbalA. AlrushaidN. LabibO.A. DeenG.R. HenariF.Z. Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity.Arab. J. Chem.202215210359410.1016/j.arabjc.2021.103594
    [Google Scholar]
  116. KaurR. SinghK. AgarwalS. MasihM. ChauhanA. GautamP.K. Silver nanoparticles induces apoptosis of cancer stem cells in head and neck cancer.Toxicol. Rep.202412101710.1016/j.toxrep.2023.11.00838173651
    [Google Scholar]
  117. JayachandranP. IlangoS. SuseelaV. NirmaladeviR. ShaikM.R. KhanM. KhanM. ShaikB. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: In vitro drug release analysis.Biomedicines202311121710.3390/biomedicines1101021736672725
    [Google Scholar]
  118. ShashirajK.N. NayakaS. KumarR.S. KantliG.B. BasavarajappaD.S. GunagambhireP.V. AlmansourA.I. PerumalK. Rotheca serrata flower bud extract mediated bio-friendly preparation of silver nanoparticles: Their characterizations, anticancer, and apoptosis inducing ability against pancreatic ductal adenocarcinoma cell line.Processes202311389310.3390/pr11030893
    [Google Scholar]
  119. WangY. ChinnathambiA. NasifO. AlharbiS.A. Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract.Arab. J. Chem.202114410308110.1016/j.arabjc.2021.103081
    [Google Scholar]
  120. WangY. ChengW. ZhuJ. HeL. RenW. BaoD. PiaoJ.G. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment.Biomed. Pharmacother.202417011608410.1016/j.biopha.2023.11608438157645
    [Google Scholar]
  121. LiuD. WangL. LiH. LiD. ZhouJ. WangJ. ZhangQ. CaiD. Co-delivery of gemcitabine and honokiol by lipid bilayer-coated mesoporous silica nanoparticles enhances pancreatic cancer therapy via targeting depletion of tumor stroma.Molecules202429367510.3390/molecules2903067538338418
    [Google Scholar]
  122. YanH. YouY. LiX. LiuL. GuoF. ZhangQ. LiuD. TongY. DingS. WangJ. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells.Front. Pharmacol.20201189810.3389/fphar.2020.0089832612532
    [Google Scholar]
  123. BiX. WattsD.B. DormanI. KirkC.M. ThomasM. SingletonI. MalcomC. BarnesT. CarterC. LiangA. Polyamidoamine dendrimer-mediated hydrogel for solubility enhancement and anti-cancer drug delivery.J. Biomater. Appl.202438673374210.1177/0885328223121371237933579
    [Google Scholar]
  124. FataniW.K. AleanizyF.S. AlqahtaniF.Y. AlanaziM.M. AldossariA.A. ShakeelF. HaqN. AbdelhadyH. AlkahtaniH.M. AlsarraI.A. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy.Molecules2023289397410.3390/molecules2809397437175381
    [Google Scholar]
  125. YbarraD.E. CalienniM.N. RamirezL.F.B. FriasE.T.A. LilloC. AlonsoS.V. MontanariJ. AlviraF.C. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer.OpenNano2022710005310.1016/j.onano.2022.100053
    [Google Scholar]
  126. AleanizyF.S. AlqahtaniF.Y. SetóS. KhalilN. AleshaiwiL. AlghamdiM. AlquadeibB. AlkahtaniH. AldarweshA. AlqahtaniQ.H. AbdelhadyH.G. AlsarraI. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy.Int. J. Nanomedicine2020155433544310.2147/IJN.S25689832801698
    [Google Scholar]
  127. TiwariP. ShuklaR.P. YadavK. SinghN. MarwahaD. GautamS. BakshiA.K. RaiN. KumarA. SharmaD. MishraP.R. Dacarbazine-primed carbon quantum dots coated with breast cancer cell-derived exosomes for improved breast cancer therapy.J. Control. Release2024365435910.1016/j.jconrel.2023.11.00537935257
    [Google Scholar]
  128. CampbellE. HasanM.T. Gonzalez-RodriguezR. TrulyT. LeeB.H. GreenK.N. AkkarajuG. NaumovA.V. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery.Nanomedicine20213710240810.1016/j.nano.2021.10240834015513
    [Google Scholar]
  129. SamimiS. ArdestaniM.S. DorkooshF.A. Preparation of carbon quantum dots- quinic acid for drug delivery of gemcitabine to breast cancer cells.J. Drug Deliv. Sci. Technol.20216110228710.1016/j.jddst.2020.102287
    [Google Scholar]
  130. LiX. VinothiniK. RameshT. RajanM. RamuA. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system.Drug Deliv.202027179180410.1080/10717544.2020.176543132420760
    [Google Scholar]
  131. ChenJ. HuS. SunM. ShiJ. ZhangH. YuH. YangZ. Recent advances and clinical translation of liposomal delivery systems in cancer therapy.Eur. J. Pharm. Sci.202419310668810.1016/j.ejps.2023.10668838171420
    [Google Scholar]
  132. GharbaviM. ManjiliH.K. AmaniJ. SharafiA. DanafarH. In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery.Heliyon201956e0185810.1016/j.heliyon.2019.e0185831198875
    [Google Scholar]
  133. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.01531446046
    [Google Scholar]
  134. MoammeriA. ChegeniM.M. SahrayiH. GhafelehbashiR. MemarzadehF. MansouriA. AkbarzadehI. AbtahiM.S. HejabiF. RenQ. Current advances in niosomes applications for drug delivery and cancer treatment.Mater. Today Bio20232310083710.1016/j.mtbio.2023.10083737953758
    [Google Scholar]
  135. KumbharP.S. KambleV. VishwasS. KumbharP. KolekarK. GuptaG. VeigaF. Paiva-SantosA.C. GohB.H. SinghS.K. DuaK. DisouzaJ. PatravaleV. Unravelling the success of transferosomes against skin cancer: Journey so far and road ahead.Drug Deliv. Transl. Res.20241492325234410.1007/s13346‑024‑01607‑938758498
    [Google Scholar]
  136. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  137. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: A review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.172064932003260
    [Google Scholar]
  138. DasM. ShimK.H. AnS.S.A. YiD.K. Review on gold nanoparticles and their applications.Toxicol. Environ. Health Sci.20113419320510.1007/s13530‑011‑0109‑y
    [Google Scholar]
  139. MeherA. TandiA. MoharanaS. ChakrobortyS. MohapatraS.S. MondalA. DeyS. ChandraP. Silver nanoparticle for biomedical applications: A review.Hybrid Advances2024610018410.1016/j.hybadv.2024.100184
    [Google Scholar]
  140. PamshongS.R. BhataneD. SarnaikS. AlexanderA. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides.Colloids Surf. B Biointerfaces202323211361310.1016/j.colsurfb.2023.11361337913702
    [Google Scholar]
  141. MittalP. SaharanA. VermaR. AltalbawyF.M.A. AlfaidiM.A. BatihaG.E.S. AkterW. GautamR.K. UddinM.S. RahmanM.S. Dendrimers: A new race of pharmaceutical nanocarriers.BioMed Res. Int.20212021111110.1155/2021/884403033644232
    [Google Scholar]
  142. PanjaA PatraP. A review on Quantum Dots (QDs) and their biomedical applications.4open202361
    [Google Scholar]
  143. AliH.R. SelimS.A. AiliD. Effects of macrophage polarization on gold nanoparticle-assisted plasmonic photothermal therapy.RSC Advances20211140250472505610.1039/D1RA03671H35481041
    [Google Scholar]
  144. ZhengL. SunX. ZhuX. LvF. ZhongZ. ZhangF. GuoW. CaoW. YangL. TianY. Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin.PLoS One201493e9313310.1371/journal.pone.009313324676101
    [Google Scholar]
  145. MondalJ. LambaR. YuktaY. YadavR. KumarR. PaniB. SinghB. Advancements in semiconductor quantum dots: Expanding frontiers in optoelectronics, analytical sensing, biomedicine, and catalysis.J. Mater. Chem. C Mater. Opt. Electron. Devices20241228103301038910.1039/D4TC01396D
    [Google Scholar]
  146. AmetaR JatKK BhattJ AmetaSC Quantum dots and their applications.Advances in nanotechnology and the environmental sciencesApple Academic Press201911915010.1201/9780429425837‑6
    [Google Scholar]
  147. García de ArquerF.P. TalapinD.V. KlimovV.I. ArakawaY. BayerM. SargentE.H. Semiconductor quantum dots: Technological progress and future challenges.Science20213736555eaaz854110.1126/science.aaz854134353926
    [Google Scholar]
  148. DingC. HuangY. ShenZ. ChenX. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence.Adv. Mater.20213332200776810.1002/adma.202007768
    [Google Scholar]
  149. ZouY. WangP. ZhangA. QinZ. LiY. XianyuY. ZhangH. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing.ACS Appl. Mater. Interfaces20221478680869210.1021/acsami.1c1975435086331
    [Google Scholar]
  150. CuiY.X. SunG.Y. LiY.H. TangA.N. ZhuL.N. KongD.M. DNA-based pH-responsive core–shell drug nanocarrier for tumor-targeted chemo-photodynamic therapy.Adv. Mater. Interfaces2020716200029210.1002/admi.202000292
    [Google Scholar]
  151. ZhangX. ZhaoX. TieS. WangH. TanM. Ultrasonic self-emulsification nanocarriers for cellular enhanced astaxanthin delivery.J. Agric. Food Chem.20216992719272810.1021/acs.jafc.0c0598333625837
    [Google Scholar]
  152. YuL. DongA. GuoR. YangM. DengL. ZhangJ. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect.ACS Biomater. Sci. Eng.2018472424243410.1021/acsbiomaterials.8b0037933435106
    [Google Scholar]
  153. HouS. LiuJ. ShiF. ZhaoG.X. TanJ.W. WangG. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes.Front Chem.20221086418610.3389/fchem.2022.86418635360530
    [Google Scholar]
  154. KoJ.B. LeeS.H. LeeT.I. LeeS. KimJ. KimH. KimT.S. ParkS.H.K. Ultrathin, flexible, and transparent oxide thin-film transistors by delamination and transfer methods for deformable displays.Adv. Mater. Technol.2021611210043110.1002/admt.202100431
    [Google Scholar]
  155. JiangJ. ChuZ. YinZ. LiJ. YangY. ChenJ. WuJ. YouJ. ZhangX. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations.Adv. Mater.20223436220446010.1002/adma.20220446035855612
    [Google Scholar]
  156. FluksmanA. SteinbergE. OrehovN. ShaiE. LahianiA. KatzhendlerJ. MarcinkiewiczC. LazaroviciP. BennyO. Integrin α 2 β 1 -targeted self-assembled nanocarriers for tumor bioimaging.ACS Appl. Bio Mater.2020396059607010.1021/acsabm.0c0066235021834
    [Google Scholar]
  157. ZhangD.D. LiuJ.M. SunS.M. LiuC. FangG.Z. WangS. Construction of persistent luminescence-plastic antibody hybrid nanoprobe for in vivo recognition and clearance of pesticide using background-free nanobioimaging.J. Agric. Food Chem.201967246874688310.1021/acs.jafc.9b0271231144502
    [Google Scholar]
  158. ChenW. LiuJ. ZhengC. BaiQ. GaoQ. ZhangY. DongK. LuT. Research progress on improving the efficiency of CDT by exacerbating tumor acidification.Int. J. Nanomedicine2022172611262810.2147/IJN.S36618735712639
    [Google Scholar]
  159. MajumderR. KarmakarS. MishraS. MallickA.B. Das MukhopadhyayC. Functionalized carbon nano-onions as a smart drug delivery system for the poorly soluble drug carmustine for the management of glioblastoma.ACS Appl. Bio Mater.20247115416710.1021/acsabm.3c0068838088856
    [Google Scholar]
  160. MissonM. ZhangH. JinB. Nanobiocatalyst advancements and bioprocessing applications.J. R. Soc. Interface2015121022014089110.1098/rsif.2014.089125392397
    [Google Scholar]
  161. SasidharanS. BahadurD. SrivastavaR. Protein-poly (amino acid) nanocore–shell mediated synthesis of branched gold nanostructures for computed tomographic imaging and photothermal therapy of cancer.ACS Appl. Mater. Interfaces2016825158891590310.1021/acsami.6b0342827243100
    [Google Scholar]
  162. SunS. ZhaoY. WangJ. PeiR. Lanthanide-based MOFs: Synthesis approaches and applications in cancer diagnosis and therapy.J. Mater. Chem. B Mater. Biol. Med.202210469535956410.1039/D2TB01884E36385652
    [Google Scholar]
  163. HoffmanA.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation.Adv. Drug Deliv. Rev.2013651101610.1016/j.addr.2012.11.00423246762
    [Google Scholar]
  164. Caldorera-MooreM.E. LiechtyW.B. PeppasN.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers.Acc. Chem. Res.201144101061107010.1021/ar200177721932809
    [Google Scholar]
  165. MuthuM.S. LeongD.T. MeiL. FengS.S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics.Theranostics20144666067710.7150/thno.869824723986
    [Google Scholar]
  166. LiZ. SongN. YangY.W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves.Matter20191234536810.1016/j.matt.2019.05.01934104881
    [Google Scholar]
  167. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  168. WangS. HuangP. ChenX. Stimuli-responsive programmed specific targeting in nanomedicine.ACS Nano20161032991299410.1021/acsnano.6b0087026881288
    [Google Scholar]
  169. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Mater. Med.20201101910.1016/j.smaim.2020.04.00134553138
    [Google Scholar]
  170. YangY. ZengW. HuangP. ZengX. MeiL. Smart materials for drug delivery and cancer therapy.VIEW2021222020004210.1002/VIW.20200042
    [Google Scholar]
  171. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.005
    [Google Scholar]
  172. DaneshiM. FarahbakhshZ. MehrgardiM.A. Hollow mesoporous prussian blue nanoparticles for in vivo synergistic chemo-photothermal cancer therapy and dual-mode magnetic resonance/fluorescence imaging.ACS Appl. Nano Mater.2024776946695710.1021/acsanm.3c06005
    [Google Scholar]
  173. ShahbaziR. Jafari-GharabaghlouD. MirjafaryZ. SaeidianH. ZarghamiN. Design and optimization various formulations of PEGylated niosomal nanoparticles loaded with phytochemical agents: Potential anti-cancer effects against human lung cancer cells.Pharmacol. Rep.202375244245510.1007/s43440‑023‑00462‑836859742
    [Google Scholar]
  174. TwalS. JaberN. Al-RemawiM. HamadI. Al-AkaylehF. AlshaerW. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting.RSC Advances20241453070308410.1039/D3RA08074A38239437
    [Google Scholar]
  175. NajafiM. PourmadadiM. AbdousM. RahdarA. PandeyS. Formulation of double nanoemulsions based on pH-sensitive carboxymethyl cellulose /Starch copper doped carbon quantum dots for quercetin controlled release.J. Mol. Liq.202440012454310.1016/j.molliq.2024.124543
    [Google Scholar]
  176. Carrera EspinozaM.J. LinK.S. WengM.T. KuneneS.C. LinY.S. LiuS.Y. Magnetic boron nitride nanosheets-based on pH-responsive smart nanocarriers for the delivery of doxorubicin for liver cancer treatment.Colloids Surf. B Biointerfaces202322211312910.1016/j.colsurfb.2023.11312936610364
    [Google Scholar]
  177. KulbackaJ. WilkK.A. BazylińskaU. Dubińska-MagieraM. PotoczekS. SaczkoJ. Curcumin loaded nanocarriers with varying charges augmented with electroporation designed for colon cancer therapy.Int. J. Mol. Sci.2022233137710.3390/ijms2303137735163301
    [Google Scholar]
  178. YangG. SunX. LiuJ. FengL. LiuZ. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy.Adv. Funct. Mater.201626264722473210.1002/adfm.201600722
    [Google Scholar]
  179. BazylińskaU. WawrzyńczykD. KulbackaJ. PicciG. ManniL.S. HandschinS. FornasierM. CaltagironeC. MezzengaR. MurgiaS. Hybrid theranostic cubosomes for efficient NIR-induced photodynamic therapy.ACS Nano20221645427543810.1021/acsnano.1c0936735333516
    [Google Scholar]
  180. LiuY. AshtonJ.R. ModingE.J. YuanH. RegisterJ.K. FalesA.M. ChoiJ. WhitleyM.J. ZhaoX. QiY. MaY. VaidyanathanG. ZalutskyM.R. KirschD.G. BadeaC.T. Vo-DinhT. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy.Theranostics20155994696010.7150/thno.1197426155311
    [Google Scholar]
  181. GuoM. MaoH. LiY. ZhuA. HeH. YangH. WangY. TianX. GeC. PengQ. WangX. YangX. ChenX. LiuG. ChenH. Dual imaging-guided photothermal/photodynamic therapy using micelles.Biomaterials201435164656466610.1016/j.biomaterials.2014.02.01824613048
    [Google Scholar]
  182. FromainA. PerezJ.E. Van de WalleA. LalatonneY. WilhelmC. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation.Nat. Commun.2023141463710.1038/s41467‑023‑40258‑137532698
    [Google Scholar]
  183. WangJ. RongJ. FangZ. WangM. AsifA. WuQ. ZhouX. GeX. Monodisperse polypyrrole nanoparticles prepared via γ-ray radiolysis of water: An efficient near-infrared photothermal agent for cancer therapy.Part. Part. Syst. Charact.2017343160043010.1002/ppsc.201600430
    [Google Scholar]
  184. LiangS. DengX. ChangY. SunC. ShaoS. XieZ. XiaoX. MaP. ZhangH. ChengZ. LinJ. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy.Nano Lett.20191964134414510.1021/acs.nanolett.9b0159531084016
    [Google Scholar]
  185. HuangY. XueZ. ZengS. Hollow mesoporous Bi@ PEG-FA nanoshell as a novel dual-stimuli-responsive nanocarrier for synergistic chemo-photothermal cancer therapy.ACS Appl. Mater. Interfaces20201228311723118110.1021/acsami.0c0737232532159
    [Google Scholar]
  186. LiangJ. ZhangW. WangJ. LiW. GeF. JinW. TaoY. Development of the Cu/ZIF-8 MOF acid-sensitive nanocatalytic platform capable of chemo/chemodynamic therapy with improved anti-tumor efficacy.ACS Omega2023822194021941210.1021/acsomega.3c0026937305251
    [Google Scholar]
  187. YaoL. ChenB. WuH. CuiY. QianG. Rational design of copper( i )-doped metal–organic frameworks as dual-functional nanocarriers for combined chemo–chemodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20231144106321063910.1039/D3TB01869E37910388
    [Google Scholar]
  188. ZhouM. TianB. BuY. WuZ. YuJ. WangS. SunX. ZhuX. ZhouH. Enhanced pH-responsive chemo/chemodynamic synergistic cancer therapy based on in situ cu2+ di-chelation.ACS Appl. Bio Mater.2023683221323110.1021/acsabm.3c0032337428493
    [Google Scholar]
  189. AkbarM.U. KhattakS. KhanM.I. SaddozaiU.A.K. AliN. AlAsmariA.F. ZaheerM. BadarM. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil.Front. Pharmacol.202314126544010.3389/fphar.2023.126544037745070
    [Google Scholar]
  190. LiuT. ChaiS. LiM. ChenX. XieY. ZhaoZ. XieJ. YuY. GaoF. ZhuF. YangL. A nanoparticle-based sonodynamic therapy reduces Helicobacter pylori infection in mouse without disrupting gut microbiota.Nat. Commun.202415184410.1038/s41467‑024‑45156‑838286999
    [Google Scholar]
  191. ZhouY. CaoZ. JiangL. ChenY. CuiX. WuJ. XieX. WangL. YingT. Magnetically actuated sonodynamic nanorobot collectives for potentiated ovarian cancer therapy.Front. Bioeng. Biotechnol.202412137442310.3389/fbioe.2024.137442338595994
    [Google Scholar]
  192. HongL. PlissA.M. ZhanY. ZhengW. XiaJ. LiuL. QuJ. PrasadP.N. Perfluoropolyether nanoemulsion encapsulating chlorin e6 for sonodynamic and photodynamic therapy of hypoxic tumor.Nanomaterials20201010205810.3390/nano1010205833086490
    [Google Scholar]
  193. ZhangM. YangD. DongC. HuangH. FengG. ChenQ. ZhengY. TangH. ChenY. JingX. Two-dimensional MXene-originated in situ nanosonosensitizer generation for augmented and synergistic sonodynamic tumor nanotherapy.ACS Nano20221669938995210.1021/acsnano.2c0463035639357
    [Google Scholar]
  194. DuanY. YuY. LiuP. GaoY. DaiX. ZhangL. ChenL. ChenY. Reticular chemistry-enabled sonodynamic activity of covalent organic frameworks for nanodynamic cancer therapy.Angew. Chem. Int. Ed.20236220e20230214610.1002/anie.20230214636894504
    [Google Scholar]
  195. MusielakM. PiotrowskiI. SuchorskaW.M. Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies.Rep. Pract. Oncol. Radiother.201924430731410.1016/j.rpor.2019.04.00231193459
    [Google Scholar]
  196. AyanaG. RyuJ. ChoeS. Ultrasound-responsive nanocarriers for breast cancer chemotherapy.Micromachines2022139150810.3390/mi1309150836144131
    [Google Scholar]
  197. ChamseddineI.M. FrieboesH.B. KokkolarasM. Design optimization of tumor vasculature-bound nanoparticles.Sci. Rep.2018811776810.1038/s41598‑018‑35675‑y30538267
    [Google Scholar]
  198. AvramovićN. MandićB. Savić-RadojevićA. SimićT. Polymeric nanocarriers of drug delivery systems in cancer therapy.Pharmaceutics202012429810.3390/pharmaceutics1204029832218326
    [Google Scholar]
  199. SunJ.H. ZhangW. ZhangD.Y. ShenJ. TanC.P. JiL.N. MaoZ.W. Multifunctional mesoporous silica nanoparticles as efficient transporters of doxorubicin and chlorin e6 for chemo-photodynamic combinatorial cancer therapy.J. Biomater. Appl.20183291253126410.1177/088532821875892529448866
    [Google Scholar]
  200. Dhilip KumarS.S. AbrahamseH. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy.Front Chem.20221096980910.3389/fchem.2022.96980936046728
    [Google Scholar]
  201. WangM. LongJ. ZhangS. LiuF. ZhangX. ZhangX. SunL. MaL. YuC. WeiH. Folate-targeted anticancer drug delivery via a combination strategy of a micelle complex and reducible conjugation.ACS Biomater. Sci. Eng.2020631565157210.1021/acsbiomaterials.9b0192033455375
    [Google Scholar]
  202. ChenH. FanX. ZhaoY. ZhiD. CuiS. ZhangE. LanH. DuJ. ZhangZ. ZhangS. ZhenY. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shRNA into breast tumor.ACS Appl. Mater. Interfaces20201219220742208710.1021/acsami.9b2244032083833
    [Google Scholar]
  203. LeeC.G. KwonT.H. Controlling morphologies of redox-responsive polymeric nanocarriers for a smart drug delivery system.Chemistry20232934e20230059410.1002/chem.20230059436974937
    [Google Scholar]
  204. SaraeiM. SarvariR. MassoumiB. AgbolaghiS. Co-delivery of methotrexate and doxorubicin via nanocarriers of star-like poly(DMAEMA- block -HEMA- block -AAc) terpolymers.Polym. Int.201968101795180310.1002/pi.5890
    [Google Scholar]
  205. JiaoX. WangZ. WangF. WenY. Dual stimuli-responsive controlled release nanocarrier for multidrug resistance cancer therapy.ChemPhysChem201920243271327510.1002/cphc.20190093531654459
    [Google Scholar]
  206. HeH. LiuL. MorinE.E. LiuM. SchwendemanA. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures.Acc. Chem. Res.20195292445246110.1021/acs.accounts.9b0022831424909
    [Google Scholar]
  207. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms2303168535163607
    [Google Scholar]
  208. AbedS.N. DebP.K. SurchiH.S. KokazS.F. JamalS.M. BandopadhyayS. TekadeR.K. Chapter 17 - Nanocarriers in different preclinical and clinical stages.Advances in Pharmaceutical Product Development and Research, Basic Fundamentals of Drug DeliveryAcademic Press2019685731
    [Google Scholar]
  209. U.S. National Library of Medicine U.S. National library of medicine.2019Available from: https://clinicaltrials.gov/
  210. ChenJ. CongX. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects.Biomed. Pharmacother.202315711399810.1016/j.biopha.2022.11399836399829
    [Google Scholar]
  211. GottesmanM.M. FojoT. BatesS.E. Multidrug resistance in cancer: Role of ATP–dependent transporters.Nat. Rev. Cancer200221485810.1038/nrc70611902585
    [Google Scholar]
  212. PeerD. MargalitR. Fluoxetine and reversal of multidrug resistance.Cancer Lett.2006237218018710.1016/j.canlet.2005.06.00316014320
    [Google Scholar]
  213. ChuaK.J. ChouS.K. HoJ.C. An analytical study on the thermal effects of cryosurgery on selective cell destruction.J. Biomech.200740110011610.1016/j.jbiomech.2005.11.00516368100
    [Google Scholar]
  214. Ryman-RasmussenJ.P. RiviereJ.E. Monteiro-RiviereN.A. Penetration of intact skin by quantum dots with diverse physicochemical properties.Toxicol. Sci.200691115916510.1093/toxsci/kfj12216443688
    [Google Scholar]
  215. TavakolS. KianiV. TavakolB. DerakhshanM.A. JoghataeiM.T. RezayatS.M. Chapter 14 - Toxicity concerns of nanocarriers.Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and GenesAcademic Press2017453484
    [Google Scholar]
  216. JiaG. HanY. AnY. DingY. HeC. WangX. TangQ. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo.Biomaterials201817830231610.1016/j.biomaterials.2018.06.02929982104
    [Google Scholar]
  217. JiangJ. OberdörsterG. BiswasP. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies.J. Nanopart. Res.2009111778910.1007/s11051‑008‑9446‑4
    [Google Scholar]
  218. AwasthiR. PantI. T KulkarniG. Satiko KikuchiI. de Jesus Andreoli PintoT. DuaK. Ramana MalipeddiV. Opportunities and challenges in nano-structure mediated drug delivery: Where do we stand?Curr. Nanomed.2016627810410.2174/2468187306666160808160330
    [Google Scholar]
  219. XiaT. KovochichM. BrantJ. HotzeM. SempfJ. OberleyT. SioutasC. YehJ.I. WiesnerM.R. NelA.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Nano Lett.2006681794180710.1021/nl061025k16895376
    [Google Scholar]
  220. XiaY. RaoL. YaoH. WangZ. NingP. ChenX. Engineering macrophages for cancer immunotherapy and drug delivery.Adv. Mater.20203240200205410.1002/adma.20200205432856350
    [Google Scholar]
  221. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  222. DobrovolskaiaM.A. AggarwalP. HallJ.B. McNeilS.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol. Pharm.20085448749510.1021/mp800032f18510338
    [Google Scholar]
  223. MoghimiS.M. HunterA.C. MurrayJ.C. Nanomedicine: Current status and future prospects.FASEB J.200519331133010.1096/fj.04‑2747rev15746175
    [Google Scholar]
  224. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  225. StoverD. BharaliD. HayB.A. SafaieT. Formulated and/or co-formulated liposome compositions containg TGFb antagonist prodrugs useful in the treatment of cancer and methods thereofPatent US 18/445,323,2024
  226. NallathambyP.D. Bispecific nanoparticle systems for targeting cancer cells.Patent US 18/547,664,2024
  227. LinW. JiangX. HanW. FengX. Nanoparticles containing multiple cleavable produgs for cancer therapy.Patent US 18/022,296,2024
  228. MaK. VenkatesanA.M. ChenF. WuF. TürkerM.Z. GardinierI.T. GermanoG.J.Jr AdamsG.P. LeeF.Y. Folate receptor targeted nanoparticle drug conjugates and uses thereof.Patent US 11,744,8972023
  229. NelA.E. MengH. AllenS. Gsk3 inhibitor-loaded nano formulations as a cancer immunotherapeutic.Patent US 18/013,508,2023
  230. LiuX. JiangJ. LiaoY.P. TangI. ZhengE. QiuW. LinM. WangX. JiY. MeiK.C. LiuQ. ChangC.H. WainbergZ.A. NelA.E. MengH. Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1.Adv. Sci.202186200214710.1002/advs.20200214733747719
    [Google Scholar]
  231. ChengC.T. HsiehC.Y. LinC.F. LinK.Y. SuC.M. LauP.Y. Nanoparticle complex with defined sizes.Patent US 18/311,114,2023
  232. BecraftJ. SowellR. KhuranaJ. KitadaT. Lipid nanoparticle comprising modified nucleotides.Patent US 18/006,555,
  233. XuP. Nanoparticle for the remodeling of cancer-associated fibroblasts.Patent US 17/965,880,2023
  234. SayourE. Mendez-gomezH.R. QdaisatS. DeleyrolleL.P. MitchellD.A. Rna-loaded nanoparticles and use thereof for the treatment of cancer.Patent US 17/797,810,2023
  235. MirkinC.A. CallmannC.E. Oxidized tumor cell lysates encapsulated in liposomal spherical nucleic acids as potent cancer immunotherapeutics.Patent US 17/917,871,2023
  236. LiX. EchegoyenL.A. MaL. Single nir irradiation triggered upconversion nano system for synergistic photodynamic and photothermal cancer therapy.Patent US 17/456,534,2022
  237. BlumeJ.E. ManningW.C. TroianoG. SiddiquiA. MaP. FarokhzadO.C. Methods of processing a biofluid sample.Patent US 17/720,197,2022
  238. HoareT. BabarA. MajcherM.J. LiX. LoftsA.D. CampeaM.A. In situ gelling polysaccharide-based nanoparticle hydrogel compositions, and methods of use thereof.Patent US 17/323,659,2021
  239. KircherM. WallM. HarmsenS. Anisotropic particles, methods and uses thereof.Patent US 10,919,089,2021
  240. MarkovicS.N. NevalaW.K. Albumin-PD-1 paclitaxel nanoparticle complex compositions and methods of making and using the same.Patent US 11,433,023,2022
  241. IvkovR WoodardL PomperMG Synthesis and use of targeted radiation enhancing iron oxide-silica-gold nanoshells for imaging and treatment of cancer.Patent WO2015070036A1,2015
  242. WiesnerU. MaK. Mesoporous oxide nanoparticles and methods of making and using same.Patent US 10,732,115,2020
  243. BirisA.S. XuY. WangD. Multifunctional Fe3O4 cored magnetic-quantum dot fluorescent nanocomposites for RF nano-hyperthermia of cancer cells.Patent US 8,697,181,2014
  244. BulbakeU KommineniN KhanW Liposomal drug delivery system and its clinically available products.InHandbook of Materials for Nanomedicine Jenny Stanford publishing202012117210.1201/9781003045076‑4
    [Google Scholar]
  245. MilanoG. InnocentiF. MinamiH. Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs.Cancer Sci.202211372224223110.1111/cas.1537735445479
    [Google Scholar]
  246. CheberdaA.E. BelousovD.Y. Comparative pharmacoeconomic analysis of Paclical® and Taxol® in Russian Federation. Kachestvennaya Klinicheskaya Praktika= Good.Clin. Pract.201611424
    [Google Scholar]
  247. McAvoyJ.C. BrodskyJ.B. Brock-UtneJ. Pennywise and a Pound foolish: The advantage of dantrolene nanosuspension (Ryanodex) in the treatment of malignant hyperthermia.Anesth. Analg.20191296e201e20210.1213/ANE.000000000000444831743207
    [Google Scholar]
  248. SilvermanJ.A. DeitcherS.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine.Cancer Chemother. Pharmacol.201371355556410.1007/s00280‑012‑2042‑423212117
    [Google Scholar]
  249. MieleE. SpinelliG.P. MieleE. TomaoF. TomaoS. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer.Int. J. Nanomedicine200949910519516888
    [Google Scholar]
  250. SartorO. Eligard® 6: A new form of treatment for prostate cancer.Euro. Urol. Supp.2006518905910
    [Google Scholar]
  251. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  252. GulMZ BeeduSR Integrated approaches to agri-nanotechnology: Applications, challenges, and future perspectives.InMicrobiomes for the Management of Agricultural Sustainability Springer Nature SwitzerlandCham202312810.1007/978‑3‑031‑32967‑8_1
    [Google Scholar]
  253. SadrS. LotfalizadehN. AbbasiA.M. SoleymaniN. HajjafariA. Roohbaksh Amooli MoghadamE. BorjiH. Challenges and prospective of enhancing hydatid cyst chemotherapy by nanotechnology and the future of nanobiosensors for diagnosis.Trop. Med. Infect. Dis.202381149410.3390/tropicalmed811049437999613
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615335110250115053941
Loading
/content/journals/cnm/10.2174/0124054615335110250115053941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test