Skip to content
2000
Volume 10, Issue 2
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

Antibiotic resistance among pathogens has grown to be a major concern for the health of people around the world. One of the main subgroups of troublesome multidrug-resistant bacteria that has recently undergone rapid evolution is Methicillin-resistant (MRSA).

Methods

In this study, silver nanoparticles were synthesized using an aqueous extract of leaves. The methicillin-resistant was used to test the antibacterial properties of the produced -derived silver nanoparticles. These nanoparticles were characterized using XRD, UV-vis spectroscopy, FTIR, and SEM.

Results

The antibacterial activity of the silver nanoparticles was improved at doses of 50, 100, and 150 ug/ml, with mean zones of inhibition (ZOI) of 13.0, 16.4, and 17.4 mm (SD1). When combined with erythromycin medicines, silver nanoparticles showed significant antibacterial efficiency compared to when used alone. The ZOI was 23 mm at 150 ug/mL, compared to 21 mm at 50 and 100 ug/mL. At =0.06, the outcomes were statistically significant.

Conclusion

This established that the antibacterial impact of combining antibiotics with AgNPs is enhanced. The current work showed that biosynthesized silver nanoparticles (BF-AgNPs) were effective .

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615292315240318062929
2024-03-26
2025-10-24
Loading full text...

Full text loading...

References

  1. CatalanoA. IacopettaD. CeramellaJ. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies.Molecules202227361610.3390/molecules27030616 35163878
    [Google Scholar]
  2. IwuC.D. KorstenL. OkohA.I. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health.Microbiol.Open202099e103510.1002/mbo3.1035 32710495
    [Google Scholar]
  3. ZhuY. HuangW.E. YangQ. Clinical perspective of antimicrobial resistance in bacteria, infection and drug resistance.Infect. Drug Resist.202215735746
    [Google Scholar]
  4. SawaT. KooguchiK. MoriyamaK. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance.J. Intensive Care2020811310.1186/s40560‑020‑0429‑6 32015881
    [Google Scholar]
  5. HuangF. ShenT. HaiX. Clinical characteristics of and risk factors for secondary bloodstream infection after pneumonia among patients infected with methicillin-resistant Staphylococcus aureus.Heliyon2022812e1197810.1016/j.heliyon.2022.e11978 36506352
    [Google Scholar]
  6. ZhenX. LundborgC.S. ZhangM. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: A multicentre study in China.Sci. Rep.2020101390010.1038/s41598‑020‑60825‑6 32127606
    [Google Scholar]
  7. InagakiK. LucarJ. BlackshearC. HobbsC.V. Methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States.Clin. Infect. Dis.201969122112211810.1093/cid/ciz123 30753447
    [Google Scholar]
  8. Sánchez-LópezE. GomesD. EsteruelasG. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials 202010229210.3390/nano10020292 32050443
    [Google Scholar]
  9. HamadA. KhashanK.S. HadiA. Silver nanoparticles and silver ions as potential antibacterial agents.J. Inorg. Organomet. Polym. Mater.202030124811482810.1007/s10904‑020‑01744‑x
    [Google Scholar]
  10. OzdalM. GurkokS. A recent advances in nanoparticles as antibacterial agent.ADMET DMPK202210211512910.5599/admet.1172 35350114
    [Google Scholar]
  11. KaurH. SinghJ. RaniP. KaurN. KumarS. RawatM. A novel and one-pot synthesis of Punica granatum mediated copper oxide having flower-like morphology as an efficient visible-light driven photocatalyst for degradation of textile dyes in waste water.J. Mol. Liq.202235511896610.1016/j.molliq.2022.118966
    [Google Scholar]
  12. DikshitP. KumarJ. DasA. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  13. Monica AhmadN. Husaini MohamedA. HasanN.A. Zainal- Abidin N, Zaini Nawahwi M, Mohamad Azzeme A. Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches.Inorg. Chem. Commun.202416111183910.1016/j.inoche.2023.111839
    [Google Scholar]
  14. YeboahG.N. OwusuF.W.A. ArcherM.A. Bridelia ferruginea Benth.; An ethnomedicinal, phytochemical, pharmacological and toxicological review.Heliyon202288e1036610.1016/j.heliyon.2022.e10366 36082325
    [Google Scholar]
  15. MelaI.L. StanleyC.O. VincentO.O. JohnA. Phytochemical screening and in vitro evaluation of antibacterial activity of aqueous and ethanolic extracts of root and stem bark of Bridelia ferruginea. Benth. (Euphorbiaceae).J. Med. Plants Res.2020141546110.5897/JMPR2019.6799
    [Google Scholar]
  16. MahomoodallyM.F. JugreetS. SinanK.I. Pharmacological potential and chemical characterization of Bridelia ferruginea Benth.—A native tropical african medicinal plant.Antibiotics 202110222310.3390/antibiotics10020223 33672329
    [Google Scholar]
  17. KasithevarM. SaravananM. PrakashP. Green synthesis of silver nanoparticles using alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients.J. Interdiscip. Nanomed.20172213114110.1002/jin2.26
    [Google Scholar]
  18. AjiboyeT.O. ImadeE.E. OyewoO.A. OnwudiweD.C. Silver functionalized gC3N4: Photocatalytic potency for chromium(VI) reduction, and evaluation of the antioxidant and antimicrobial properties.J. Photochem. Photobiol. Chem.202243211410710.1016/j.jphotochem.2022.114107
    [Google Scholar]
  19. MahmoodM.A. The antibacterial effect of silver nanoparticles on some bacterial pathogens.Iraqi J Phys2012105661
    [Google Scholar]
  20. FayazA.M. BalajiK. GirilalM. YadavR. KalaichelvanP.T. VenketesanR. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria.Nanomedicine20106110310910.1016/j.nano.2009.04.006 19447203
    [Google Scholar]
  21. Abul QaisF. SamreenI. AhmadI. Broad‐spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: A putative mechanistic approach.IET Nanobiotechnol.201812332533510.1049/iet‑nbt.2017.0193
    [Google Scholar]
  22. GanaieS.A. ZahoorI. SinghR. Prunella vulgaris leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity.Mater. Today Proc.2022791107112
    [Google Scholar]
  23. AliS. JalalM. AhmadH. Green synthesis of silver nanoparticles from Camellia sinensis and its antimicrobial and antibiofilm effect against clinical isolates.Materials 20221519697810.3390/ma15196978 36234319
    [Google Scholar]
  24. Sharifi-RadM. ElshafieH.S. PohlP. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf Extract: Their bio-pharmaceutical and catalytic properties.J. Photochem. Photobiol. Chem.202444811531810.1016/j.jphotochem.2023.115318
    [Google Scholar]
  25. JeongS.H. ChoiH. KimJ.Y. LeeT.W. Silver‐based nanoparticles for surface plasmon resonance in organic optoelectronics.Part. Part. Syst. Charact.201532216417510.1002/ppsc.201400117
    [Google Scholar]
  26. LogambalS. ThilagavathiT. ChandrasekarM. Synthesis and antimicrobial activity of silver nanoparticles: Incorporated couroupita guianensis flower petal extract for biomedical applications.J. King Saud Univ. Sci.202335110245510.1016/j.jksus.2022.102455
    [Google Scholar]
  27. DineshS. KarthikeyanS. ArumugamP. Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract.Arch. Appl. Sci. Res.20124178187
    [Google Scholar]
  28. IbrahimH.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms.J Radiat Res Appl Sci20158326527510.1016/j.jrras.2015.01.007
    [Google Scholar]
  29. GurunathanS. KalishwaralalK. VaidyanathanR. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.Colloids Surf. B Biointerfaces200974132833510.1016/j.colsurfb.2009.07.048 19716685
    [Google Scholar]
  30. I Almalah H, A Alzahrani H, S Abdelkader H. Green synthesis of silver nanoparticles using cinnamomum zylinicum and their synergistic effect against multi-drug resistance bacteria.Journal of Nanotechnology Research2019129510710.26502/jnr.2688‑8521008
    [Google Scholar]
  31. LiS. ShenY. XieA. Green synthesis of silver nanoparticles using Capsicum annuum L. extract.Green Chem.20079885285810.1039/b615357g
    [Google Scholar]
  32. NiraimathiK.L. SudhaV. LavanyaR. BrindhaP. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.Colloids Surf. B Biointerfaces201310228829110.1016/j.colsurfb.2012.08.041 23006568
    [Google Scholar]
  33. KarthikeyanK. DhanapalC. GopalakrishnanG. A review on medicinal importance of Alysicarpus monilifer.Int J Chem Pharm Sci2014515
    [Google Scholar]
  34. MandalP. Sinha BabuS.P. MandalN.C. Antimicrobial activity of saponins from Acacia auriculiformis.Fitoterapia200576546246510.1016/j.fitote.2005.03.004 15951137
    [Google Scholar]
  35. PatraS. MukherjeeS. BaruiA.K. GangulyA. SreedharB. PatraC.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics.Mater. Sci. Eng. C20155329830910.1016/j.msec.2015.04.048 26042718
    [Google Scholar]
  36. MashwaniZ.R. KhanT. KhanM.A. NadhmanA. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects.Appl. Microbiol. Biotechnol.201599239923993410.1007/s00253‑015‑6987‑1 26392135
    [Google Scholar]
  37. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  38. JoshiN. JainN. PathakA. SinghJ. PrasadR. UpadhyayaC.P. Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities.J. Sol-Gel Sci. Technol.201886368268910.1007/s10971‑018‑4666‑2
    [Google Scholar]
  39. LateefA. OjoS.A. AzeezM.A. Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles.Appl. Nanosci.20166686387410.1007/s13204‑015‑0492‑9
    [Google Scholar]
  40. AnandalakshmiK. VenugobalJ. RamasamyV. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity.Appl. Nanosci.20166339940810.1007/s13204‑015‑0449‑z
    [Google Scholar]
  41. DauthalP. MukhopadhyayM. Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications.Ind. Eng. Chem. Res.201655369557957710.1021/acs.iecr.6b00861
    [Google Scholar]
  42. RamalingamB. ParandhamanT. DasS.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa.ACS Appl. Mater. Interfaces2016874963497610.1021/acsami.6b00161 26829373
    [Google Scholar]
  43. SuganyaK.S.U. GovindarajuK. KumarV.G. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514426627210.1016/j.saa.2015.02.074 25769122
    [Google Scholar]
  44. RóżalskaS. SoliwodaK. DługońskiJ. Synthesis of silver nanoparticles from Metarhizium robertsii waste biomass extract after nonylphenol degradation, and their antimicrobial and catalytic potential.RSC Advances2016626214752148510.1039/C5RA24335A
    [Google Scholar]
  45. LogeswariP. SilambarasanS. AbrahamJ. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property.J. Saudi Chem. Soc.201519331131710.1016/j.jscs.2012.04.007
    [Google Scholar]
  46. DuránN. DuránM. de JesusM.B. SeabraA.B. FávaroW.J. NakazatoG. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.Nanomedicine 201612378979910.1016/j.nano.2015.11.016 26724539
    [Google Scholar]
  47. CardozoV.F. OliveiraA.G. NishioE.K. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains.Ann. Clin. Microbiol. Antimicrob.20131211210.1186/1476‑0711‑12‑12 23773484
    [Google Scholar]
  48. Morones-RamirezJ.R. WinklerJ.A. SpinaC.S. CollinsJ.J. Silver enhances antibiotic activity against gram-negative bacteria.Sci. Transl. Med.20135190ra181
    [Google Scholar]
  49. SinghK. PanghalM. KadyanS. ChaudharyU. YadavJ.P. Green silver nanoparticles of Phyllanthus amarus: As an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa.J. Nanobiotechnology20141214010.1186/s12951‑014‑0040‑x 25271044
    [Google Scholar]
  50. MukherjeeS. ChowdhuryD. KotcherlakotaR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system).Theranostics20144331633510.7150/thno.7819 24505239
    [Google Scholar]
  51. HabashM.B. ParkA.J. VisE.C. HarrisR.J. KhursigaraC.M. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms.Antimicrob. Agents Chemother.201458105818583010.1128/AAC.03170‑14 25049240
    [Google Scholar]
  52. JainJ. AroraS. RajwadeJ.M. OmrayP. KhandelwalS. PaknikarK.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use.Mol. Pharm.2009651388140110.1021/mp900056g 19473014
    [Google Scholar]
  53. TiwariV. TiwariM. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii.Front. Microbiol.2014551210.3389/fmicb.2014.00512 25309531
    [Google Scholar]
  54. SaballsM. PujolM. TubauF. Rifampicin/imipenem combination in the treatment of carbapenem-resistant Acinetobacter baumannii infections.J. Antimicrob. Chemother.200658369770010.1093/jac/dkl274 16895941
    [Google Scholar]
  55. YoonJ. UrbanC. TerzianC. MarianoN. RahalJ.J. In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii.Antimicrob. Agents Chemother.200448375375710.1128/AAC.48.3.753‑757.2004 14982760
    [Google Scholar]
  56. BarapatreA. AadilK.R. JhaH. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus.Bioresour. Bioprocess.201631810.1186/s40643‑016‑0083‑y
    [Google Scholar]
  57. LiW.R. XieX.B. ShiQ.S. ZengH.Y. OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.Appl. Microbiol. Biotechnol.20108541115112210.1007/s00253‑009‑2159‑5 19669753
    [Google Scholar]
  58. WeiQ. JiJ. FuJ. ShenJ. Norvancomycin-capped silver nanoparticles: Synthesis and antibacterial activities against E. coli.Sci. China B Chem.200750341842410.1007/s11426‑007‑0028‑6
    [Google Scholar]
  59. BharadwajR. VidyaA. DewanB. PalA. An in vitro study to evaluate the synergistic activity of norfloxacin and metronidazole.Indian J. Pharmacol.200335220226
    [Google Scholar]
  60. DengH. McShanD. ZhangY. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics.Environ. Sci. Technol.201650168840884810.1021/acs.est.6b00998 27390928
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615292315240318062929
Loading
/content/journals/cnm/10.2174/0124054615292315240318062929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test