Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Conducting polymers (CPs) have garnered a lot of attention in recent years due to the financial significance they have, the high environmental stability they exhibit, the electrical conductivity they possess, and the beneficial mechanical, optical, and electronic qualities they possess. Conducting polymers have a wide range of uses, including but not limited to the following: diodes, transistors, artificial nerves, aviation construction, conducting adhesives, electromagnetic shielding against electromagnetic interference (EMI), and electrostatic materials. These nanofibers and nanotubes have a wide range of potential applications, including but not limited to: actuators, drug delivery, brain interfaces, nanodiodes, field emission and electrochromic displays, supercapacitors and energy storage, sensors, nanodiodes, field effect transistors, drug delivery, and protein purification. The purpose of this review is to discuss a few of these applications as well as their possible applications in the future.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615293683240405060440
2024-04-16
2025-09-06
Loading full text...

Full text loading...

References

  1. HallsJ.J.M. WalshC.A. GreenhamN.C. MarsegliaE.A. FriendR.H. MorattiS.C. HolmesA.B. Efficient photodiodes from interpenetrating polymer networks.Nature1995376654049850010.1038/376498a0
    [Google Scholar]
  2. KraftA. GrimsdaleA.C. HolmesA.B. Electroluminescent conjugated polymers seeing polymers in a new light.Angew. Chem. Int. Ed.199837440242810.1002/(SICI)1521‑3773(19980302)37:4<402::AID‑ANIE402>3.0.CO;2‑929711177
    [Google Scholar]
  3. HepburnA.R. MarshallJ.M. MaudJ.M. Novel electrochromic films via anodic oxidation of carbazolyl substituted polysiloxanes.Synth. Met.1991431-22935293810.1016/0379‑6779(91)91210‑2
    [Google Scholar]
  4. DuboisJ.C. SagnesO. HenryF. Polyheterocyclic conducting polymers and composites derivates.Synth. Met.1989281-287187810.1016/0379‑6779(89)90616‑4
    [Google Scholar]
  5. RoncaliJ. GarreauR. DelabougliseD. GarnierF. LemaireM. Modification of the structure and electrochemical properties of poly(thiophene) by ether groups.J. Chem. Soc. Chem. Commun.19891167968110.1039/c39890000679
    [Google Scholar]
  6. BradleyD.D. Molecular electronics: Aspects of physics.Chem. Br.1991278719723
    [Google Scholar]
  7. BurkeA. Ultracapacitors: Why, how, and where is the technology.J. Power Sources2000911375010.1016/S0378‑7753(00)00485‑7
    [Google Scholar]
  8. SonmezG. MengH. ZhangQ. WudlF. A highly stable, new electrochromic polymer: poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy) thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene).Adv. Funct. Mater.200313972673110.1002/adfm.200304317
    [Google Scholar]
  9. TsakovaV. SeeberR. Conducting polymers in electrochemical sensing: factors influencing the electroanalytical signal.Anal. Bioanal. Chem.2016408267231724110.1007/s00216‑016‑9774‑727422647
    [Google Scholar]
  10. BobackaJ IvaskaA. Electropolymerization: Concepts, materials and applicationsWiley Online Library201017173187
    [Google Scholar]
  11. LinC.C. TsaiC.T. DengD.J. TsaiI.H. JhongS.Y. Minimizing electromagnetic pollution and power consumption in green heterogeneous small cell network deployment.Comput. Netw.201712953654710.1016/j.comnet.2017.05.023
    [Google Scholar]
  12. BalmoriA. Electromagnetic pollution from phone masts. Effects on wildlife.Pathophysiology2009162-319119910.1016/j.pathophys.2009.01.00719264463
    [Google Scholar]
  13. XiJ. ZhouE. LiuY. GaoW. YingJ. ChenZ. GaoC. Wood-based straightway channel structure for high performance microwave absorption.Carbon201712449249810.1016/j.carbon.2017.07.088
    [Google Scholar]
  14. MicheliD. ApolloC. PastoreR. MarchettiM. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation.Compos. Sci. Technol.201070240040910.1016/j.compscitech.2009.11.015
    [Google Scholar]
  15. RenY. YangL. WangL. XuT. WuG. WuH. Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres.Powder Technol.2015281202710.1016/j.powtec.2015.04.076
    [Google Scholar]
  16. GeC. ZouJ. YanM. BiH. C-dots induced microwave absorption enhancement of PANI/ferrocene/C-dots.Mater. Lett.2014137414410.1016/j.matlet.2014.08.111
    [Google Scholar]
  17. LiuJ. CheR. ChenH. ZhangF. XiaF. WuQ. WangM. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells.Small2012881214122110.1002/smll.20110224522331748
    [Google Scholar]
  18. ChoiJ. JungH.T. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole.Compos. Struct.201512216617110.1016/j.compstruct.2014.11.020
    [Google Scholar]
  19. YanM. ShenY. ZhangG. BiH. Multifunctional nanotube-like Fe 3O4 /PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.Mater. Sci. Eng. C20165856857510.1016/j.msec.2015.09.02926478345
    [Google Scholar]
  20. MushtaqA. A particle filter compensation approach to robust speech recognition.Modern Speech Recognition Approaches with Case StudiesIntechOpen201210.5772/51532
    [Google Scholar]
  21. SharmaS. MongaY. GuptaA. SinghS. 2-Oxindole and related heterocycles: Synthetic methodologies for their natural products and related derivatives.RSC Advances20231321142491426710.1039/D3RA02217J37179999
    [Google Scholar]
  22. SinghK. SinghS. KathalR. SharmaS. Simplified procedure for application of DBE, the Rule of 13 & nitrogen rule in structure elucidation of organic compounds.Lett. Org. Chem.202320327628510.2174/1570178619666220902120311
    [Google Scholar]
  23. SharmaS. SinghS. Synthetic routes to quinoline-based derivatives having potential anti-bacterial and anti-fungal properties.Curr. Org. Chem.202226151453146910.2174/1385272827666221021140934
    [Google Scholar]
  24. SharmaS MishraAK SinghS Molecular docking study of 2, 3, 4−trisubstituted−2, 3, 4, 9−tetrahydrothiopyrano [2, 3−b] indole derivatives with TRPV channels: Possible new analgesics.ETJRI.2022VI1120
    [Google Scholar]
  25. SharmaS. SinghS. YadavD. Quinoline-based anti-oncogenic molecules: Synthesis and biological evaluation.Med. Chem.202319984885810.2174/157340641966623041111002537055895
    [Google Scholar]
  26. SharmaS. SinghK. SinghS. Synthetic strategies for quinoline based derivatives as potential bioactive heterocycles.Curr. Org. Synth.202320660662910.2174/157017942066622100414391036200204
    [Google Scholar]
  27. SinghS. SharmaS. DasS. Kumar DasA. Spider Silk: Biosynthesis, properties & bioengineering.Curr. Nanomater.20238
    [Google Scholar]
  28. SharmaS. SinghS. Molecular docking study for binding affinity of 2H-thiopyrano[2,3-b]quinoline derivatives against CB1a.Interdiscip. Perspect. Infect. Dis.2023202311010.1155/2023/161808236655217
    [Google Scholar]
  29. SharmaS. SinghS. The biological and pharmacological potentials of indole-based heterocycles.Lett. Org. Chem.202320871172910.2174/1570178620666230215121808
    [Google Scholar]
  30. SharmaS. DasA.K. SrivastavaA. Bioactive indole heterocycles and their synthetic routes: A comprehensive review.Curr. Trends Biotechnol. Pharm.2023173s11411158
    [Google Scholar]
  31. MartinC.R. Nanomaterials: A membrane−based synthetic approach.Acc. Chem. Res.1995282616810.1021/ar00050a002
    [Google Scholar]
  32. StoyanovH. KolloscheM. RisseS. McCarthyD.N. KofodG. Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control.Soft Matter20117119420210.1039/C0SM00715C
    [Google Scholar]
  33. LiuJ LamJW Zhong TangB Synthesis and functionality of substituted polyacetylenes. In:Design and Synthesis of Conjugated PolymersWiley Online Library201014310.1002/9783527629787.ch1
    [Google Scholar]
  34. RothS. BleierH. Solitons in polyacetylene.Adv. Phys.198736438546210.1080/00018738700101032
    [Google Scholar]
  35. PudA.A. Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers.Synth. Met.19946611810.1016/0379‑6779(94)90155‑4
    [Google Scholar]
  36. MinG. Conducting polymers and their applications in the film industry−polyaniline/polyimide blended films.Synth. Met.19991021-31163116610.1016/S0379‑6779(98)00375‑0
    [Google Scholar]
  37. LethebyH. XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline.J. Chem. Soc.186215016116310.1039/JS8621500161
    [Google Scholar]
  38. FeastW.J. TsibouklisJ. PouwerK.L. GroenendaalL. MeijerE.W. Synthesis, processing and material properties of conjugated polymers.Polymer 199637225017504710.1016/0032‑3861(96)00439‑9
    [Google Scholar]
  39. ZhangD. WangY. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview.Mater. Sci. Eng. B2006134191910.1016/j.mseb.2006.07.037
    [Google Scholar]
  40. MacDiarmidA.G. ChiangJ.C. RichterA.F. SomasiriN.L. EpsteinA.J. Conducting Polymers. AlcacerL. Dordrecht198710510.1007/978‑94‑009‑3907‑3_9
    [Google Scholar]
  41. MaW. YangC. GongX. LeeK. HeegerA.J. Magnetic susceptibility of doped polyacetylene.Adv. Funct. Mater.200515101617162210.1002/adfm.200500211
    [Google Scholar]
  42. HinoT NamikiT KuramotoN. Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers.Synthetic Met.200615621-2413271332
    [Google Scholar]
  43. AbuY.M. AokiK. Corrosion protection by polyaniline-coated latex microspheres.J. Electroanal. Chem.2005583113313910.1016/j.jelechem.2005.05.014
    [Google Scholar]
  44. GoyalS.L. Study of Thermal, Electrical and Structural Properties of Conducting PolymersUniversity grants commission bahadur shah zafar marg2015
    [Google Scholar]
  45. WangY LevonK. Macromolecular symposiaWiley-VCH20123171240247
    [Google Scholar]
  46. BhandariS. Polyaniline Blends, Composites, and NanocompositesElsevier20182360
    [Google Scholar]
  47. KieboomsR MenonR LeeK. In: Handbook of advanced electronic and photonic materials and devicesAcademic Press20011102
    [Google Scholar]
  48. LiuL. ZhaoY. ZhouQ. XuH. ZhaoC. JiangZ. Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates.J. Solid State Electrochem.2007111323710.1007/s10008‑005‑0063‑1
    [Google Scholar]
  49. JohansonU. MarandiM. TammT. TammJ. Comparative study of the behavior of anions in polypyrrole films.Electrochim. Acta2005507-81523152810.1016/j.electacta.2004.10.016
    [Google Scholar]
  50. HanD.H. LeeH.J. ParkS.M. Electrochemistry of conductive polymers XXXV: Electrical and morphological characteristics of polypyrrole films prepared in aqueous media studied by current sensing atomic force microscopy.Electrochim. Acta200550153085309210.1016/j.electacta.2004.10.085
    [Google Scholar]
  51. KhomenkoV.G. BarsukovV.Z. KatashinskiiA.S. The catalytic activity of conducting polymers toward oxygen reduction.Electrochim. Acta2005507-81675168310.1016/j.electacta.2004.10.024
    [Google Scholar]
  52. KrivánE. PeintlerG. VisyC. Matrix rank analysis of spectral studies on the electropolymerisation and discharge process of conducting polypyrrole/dodecyl sulfate films.Electrochim. Acta2005507-81529153510.1016/j.electacta.2004.10.031
    [Google Scholar]
  53. HienN.T.L. GarciaB. PailleretA. DeslouisC. Role of doping ions in the corrosion protection of iron by polypyrrole films.Electrochim. Acta2005507-81747175510.1016/j.electacta.2004.10.072
    [Google Scholar]
  54. TaoudiH. BernèdeJ.C. Del ValleM.A. BonnetA. MorsliM. Influence of the electrochemical conditions on the properties of polymerized carbazole.J. Mater. Sci.200136363163410.1023/A:1004816303449
    [Google Scholar]
  55. BabaA. OnishiK. KnollW. AdvinculaR.C. Investigating work function tunable hole−injection/transport layers of electrodeposited polycarbazole network thin films.J. Phys. Chem. B200410849189491895510.1021/jp047965f
    [Google Scholar]
  56. KaloniT.P. GiesbrechtP.K. SchreckenbachG. FreundM.S. Polythiophene: From fundamental perspectives to applications.Chem. Mater.20172924102481028310.1021/acs.chemmater.7b03035
    [Google Scholar]
  57. McCulloughR.D. The chemistry of conducting polythiophenes.Adv. Mater.19981029311610.1002/(SICI)1521‑4095(199801)10:2<93::AID‑ADMA93>3.0.CO;2‑F
    [Google Scholar]
  58. AsatoA.E. LiuR.S.H. RaoV.P. CaiY.M. Azulene-containing donor-acceptor compounds as second-order nonlinear chromophores.Tetrahedron Lett.199637441942210.1016/0040‑4039(95)02202‑3
    [Google Scholar]
  59. KrivosheiIV SkorobogatovVM Polyacetylene and polyarylenes; polymer monographs.Int. J. Innov. Res. Sci.Eng. Technol.201439
    [Google Scholar]
  60. KovacicP. JonesM.B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene).Chem. Rev.198787235737910.1021/cr00078a005
    [Google Scholar]
  61. ShiG. XueG. LiC. JinS. YuB. Uniaxial oriented poly (p−phenylene) fibrils and films.Macromolecules199427133678367910.1021/ma00091a035
    [Google Scholar]
  62. AhlskogM. ReghuM. HeegerA.J. The temperature dependence of the conductivity in the critical regime of the metal insulator transition in conducting polymers.J. Phys. Condens. Matter19979204145415610.1088/0953‑8984/9/20/014
    [Google Scholar]
  63. NalwaH.S. Handbook of advanced electronic and photonic materials and devices, ten−volume set.Academic Press2000
    [Google Scholar]
  64. HarahapP. PasaribuF.I. AdamM. Prototype Measuring Device for Electric Load in Households Using the Pzem−004T Sensor.J.Budapest Int. Res. Exact. Sci. (BirEx)202023347361
    [Google Scholar]
  65. PeresL.O. VarelaH. GarciaJ.R. FernandesM.R. TorresiR.M. NartF.C. GruberJ. On the electrochemical polymerization of poly(p-phenylene vinylene) and poly(o-phenylene vinylene).Synth. Met.20011181-3657010.1016/S0379‑6779(00)00282‑4
    [Google Scholar]
  66. ReddingerJL ReynoldsJR Radical Polymerisation Polyelectrolytes.Polymer1999501532
    [Google Scholar]
  67. SaxenaV. MalhotraB.D. MenonR. Handbook of polymers in electronics. MalhotraB.D. Shrewsbury, Shropshire, UKRapra Technology Limited2002365
    [Google Scholar]
  68. EpsteinA.J. RommelmannH. BigelowR. GibsonH.W. HoffmannD.M. TannerD.B. Role of solitons in nearly metallic polyacetylene.Phys. Rev. Lett.198350231866186910.1103/PhysRevLett.50.1866
    [Google Scholar]
  69. TsukamotoJ. Recent advances in highly conductive polyacetylene.Adv. Phys.199241650954610.1080/00018739200101543
    [Google Scholar]
  70. TsukamotoJ. TakahashiA. KawasakiK. Structure and electrical properties of polyacetylene yielding a conductivity of 105 S/cm.Jpn. J. Appl. Phys.1990291R12510.1143/JJAP.29.125
    [Google Scholar]
  71. LeT.H. KimY. YoonH. Electrical and electrochemical properties of conducting polymers.Polymers201791215010.3390/polym904015030970829
    [Google Scholar]
  72. GuayJ. PaynterR. DaoL.H. Synthesis and characterization of poly(diarylamines): A new class of electrochromic conducting polymers.Macromolecules199023153598360510.1021/ma00217a010
    [Google Scholar]
  73. BeckF. BraunP. OberstM. Organic electrochemistry in the solid state‐overoxidation of polypyrrole.Ber. Bunsenges. Phys. Chem198791996797410.1002/bbpc.19870910927
    [Google Scholar]
  74. NovákP. RaschB. VielstichW. Overoxidation of polypyrrole in propylene carbonate: An in situ FTIR study.J. Electrochem. Soc.1991138113300330410.1149/1.2085406
    [Google Scholar]
  75. PietaP. ObraztsovI. D’SouzaF. KutnerW. Composites of conducting polymers and various carbon nanostructures for electrochemical supercapacitors.ECS J. Solid State Sci. Technol.2013210M3120M313410.1149/2.015310jss
    [Google Scholar]
  76. TangC. ChenN. HuX. Conducting polymer nanocomposites: Recent developments and future prospects.Conducting Polymer Hybrids2017144
    [Google Scholar]
  77. PeiQ. InganaesO. Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox.J. Phys. Chem.19929625105071051410.1021/j100204a071
    [Google Scholar]
  78. LizarragaL. María AndradeE. Victor MolinaF. Swelling and volume changes of polyaniline upon redox switching.J. Electroanal. Chem.200456112713510.1016/j.jelechem.2003.07.026
    [Google Scholar]
  79. OteroT.F. AnguloE. RodríguezJ. SantamaríaC. Electrochemomechanical properties from a bilayer: Polypyrrole / non-conducting and flexible material artificial muscle.J. Electroanal. Chem.19923411-236937510.1016/0022‑0728(92)80495‑P
    [Google Scholar]
  80. PagèsH. TopartP. LemordantD. Wide band electrochromic displays based on thin conducting polymer films.Electrochim. Acta20014613-142137214310.1016/S0013‑4686(01)00392‑9
    [Google Scholar]
  81. BarnesA. DespotakisA. WongT.C.P. AndersonA.P. ChambersB. WrightP.V. Towards a ‘smart window’ for microwave applications.Smart Mater. Struct.19987675275810.1088/0964‑1726/7/6/003
    [Google Scholar]
  82. BajpaiM SrivastavaR DharR TiwariRS Review on optical and electrical properties of conducting polymers.Ind. J. Mat. Sci.20162016584276310.1155/2016/5842763
    [Google Scholar]
  83. YanM. RothbergL. HsiehB.R. AlfanoR.R. Exciton formation and decay dynamics in electroluminescent polymers observed by subpicosecond stimulated emission.Phys. Rev. B Condens. Matter199449149419942210.1103/PhysRevB.49.941910009740
    [Google Scholar]
  84. PollakM. RiessI. A percolation treatment of high-field hopping transport.J. Phys. C Solid State Phys.19769122339235210.1088/0022‑3719/9/12/017
    [Google Scholar]
  85. WeinbergerB.R. KauferJ. HeegerA.J. PronA. MacDiarmidA.G. Magnetic susceptibility of doped polyacetylene.Phys. Rev. B Condens. Matter197920122323010.1103/PhysRevB.20.223
    [Google Scholar]
  86. GinderJ.M. RichterA.F. MacDiarmidA.G. EpsteinA.J. Insulator-to-metal transition in polyaniline.Solid State Commun.19876329710110.1016/0038‑1098(87)91173‑2
    [Google Scholar]
  87. NalwaH.S. Phase transitions in polypyrrole and polythiophene conducting polymers demonstrated by magnetic susceptibility measurements.Phys. Rev. B Condens. Matter19893995964597410.1103/PhysRevB.39.59649949018
    [Google Scholar]
  88. LongY. ChenZ. ShenJ. ZhangZ. ZhangL. XiaoH. WanM. DuvailJ.L. Magnetic properties of conducting polymer nanostructures.J. Phys. Chem. B200611046232282323310.1021/jp062262e17107170
    [Google Scholar]
  89. LuX. MaoH. ChaoD. ZhangW. WeiY. Ultrasonic synthesis of polyaniline nanotubes containing Fe3O4 nanoparticles.J. Solid State Chem.200617982609261510.1016/j.jssc.2006.04.029
    [Google Scholar]
  90. LongY. HuangK. YuanJ. HanD. NiuL. ChenZ. GuC. JinA. DuvailJ.L. Electrical conductivity of a single Au/polyaniline microfiber.Appl. Phys. Lett.2006881616211310.1063/1.2197929
    [Google Scholar]
  91. CaoH.Q. XuZ. SangH. ShengD. TieC.Y. Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules.Adv. Mater.200113212112310.1002/1521‑4095(200101)13:2<121::AID‑ADMA121>3.0.CO;2‑L
    [Google Scholar]
  92. CaoH. XuZ. ShengD. HongJ. SangH. DuY. An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior.J. Mater. Chem.200111395896010.1039/b006474m
    [Google Scholar]
  93. CaoH. TieC. XuZ. HongJ. SangH. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior.Appl. Phys. Lett.200178111592159410.1063/1.1354156
    [Google Scholar]
  94. MarchesiL.F.Q.P. PaulaF.R. OliveiraA.J.A. PereiraE.C. Magnetic properties of polypyrrole doped with iron.Mol. Cryst. Liq. Cryst201052211/[301]6/[306]10.1080/15421401003722815
    [Google Scholar]
  95. TanE.P.S. LimC.T. Mechanical characterization of nanofibers : A review.Compos. Sci. Technol.20066691102111110.1016/j.compscitech.2005.10.003
    [Google Scholar]
  96. CuenotS. Demoustier-ChampagneS. NystenB. Elastic modulus of polypyrrole nanotubes.Phys. Rev. Lett.20008581690169310.1103/PhysRevLett.85.169010970590
    [Google Scholar]
  97. ParkJG LeeSH KimB ParkYW Electrical resistivity of polypyrrole nanotube measured by conductive scanning probe microscope: The role of contact force.Appl. Phys. Lett2002812446254627
    [Google Scholar]
  98. CuenotS. FrétignyC. Demoustier-ChampagneS. NystenB. Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy.J. Appl. Phys.20039395650565510.1063/1.1565675
    [Google Scholar]
  99. CuenotS. FrétignyC. Demoustier-ChampagneS. NystenB. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy.Phys. Rev. B Condens. Matter Mater. Phys.2004691616541010.1103/PhysRevB.69.165410
    [Google Scholar]
  100. LeeS.W. KimB. LeeD.S. LeeH.J. ParkJ.G. AhnS.J. CampbellE.E.B. ParkY.W. Fabrication and mechanical properties of suspended one-dimensional polymer nanostructures: polypyrrole nanotube and helical polyacetylene nanofibre.Nanotechnology200617499299610.1088/0957‑4484/17/4/02521727371
    [Google Scholar]
  101. ForoughiJ. GhorbaniS.R. PeleckisG. SpinksG.M. WallaceG.G. WangX.L. DouS.X. The mechanical and the electrical properties of conducting polypyrrole fibers.J. Appl. Phys.20101071010371210.1063/1.3425793
    [Google Scholar]
  102. SunL. HanR.P.S. WangJ. LimC.T. Modeling the size-dependent elastic properties of polymeric nanofibers.Nanotechnology2008194545570610.1088/0957‑4484/19/45/45570621832795
    [Google Scholar]
  103. ArinsteinA. BurmanM. GendelmanO. ZussmanE. Effect of supramolecular structure on polymer nanofibre elasticity.Nat. Nanotechnol.200721596210.1038/nnano.2006.17218654209
    [Google Scholar]
  104. BurmanM. ArinsteinA. ZussmanE. Effect of supramolecular structure on polymer nanofibre elasticity.Appl. Phys. Lett.2008931919311810.1063/1.3000016
    [Google Scholar]
  105. ZhouZ LiuX LiuL YiQ Fabrication and properties of composite biomaterials composed of poly (L−Lactide) and bovine bone.Desig. Monom. Polym.20091215767
    [Google Scholar]
  106. MuraokaM. TobeR. Mechanical characterization of nanowires based on optical diffraction images of the bent shape.J. Nanosci. Nanotechnol.2009984566457410.1166/jnn.2009.107919928119
    [Google Scholar]
  107. GordonM.J. BaronT. DhalluinF. GentileP. FerretP. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires.Nano Lett.20099252552910.1021/nl802556d19159318
    [Google Scholar]
  108. GuoJ.G. ZhaoY.P. The size-dependent bending elastic properties of nanobeams with surface effects.Nanotechnology2007182929570110.1088/0957‑4484/18/29/295701
    [Google Scholar]
  109. PintoN.J. JohnsonA.T.Jr MacDiarmidA.G. MuellerC.H. TheofylaktosN. RobinsonD.C. MirandaF.A. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor.Appl. Phys. Lett.200383204244424610.1063/1.1627484
    [Google Scholar]
  110. LiuH. RecciusC.H. CraigheadH.G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor.Appl. Phys. Lett.2005872525310610.1063/1.2149980
    [Google Scholar]
  111. QiP. JaveyA. RolandiM. WangQ. YenilmezE. DaiH. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.J. Am. Chem. Soc.200412638117741177510.1021/ja045900k15382895
    [Google Scholar]
  112. AlamM.M. WangJ. GuoY. LeeS.P. TsengH.R. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays.J. Phys. Chem. B200510926127771278410.1021/jp050903k16852584
    [Google Scholar]
  113. LiuL. ZhaoY. JiaN. ZhouQ. ZhaoC. YanM. JiangZ. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices.Thin Solid Films20065031-224124510.1016/j.tsf.2005.11.046
    [Google Scholar]
  114. GranströmM. BerggrenM. InganäsO. Micrometer and nanometer-sized polymeric light-emitting diodes.Science199526752031479148110.1126/science.267.5203.147917743547
    [Google Scholar]
  115. GranströmM. BerggrenM. InganäsO. Polymeric light-emitting diodes of submicron size structures and developments.Synth. Met.1996761-314114310.1016/0379‑6779(95)03438‑P
    [Google Scholar]
  116. BoroumandF.A. FryP.W. LidzeyD.G. Nanoscale conjugated-polymer light-emitting diodes.Nano Lett.200551677110.1021/nl048382k15792414
    [Google Scholar]
  117. GrimsdaleA.C. Leok ChanK. MartinR.E. JokiszP.G. HolmesA.B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices.Chem. Rev.20091093897109110.1021/cr000013v19228015
    [Google Scholar]
  118. KimB.H. ParkD.H. JooJ. YuS.G. LeeS.H. Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires.Synth. Met.2005150327928410.1016/j.synthmet.2005.02.012
    [Google Scholar]
  119. WangC. WangZ. LiM. LiH. Well-aligned polyaniline nano-fibril array membrane and its field emission property.Chem. Phys. Lett.20013415-643143410.1016/S0009‑2614(01)00509‑7
    [Google Scholar]
  120. KimB.H. KimM.S. ParkK.T. LeeJ.K. ParkD.H. JooJ. YuS.G. LeeS.H. Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires.Appl. Phys. Lett.200383353954110.1063/1.1592004
    [Google Scholar]
  121. YanH. ZhangL. ShenJ. ChenZ. ShiG. ZhangB. Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires.Nanotechnology200617143446345010.1088/0957‑4484/17/14/01719661589
    [Google Scholar]
  122. ChoSI KwonWJ ChoiSJ KimP ParkSA KimJ SonSJ XiaoR KimSH LeeSB Nanotube‐based ultrafast electrochromic display.Adv. Mat.2005172171175
    [Google Scholar]
  123. KimB.K. KimY.H. WonK. ChangH. ChoiY. KongK. RhyuB.W. KimJ.J. LeeJ.O. Electrical properties of polyaniline nanofibre synthesized with biocatalyst.Nanotechnology20051681177118110.1088/0957‑4484/16/8/033
    [Google Scholar]
  124. ChoS.I. ChoiD.H. KimS.H. LeeS.B. Electrochemical synthesis and fast electrochromics of poly (3, 4−ethylenedioxythiophene) nanotubes in flexible substrate.Chem. Mater.200517184564456610.1021/cm050729c
    [Google Scholar]
  125. ChoS.I. XiaoR. LeeS.B. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotubes towards fast window-type electrochromic devices.Nanotechnology2007184040570510.1088/0957‑4484/18/40/405705
    [Google Scholar]
  126. KimY. BaekJ. KimM.H. ChoiH.J. KimE. Electrochromic nanostructures grown on a silicon nanowire template.Ultramicroscopy2008108101224122710.1016/j.ultramic.2008.04.05418579309
    [Google Scholar]
  127. Rajesh AhujaT. KumarD. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications.Sens. Actuators B Chem.2009136127528610.1016/j.snb.2008.09.014
    [Google Scholar]
  128. AdhikariB. MajumdarS. Polymers in sensor applications.Prog. Polym. Sci.200429769976610.1016/j.progpolymsci.2004.03.002
    [Google Scholar]
  129. LangeU. RoznyatovskayaN.V. MirskyV.M. Conducting polymers in chemical sensors and arrays.Anal. Chim. Acta2008614112610.1016/j.aca.2008.02.06818405677
    [Google Scholar]
  130. GuptaN. SharmaS. MirI.A. KumarD. Advances in sensors based on conducting polymers.J. Sci. Ind. Res.200665549557
    [Google Scholar]
  131. DuvailJ.L. LongY. RéthoP. LouarnG. Dauginet De PraL. Demoustier-ChampagneS. Enhanced electroactivity and electrochromism in PEDOT nanowires.Mol. Cryst. Liq. Cryst2008485183584210.1080/15421400801918260
    [Google Scholar]
  132. HopkinsA.R. LewisN.S. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate.Anal. Chem.200173588489210.1021/ac000843911289432
    [Google Scholar]
  133. DolemanB.J. LewisN.S. Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction.Sens. Actuators B Chem.2001721415010.1016/S0925‑4005(00)00635‑3
    [Google Scholar]
  134. MenegazzoN. HerbertB. BanerjiS. BookshK.S. Discourse on the utilization of polyaniline coatings for surface plasmon resonance sensing of ammonia vapor.Talanta20118531369137510.1016/j.talanta.2011.06.02021807197
    [Google Scholar]
  135. ChenY. LiY. WangH. YangM. Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization.Carbon200745235736310.1016/j.carbon.2006.09.011
    [Google Scholar]
  136. SadekA.Z. WlodarskiW. ShinK. KanerR.B. Kalantar-zadehK. A layered surface acoustic wave gas sensor based on a polyaniline/In 2 O 3 nanofibre composite.Nanotechnology200617174488449210.1088/0957‑4484/17/17/034
    [Google Scholar]
  137. SadekA.Z. WlodarskiW. ShinK. KanerR.B. Kalantar-zadehK. A polyaniline/WO3 nanofiber composite-based ZnO/64° YX LiNbO3 SAW hydrogen gas sensor.Synth. Met.20081581-2293210.1016/j.synthmet.2007.11.008
    [Google Scholar]
  138. VirjiS. FowlerJ.D. BakerC.O. HuangJ. KanerR.B. WeillerB.H. Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide.Small20051662462710.1002/smll.20040015517193496
    [Google Scholar]
  139. VijayakumarN. SubramanianE. PadiyanD.P. Conducting polyaniline blends with the soft template poly (vinyl pyrrolidone) and their chemosensor application.Int. J. Polym. Mater.2012611184786310.1080/00914037.2011.610054
    [Google Scholar]
  140. SadrolhosseiniA.R. NoorA.S. MoksinM.M. Application of polypyrrole−chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance.Int. J. Polymeric Mat. Polym Biomat.201362528428710.1080/00914037.2012.664209
    [Google Scholar]
  141. PringsheimE. ZiminD. WolfbeisO.S. Fluorescent beads coated with polyaniline: A novel nanomaterial for optical sensing of pH.Adv. Mater.2001131181982210.1002/1521‑4095(200106)13:11<819::AID‑ADMA819>3.0.CO;2‑D
    [Google Scholar]
  142. GuF. ZhangL. YinX. TongL. Polymer single-nanowire optical sensors.Nano Lett.2008892757276110.1021/nl801231418672942
    [Google Scholar]
  143. GuF. YinX. YuH. WangP. TongL. Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures.Opt. Express20091713112301123510.1364/OE.17.01123019550523
    [Google Scholar]
  144. WangX. ShaoM. ShaoG. FuY. WangS. Reversible and efficient photocurrent switching of ultra-long polypyrrole nanowires.Synth. Met.20091593-427327610.1016/j.synthmet.2008.09.019
    [Google Scholar]
  145. WangX. ShaoM. ShaoG. WuZ. WangS. A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch.J. Colloid Interface Sci.20093321747710.1016/j.jcis.2008.12.03319136118
    [Google Scholar]
  146. ZhuY. FengL. XiaF. ZhaiJ. WanM. JiangL. Chemical dual‐responsive wettability of superhydrophobic PANI‐PAN coaxial nanofibers.Macromol. Rapid Commun.200728101135114110.1002/marc.200600902
    [Google Scholar]
  147. ZhuY. LiJ. HeH. WanM. JiangL. Reversible wettability switching of polyaniline‐coated fabric, triggered by ammonia gas.Macromol. Rapid Commun.200728232230223610.1002/marc.200700468
    [Google Scholar]
  148. NambiarS. YeowJ.T.W. Conductive polymer-based sensors for biomedical applications.Biosens. Bioelectron.20112651825183210.1016/j.bios.2010.09.04621030240
    [Google Scholar]
  149. GallonB.J. KojimaR.W. KanerR.B. DiaconescuP.L. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water.Angew. Chem. Int. Ed.200746387251725410.1002/anie.20070138917657750
    [Google Scholar]
  150. KongL. LuX. JinE. JiangS. WangC. ZhangW. Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum.Compos. Sci. Technol.200969556156610.1016/j.compscitech.2008.11.021
    [Google Scholar]
  151. a FujishimaA HondaK Electrochemical photolysis of water at a semiconductor electrode.Nature197223853583738
    [Google Scholar]
  152. b XiongS. WangQ. XiaH. Template synthesis of polyaniline/TiO2 bilayer microtubes.Synth. Met.20041461374210.1016/j.synthmet.2004.06.017
    [Google Scholar]
  153. TiwariI. SinghK.P. In situ synthesis of polymer nanocomposites from PANI/PAA/MWCNTs: Analysis and characterization.IJPAC Int. J. Polym. Anal. Charact.201217537138010.1080/1023666X.2012.669521
    [Google Scholar]
  154. a HuangM.H. MaoS. FeickH. YanH. WuY. KindH. WeberE. RussoR. YangP. Room-temperature ultraviolet nanowire nanolasers.Science200129255231897189910.1126/science.106036711397941
    [Google Scholar]
  155. b ZhaoX. LiuY. LuJ. ZhouJ. LiJ. Temperature-responsive polymer/carbon nanotube hybrids: Smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH.Chemistry201218123687369410.1002/chem.20110325922334474
    [Google Scholar]
  156. AgoH. PetritschK. ShafferM.S.P. WindleA.H. FriendR.H. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices.Adv. Mater.199911151281128510.1002/(SICI)1521‑4095(199910)11:15<1281::AID‑ADMA1281>3.0.CO;2‑6
    [Google Scholar]
  157. FengL. LiS. LiY. LiH. ZhangL. ZhaiJ. SongY. LiuB. JiangL. ZhuD. Super‐hydrophobic surfaces: from natural to artificial.Adv. Mater.200214241857186010.1002/adma.200290020
    [Google Scholar]
  158. XiaF. JiangL. Bio‐inspired, smart, multiscale interfacial materials.Adv. Mater.200820152842285810.1002/adma.200800836
    [Google Scholar]
  159. ZhangX. ShiF. NiuJ. JiangY. WangZ. Superhydrophobic surfaces: from structural control to functional application.J. Mater. Chem.200818662163310.1039/B711226B
    [Google Scholar]
  160. ZhongW. ChenX. LiuS. WangY. YangW. Synthesis of highly hydrophilic polyaniline nanowires and sub‐micro/nanostructured dendrites on poly (propylene) film surfaces.Macromol. Rapid Commun.200627756356910.1002/marc.200500796
    [Google Scholar]
  161. OlsonD.C. PirisJ. CollinsR.T. ShaheenS.E. GinleyD.S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites.Thin Solid Films20064961262910.1016/j.tsf.2005.08.179
    [Google Scholar]
  162. GreeneL.E. LawM. YuhasB.D. YangP. ZnO−TiO2 core shell nanorod/P3HT solar cells.J. Phys. Chem. C200711150184511845610.1021/jp077593l
    [Google Scholar]
  163. ShankarK MorGK PauloseM VargheseOK GrimesCA Effect of device geometry on the performance of TiO2 nanotube array−organic semiconductor double heterojunction solar cells.J. Non−Crystall. Sol.200835419-2527672771
    [Google Scholar]
  164. FanB. MeiX. SunK. OuyangJ. Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells.Appl. Phys. Lett.2008931414310310.1063/1.2996270
    [Google Scholar]
  165. TepavcevicS DarlingSB DimitrijevicNM RajhT SibenerSJ Improved hybrid solar cells via in situ UV polymerization.Small200951517761783
    [Google Scholar]
  166. Houarner-RassinC. BlartE. BuvatP. OdobelF. Solid-state dye-sensitized TiO2 solar cells based on a sensitizer covalently wired to a hole conducting polymer.Photochem. Photobiol. Sci.20087778979310.1039/b715013j18597026
    [Google Scholar]
  167. KhatriI. AdhikariS. AryalH.R. SogaT. JimboT. UmenoM. Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes.Appl. Phys. Lett.200994909350910.1063/1.3083544
    [Google Scholar]
  168. D’ArcyJ.M. TranH.D. TungV.C. Tucker-SchwartzA.K. WongR.P. YangY. KanerR.B. Versatile solution for growing thin films of conducting polymers.Proc. Natl. Acad. Sci. USA201010746196731967810.1073/pnas.100859510721041676
    [Google Scholar]
  169. WinterM. BroddR.J. What are batteries, fuel cells, and supercapacitors?Chem. Rev.2004104104245427010.1021/cr020730k15669155
    [Google Scholar]
  170. WhittinghamM.S. Lithium batteries and cathode materials.Chem. Rev.2004104104271430210.1021/cr020731c15669156
    [Google Scholar]
  171. ArmandM. TarasconJ.M. Building better batteries.Nature2008451717965265710.1038/451652a18256660
    [Google Scholar]
  172. KangK. MengY.S. BrégerJ. GreyC.P. CederG. Electrodes with high power and high capacity for rechargeable lithium batteries.Science2006311576397798010.1126/science.112215216484487
    [Google Scholar]
  173. ChenJ. ChengF. Combination of lightweight elements and nanostructured materials for batteries.Acc. Chem. Res.200942671372310.1021/ar800229g19354236
    [Google Scholar]
  174. TarasconJM ArmandM Issues and challenges facing rechargeable lithium batteries.Nature20014146861359367
    [Google Scholar]
  175. ChanC.K. PengH. LiuG. McIlwrathK. ZhangX.F. HugginsR.A. CuiY. High-performance lithium battery anodes using silicon nanowires.Nat. Nanotechnol.200831313510.1038/nnano.2007.41118654447
    [Google Scholar]
  176. MaltaM. LouarnG. ErrienN. TorresiR.M. Nanofibers composite vanadium oxide/polyaniline: synthesis and characterization of an electroactive anisotropic structure.Electrochem. Commun.20035121011101510.1016/j.elecom.2003.09.016
    [Google Scholar]
  177. SarangapaniS. TilakB.V. ChenC.P. Materials for electrochemical capacitors: theoretical and experimental constraints.J. Electrochem. Soc.1996143113791379910.1149/1.1837291
    [Google Scholar]
  178. FaggioliE. RenaP. DanelV. AndrieuX. MallantR. KahlenH. Supercapacitors for the energy management of electric vehicles.J. Power Sources199984226126910.1016/S0378‑7753(99)00326‑2
    [Google Scholar]
  179. AtesM. SaracA.S. Electrochemical impedance spectroscopic study of polythiophenes on carbon materials.Polym. Plast. Technol. Eng.201150111130114810.1080/03602559.2011.566300
    [Google Scholar]
  180. ShiraishiS. KuriharaH. OkabeK. HulicovaD. OyaA. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™Buckytubes™) in propylene carbonate electrolytes.Electrochem. Commun.20024759359810.1016/S1388‑2481(02)00382‑X
    [Google Scholar]
  181. LiuC.G. FangH.T. LiF. LiuM. ChengH.M. Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors.J. Power Sources2006160175876110.1016/j.jpowsour.2006.01.072
    [Google Scholar]
  182. ZhengJ.P. HuangJ. JowT.R. The limitations of energy density for electrochemical capacitors.J. Electrochem. Soc.199714462026203110.1149/1.1837738
    [Google Scholar]
  183. ZhengJ.P. CyganP.J. JowT.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors.J. Electrochem. Soc.199514282699270310.1149/1.2050077
    [Google Scholar]
  184. NamK.W. YoonW.S. KimK.B. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors.Electrochim. Acta200247193201320910.1016/S0013‑4686(02)00240‑2
    [Google Scholar]
  185. HuC.C. WangC.C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition.J. Electrochem. Soc.20031508A107910.1149/1.1587725
    [Google Scholar]
  186. ChangJ.K. TsaiW.T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors.J. Electrochem. Soc.200315010A133310.1149/1.1605744
    [Google Scholar]
  187. SungJ.H. KimS.J. LeeK.H. Fabrication of microcapacitors using conducting polymer microelectrodes.J. Power Sources2003124134335010.1016/S0378‑7753(03)00669‑4
    [Google Scholar]
  188. MiH. ZhangX. YeX. YangS. Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors.J. Power Sources2008176140340910.1016/j.jpowsour.2007.10.070
    [Google Scholar]
  189. GhoshA. LeeY.H. Carbon-based electrochemical capacitors.ChemSusChem20125348049910.1002/cssc.20110064522389329
    [Google Scholar]
  190. HughesM. ChenG.Z. ShafferM.S.P. FrayD.J. WindleA.H. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole.Chem. Mater.20021441610161310.1021/cm010744r
    [Google Scholar]
  191. JuY.W. ChoiG.R. JungH.R. LeeW.J. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole.Electrochim. Acta200853195796580310.1016/j.electacta.2008.03.028
    [Google Scholar]
  192. GuptaV. MiuraN. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors.Electrochim. Acta20065241721172610.1016/j.electacta.2006.01.074
    [Google Scholar]
  193. ChenL. YuanC. DouH. GaoB. ChenS. ZhangX. Synthesis and electrochemical capacitance of core–shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites.Electrochim. Acta20095482335234110.1016/j.electacta.2008.10.071
    [Google Scholar]
  194. LiuR. LeeS.B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage.J. Am. Chem. Soc.2008130102942294310.1021/ja711238218275200
    [Google Scholar]
  195. GuimardN.K. GomezN. SchmidtC.E. Conducting polymers in biomedical engineering.Prog. Polym. Sci.2007328-987692110.1016/j.progpolymsci.2007.05.012
    [Google Scholar]
  196. GeethaS. RaoC.R.K. VijayanM. TrivediD.C. Biosensing and drug delivery by polypyrrole.Anal. Chim. Acta20065681-211912510.1016/j.aca.2005.10.01117761251
    [Google Scholar]
  197. KimS. KimJ.H. JeonO. KwonI.C. ParkK. Engineered polymers for advanced drug delivery.Eur. J. Pharm. Biopharm.200971342043010.1016/j.ejpb.2008.09.02118977434
    [Google Scholar]
  198. OhJ.K. DrumrightR. SiegwartD.J. MatyjaszewskiK. The development of microgels/nanogels for drug delivery applications.Prog. Polym. Sci.200833444847710.1016/j.progpolymsci.2008.01.002
    [Google Scholar]
  199. LiY. NeohK.G. KangE.T. Controlled release of heparin from polypyrrole‐poly(vinyl alcohol) assembly by electrical stimulation.J. Biomed. Mater. Res. A200573A217118110.1002/jbm.a.3028615759258
    [Google Scholar]
  200. LiD. HuangJ. KanerR.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications.Acc. Chem. Res.200942113514510.1021/ar800080n18986177
    [Google Scholar]
  201. ParkY. JungJ. ChangM. Research progress on conducting polymer-based biomedical applications.Appl. Sci.201996107010.3390/app9061070
    [Google Scholar]
  202. GerardM. ChaubeyA. MalhotraB.D. Application of conducting polymers to biosensors.Biosens. Bioelectron.200217534535910.1016/S0956‑5663(01)00312‑811888724
    [Google Scholar]
  203. NovikovL.N. NovikovaL.N. MosahebiA. WibergM. TerenghiG. KellerthJ.O. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury.Biomaterials200223163369337610.1016/S0142‑9612(02)00037‑612099279
    [Google Scholar]
  204. KanetoK. Conducting polymers. Soft Actuators: Materials. In: Model. Applic.Fut. Persp.20149510910.1007/978‑4‑431‑54767‑9_7
    [Google Scholar]
  205. SvirskisD. Travas-SejdicJ. RodgersA. GargS. Electrochemically controlled drug delivery based on intrinsically conducting polymers.J. Control. Release2010146161510.1016/j.jconrel.2010.03.02320359512
    [Google Scholar]
  206. YangX. LiB. WangH. HouB. Anticorrosion performance of polyaniline nanostructures on mild steel.Prog. Org. Coat.201069326727110.1016/j.porgcoat.2010.06.004
    [Google Scholar]
  207. WangC.C. SongJ.F. BaoH.M. ShenQ.D. YangC.Z. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities.Adv. Funct. Mater.20081881299130610.1002/adfm.200701100
    [Google Scholar]
  208. TsengR.J. HuangJ. OuyangJ. KanerR.B. YangY. Polyaniline nanofiber/gold nanoparticle nonvolatile memory.Nano Lett.2005561077108010.1021/nl050587l15943446
    [Google Scholar]
  209. ItoT. ShirakawaH. IkedaS. Thermal cistrans isomerization and decomposition of polyacetylene.J. Polym. Sci. Polym. Chem. Ed.19751381943195010.1002/pol.1975.170130818
    [Google Scholar]
  210. AtesM. KarazehirT. Sezai SaracA. Conducting polymers and their applications.Curr. Phys. Chem.20122322424010.2174/1877946811202030224
    [Google Scholar]
  211. MirzaeiA. KimJ.H. KimH.W. KimS.S. How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature.Sens. Actuators B Chem.201825827029410.1016/j.snb.2017.11.066
    [Google Scholar]
  212. CichoszS. MasekA. ZaborskiM. Polymer-based sensors: A review.Polym. Test.20186734234810.1016/j.polymertesting.2018.03.024
    [Google Scholar]
  213. EdwardsJ.H. FeastW.J. BottD.C. New routes to conjugated polymers: 1. A two step route to polyacetylene.Polymer 198425339539810.1016/0032‑3861(84)90293‑3
    [Google Scholar]
  214. SergeyevaT.A. LavrikN.V. PiletskyS.A. RachkovA.E. El’skayaA.V. Polyaniline label-based conductometric sensor for IgG detection.Sens. Actuators B Chem.1996341-328328810.1016/S0925‑4005(97)80006‑8
    [Google Scholar]
  215. DhandC. DasM. DattaM. MalhotraB.D. Recent advances in polyaniline based biosensors.Biosens. Bioelectron.20112662811282110.1016/j.bios.2010.10.01721112204
    [Google Scholar]
  216. BarisciJ.N. ConnC. WallaceG.G. Conducting polymer sensors.Trends Polym. Sci. (Regul. Ed.)199694307311
    [Google Scholar]
  217. KieboomsR MenonR LeeK Synthesis, electrical, and optical properties of conjugated polymers.Handbook of advanced electronic and photonic materials and devicesAcademic Press2001110210.1016/B978‑012513745‑4/50064‑0
    [Google Scholar]
  218. BavioMA AcostaGG KesslerT Polyaniline and polyaniline−carbon black nanostructures as electrochemical capacitor electrode materials.Int J Hydro Ener.2014391685828589
    [Google Scholar]
  219. SyedA.A. DinesanM.K. Review: Polyaniline—A novel polymeric material.Talanta199138881583710.1016/0039‑9140(91)80261‑W18965226
    [Google Scholar]
  220. GenièsE.M. BoyleA. LapkowskiM. TsintavisC. Polyaniline: A historical survey.Synth. Met.199036213918210.1016/0379‑6779(90)90050‑U
    [Google Scholar]
  221. HuangW.S. HumphreyB.D. MacDiarmidA.G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes.J. Chem. Soc., Faraday Trans. I1986828238510.1039/f19868202385
    [Google Scholar]
  222. BhadraS. KhastgirD. SinghaN.K. LeeJ.H. Progress in preparation, processing and applications of polyaniline.Prog. Polym. Sci.200934878381010.1016/j.progpolymsci.2009.04.003
    [Google Scholar]
  223. StejskalJ. SapurinaI. TrchováM. Polyaniline nanostructures and the role of aniline oligomers in their formation.Prog. Polym. Sci.201035121420148110.1016/j.progpolymsci.2010.07.006
    [Google Scholar]
  224. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  225. WangJ. Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis.Electroanalysis200517171410.1002/elan.200403113
    [Google Scholar]
  226. JacobsC.B. PeairsM.J. VentonB.J. Review: Carbon nanotube based electrochemical sensors for biomolecules.Anal. Chim. Acta2010662210512710.1016/j.aca.2010.01.00920171310
    [Google Scholar]
  227. CuiY. WeiQ. ParkH. LieberC.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.Science200129355331289129210.1126/science.106271111509722
    [Google Scholar]
  228. PatolskyF ZhengG LieberCM Nanowire sensors for medicine and the life sciences.Nanomed202211516510.2217/17435889.1.1.51
    [Google Scholar]
  229. YogeswaranU. ChenS.M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material.Sensors20088129031310.3390/s801029027879709
    [Google Scholar]
  230. SunkaraM.K. SharmaS. MirandaR. LianG. DickeyE.C. Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method.Appl. Phys. Lett.200179101546154810.1063/1.1401089
    [Google Scholar]
  231. ŁapkowskiM. VieilE. Control of polyaniline electroactivity by ion size exclusion.Synth. Met.20001091-319920110.1016/S0379‑6779(99)00237‑4
    [Google Scholar]
  232. FockeW.W. WnekG.E. Conduction mechanisms in polyaniline (emeraldine salt).J. Electroanal. Chem. Interfacial Electrochem.1988256234335210.1016/0022‑0728(88)87008‑6
    [Google Scholar]
  233. LiangL. LiuJ. WindischC.F.Jr ExarhosG.J. LinY. Direct assembly of large arrays of oriented conducting polymer nanowires.Angew. Chem. Int. Ed.200241193665366810.1002/1521‑3773(20021004)41:19<3665::AID‑ANIE3665>3.0.CO;2‑B
    [Google Scholar]
  234. WuJ. LiQ. FanL. LanZ. LiP. LinJ. HaoS. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells.J. Power Sources2008181117217610.1016/j.jpowsour.2008.03.029
    [Google Scholar]
  235. YehM.H. LeeC.P. LinL.Y. NienP.C. ChenP.Y. VittalR. HoK.C. A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells.Electrochim. Acta201156176157616410.1016/j.electacta.2011.04.028
    [Google Scholar]
  236. VeerenderP. SaxenaV. JhaP. KoiryS.P. GusainA. SamantaS. ChauhanA.K. AswalD.K. GuptaS.K. Free-standing polypyrrole films as substrate-free and Pt-free counter electrodes for quasi-solid dye-sensitized solar cells.Org. Electron.201213123032303910.1016/j.orgel.2012.08.039
    [Google Scholar]
  237. KulkarniA.P. TonzolaC.J. BabelA. JenekheS.A. Electron transport materials for organic light−emitting diodes.Chem. Mater.200416234556457310.1021/cm049473l
    [Google Scholar]
  238. ZampettiA. MinottoA. CacialliF. Near‐infrared (NIR) organic light‐emitting diodes (OLEDs): Challenges and opportunities.Adv. Funct. Mater.20192921180762310.1002/adfm.201807623
    [Google Scholar]
  239. AlSalhiM.S. AlamJ. DassL.A. RajaM. Recent advances in conjugated polymers for light emitting devices.Int. J. Mol. Sci.20111232036205410.3390/ijms1203203621673938
    [Google Scholar]
  240. JiangY. GuoY. LiuY. Engineering of amorphous polymeric insulators for organic field‐effect transistors.Adv. Electron. Mater.2017311170015710.1002/aelm.201700157
    [Google Scholar]
  241. GolmarF. GobbiM. LlopisR. StoliarP. CasanovaF. HuesoL.E. Non-conventional metallic electrodes for organic field-effect transistors.Org. Electron.201213112301230610.1016/j.orgel.2012.07.031
    [Google Scholar]
  242. KeshtovM.L. KuklinS.A. KonstantinovI.O. KhokhlovA.R. DouC. SharmaG.D. Synthesis and characterization of wide‐bandgap conjugated polymers consisting of same electron donor and different electron‐deficient units and their application for nonfullerene polymer solar cells.Macromol. Chem. Phys.202022110200003010.1002/macp.202000030
    [Google Scholar]
  243. WongY.T. LinP.C. TsengC.W. HuangY.W. SuY.A. ChenW.C. ChuehC.C. Biaxially-extended side-chain engineering of benzodithiophene-based conjugated polymers and their applications in polymer solar cells.Org. Electron.20207910563010.1016/j.orgel.2020.105630
    [Google Scholar]
  244. FacchettiA. π−Conjugated polymers for organic electronics and photovoltaic cell applications.Chem. Mater.201123373375810.1021/cm102419z
    [Google Scholar]
  245. HeY. HongW. LiY. New building blocks for π-conjugated polymer semiconductors for organic thin film transistors and photovoltaics.J. Mater. Chem. C Mater. Opt. Electron. Devices20142418651866110.1039/C4TC01201A
    [Google Scholar]
  246. JiaP. HuT. HeQ. CaoX. MaJ. FanJ. ChenQ. DingY. PyunJ. GengJ. Synthesis of a macroporous conjugated polymer framework: Iron doping for highly stable, highly efficient lithium–sulfur batteries.ACS Appl. Mater. Interfaces20191133087309710.1021/acsami.8b1959330586280
    [Google Scholar]
  247. GraciaR. MecerreyesD. Polymers with redox properties: Materials for batteries, biosensors and more.Polym. Chem.2013472206221410.1039/c3py21118e
    [Google Scholar]
  248. WuZ.S. ChenL. LiuJ. ParvezK. LiangH. ShuJ. SachdevH. GrafR. FengX. MüllenK. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers.Adv. Mater.20142691450145510.1002/adma.20130414724293313
    [Google Scholar]
  249. PandeyR.K. LakshminarayananV. Ethanol electrocatalysis on gold and conducting polymer nanocomposites: A study of the kinetic parameters.Appl. Catal. B201212527128110.1016/j.apcatb.2012.06.002
    [Google Scholar]
  250. RamanavičiusA. RamanavičienėA. MalinauskasA. Electrochemical sensors based on conducting polymer—polypyrrole.Electrochim. Acta200651276025603710.1016/j.electacta.2005.11.052
    [Google Scholar]
  251. AtesM. A review study of (bio)sensor systems based on conducting polymers.Mater. Sci. Eng. C20133341853185910.1016/j.msec.2013.01.03523498205
    [Google Scholar]
  252. BobadeR.S. Polythiophene composites: A review of selected applications.J. Polym. Eng.2011312-320921510.1515/polyeng.2011.044
    [Google Scholar]
  253. PhilipsM.F. GopalanA.I. LeeK.P. Development of a novel cyano group containing electrochemically deposited polymer film for ultrasensitive simultaneous detection of trace level cadmium and lead.J. Hazard. Mater.2012237-238465410.1016/j.jhazmat.2012.07.06922964385
    [Google Scholar]
  254. KuddannayaS. BaoJ. ZhangY. Enhanced in vitro biocompatibility of chemically modified poly (dimethylsiloxane) surfaces for stable adhesion and long−term investigation of brain cerebral cortex cells.ACS Appl. Mater. Interfaces2015745255292553810.1021/acsami.5b0903226506436
    [Google Scholar]
  255. BurroughesJ.H. BradleyD.D.C. BrownA.R. MarksR.N. MackayK. FriendR.H. BurnsP.L. HolmesA.B. Light-emitting diodes based on conjugated polymers.Nature1990347629353954110.1038/347539a0
    [Google Scholar]
  256. BaldoM.A. KozlovV.G. BurrowsP.E. ForrestS.R. BanV.S. KoeneB. ThompsonM.E. Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures.Appl. Phys. Lett.199771213033303510.1063/1.120281
    [Google Scholar]
  257. ReynoldsJR PoropaticPA ToyookaRL The physical and electrical properties of copolymers of polypyrrole.Syn Met2021181-39510010.1016/0379‑6779(87)90860‑5
    [Google Scholar]
  258. DasT.K. PrustyS. Review on conducting polymers and their applications.Polym. Plast. Technol. Eng.201251141487150010.1080/03602559.2012.710697
    [Google Scholar]
  259. AleshinA.N. Polymer nanofibers and nanotubes: Charge transport and device applications.Adv. Mater.2006181172710.1002/adma.200500928
    [Google Scholar]
  260. LiuL. TangH. WangY. Nanotechnology−boosted biomaterials for osteoarthritis treatment: current status and future perspectives.Int. J. Nanomedicine2023184969498310.2147/IJN.S42373737693887
    [Google Scholar]
  261. ÇetinM.Z. GuvenN. ApetreiR.M. CamurluP. Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers.Enzyme Microb. Technol.202316411017810.1016/j.enzmictec.2022.11017836566669
    [Google Scholar]
  262. KannanS SivaV MuruganA ShameemAS ThangamaniA ThangarasuS RajaA Nanocomposites Processing.In: Innovative Development in Micromanufacturing ProcessesCRC Press372392
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615293683240405060440
Loading
/content/journals/cnm/10.2174/0124054615293683240405060440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): catalyst; electrolyte; energy; materials; Polymer; polymerization; sensors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test