Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

A brake pad is an integral component of a vehicle's braking system, designed to impart controlled friction and, ultimately, assist in slowing or stopping a vehicle. Their constituents include binder, filler, abrasive, lubricant, and reinforcing fiber. Materials for brake pads must have excellent wear resistance, increased heat dissipation, a consistent coefficient of friction, low noise and vibration, durability, compatibility, minimal environmental impact, and cost-effectiveness. This paper aims to examine the various materials used in brake pad applications. They are composed of matrix, ceramic, and polymer composites, and are manufactured using various processes. In addition to mechanical and tribological testing, there are various methods for testing the mechanical and tribological properties of brake pads. Various instruments, such as SEM, TEM, AFM, and XRD, were surveyed in order to analyse the morphology and crystal structure of nanoscale brake pads. Various applications such as automobiles, railroads, and aerospace utilise brake pads. The study reveals that integrating nano-fillers into polymer composites significantly enhances the mechanical and tribological properties of automotive brake pads, offering a promising route toward more durable, efficient, and safer braking systems. Through this analysis, researchers will gain a deeper understanding of the materials used in brake pads and their adaptability for various applications.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615284437240528101620
2024-06-03
2025-09-05
Loading full text...

Full text loading...

References

  1. IlieF. CristescuA.C. Tribological behavior of friction materials of a disk-brake pad braking system affected by structural changes—A review.Materials20221514474510.3390/ma1514474535888213
    [Google Scholar]
  2. Pinca-BretoteanC. CraciunA.L. PredaC. SharmaA.K. Physico-mechanical and tribological characteristics of composites used for brake pads.J. Phys. Conf. Ser.20211781101203210.1088/1742‑6596/1781/1/012032
    [Google Scholar]
  3. CraciunA.L. Pinca-BretoteanC. UtuD. JosanA. Tribological properties of nonasbestos brake pad material by using coconut fiber.IOP Conf. Ser.: Mater. Sci. Eng.201716301201410.1088/1757‑899X/163/1/012014
    [Google Scholar]
  4. FindikF. Latest progress on tribological properties of industrial materials.Mater. Des.20145721824410.1016/j.matdes.2013.12.028
    [Google Scholar]
  5. SukumaranJ. SoleimaniS. De BaetsP. RodriguezV. DouterloigneK. PhilipsW. AndoM. High-speed imaging for online micrographs of polymer composites in tribological investigation.Wear20122961-270271210.1016/j.wear.2012.08.016
    [Google Scholar]
  6. Ul AinQ. SehgalR. WaniM.F. SinghM.K. An overview of polymer nanocomposites: Understanding of mechanical and tribological behavior.IOP Conf. Series Mater. Sci. Eng.20211189101201010.1088/1757‑899X/1189/1/012010
    [Google Scholar]
  7. GbadeyanO.J. KannyK. Tribological behaviors of polymer-based hybrid nanocomposite brake pad.J. Tribol.2018140303200310.1115/1.4038679
    [Google Scholar]
  8. RajanB.S. BalajiM.A.S. SathickbashaK. HariharasakthisudanP. Influence of binder on thermomechanical and tribological performance in brake pad.Tribology in Industry201840465466910.24874/ti.2018.40.04.12
    [Google Scholar]
  9. SelvarajS.K. RameshR. NarendhraT.M.V. AgarwalI.N. ChadhaU. ParamasivamV. PalanisamyP. New developments in carbon-based nanomaterials for automotive brake pad applications and future challenges.J. Nanomater.2021202112410.1155/2021/6787435
    [Google Scholar]
  10. GawandeS.H. RaibholeV.N. BanaitA.S. Study on tribological investigations of alternative automotive brake pad materials.J. Bio Tribocorros.2020639310.1007/s40735‑020‑00388‑1
    [Google Scholar]
  11. MenezesP.L. RohatgiP.K. LovellM.R. Tribology of natural fiber reinforced polymer composites.International Joint Tribology Conference, Los Angeles, California, USA. October 24–26, 2011. pp. 341-343.10.1115/IJTC2011‑61221
    [Google Scholar]
  12. AmmarZ. IbrahimH. AdlyM. SarrisI. MehannyS. Influence of natural fiber content on the frictional material of brake pads—A review.J. Compos. Sci.2023727210.3390/jcs7020072
    [Google Scholar]
  13. IrawanA.P. FitriyanaD.F. TezaraC. SiregarJ.P. LaksmidewiD. BaskaraG.D. AbdullahM.Z. JunidR. HadiA.E. HamdanM.H.M. NajidN. Overview of the important factors influencing the performance of eco-friendly brake pads.Polymers2022146118010.3390/polym1406118035335511
    [Google Scholar]
  14. AyogwuD.O. SintaliI.S. BawaM.A. A review on brake pad materials and methods of production.J. Compos. Mater.2020418
    [Google Scholar]
  15. KumarS. GhoshS.K. Porosity and tribological performance analysis on new developed metal matrix composite for brake pad materials.J. Manuf. Process.20205918620410.1016/j.jmapro.2020.09.053
    [Google Scholar]
  16. ChatterjeeA. SenS. PaulS. RoyP. SeikhA.H. AlnaserI.A. DasK. SutradharG. GhoshM. Fabrication and characterization of SiC-reinforced aluminium matrix composite for brake pad applications.Metals202313358410.3390/met13030584
    [Google Scholar]
  17. KangishwarS. RadhikaN. SheikA.A. ChavaliA. HariharanS. A comprehensive review on polymer matrix composites: Material selection, fabrication, and application.Polym. Bull.2023801478710.1007/s00289‑022‑04087‑4
    [Google Scholar]
  18. PatelV. JoshiU. JoshiA. Investigating the effect of hydroxyl functionalized MWCNT on the mechanical properties of PMMA-based polymer nanocomposites.Curr. Nanomater.20238216217410.2174/2405461507666220516154332
    [Google Scholar]
  19. JoshiU.A. SharmaS.C. HarshaS.P. Characterizing the strength and elasticity deviation in defective CNT reinforced composites.Composites Communications2016291410.1016/j.coco.2016.09.006
    [Google Scholar]
  20. ÖsterleW. DmitrievA.I. WetzelB. ZhangG. HäuslerI. JimB.C. The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite.Mater. Des.20169347448410.1016/j.matdes.2015.12.175
    [Google Scholar]
  21. PatelV. JoshiU. JoshiA. OzaA.D. PrakashC. LinulE. CampilhoR.D.S.G. KumarS. SaxenaK.K. Strength evaluation of functionalized MWCNT-reinforced polymer nanocomposites synthesized using a 3D mixing approach.Materials20221520726310.3390/ma1520726336295328
    [Google Scholar]
  22. SharmaR.P. KumarM. Mechanical and tribological performance of polymer composite materials: A review.J. Phys. Conf. Ser.20201455101203310.1088/1742‑6596/1455/1/012033
    [Google Scholar]
  23. RahimiH. MozafariniaR. Shoja RazaviR. PaimozdE. Hojjati NajafabadiA. Processing and properties of GPTMS-TEOS hybrid coatings on 5083 aluminium alloy.Adv. Mat. Res.2011239-24273674210.4028/www.scientific.net/AMR.239‑242.736
    [Google Scholar]
  24. Hojjati NajafabadiA. MozaffariniaR. RahimiH. Shoja RazaviR. PaimozdE. Mechanical property evaluation of corrosion protection sol–gel nanocomposite coatings.Surf. Eng.201329424925410.1179/1743294412Y.0000000080
    [Google Scholar]
  25. Hojjati NajafabadiA. Shoja RazaviR. MozaffariniaR. RahimiH. A new approach of improving rain erosion resistance of nanocomposite sol-gel coatings by optimization process factors.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.20144552522253110.1007/s11661‑013‑2180‑2
    [Google Scholar]
  26. Hojjati NajafabadiA. MozaffariniaR. RahimiH. Shoja RazaviR. PaimozdE. Sol–gel processing of hybrid nanocomposite protective coatings using experimental design.Prog. Org. Coat.201376129330110.1016/j.porgcoat.2012.09.027
    [Google Scholar]
  27. VenkateshV.S.S. DeoghareA.B. Effect of controllable parameters on the tribological behavior of ceramic particulate reinforced aluminium metal matrix composites: A review.J. Phys. Conf. Ser.20201451101202510.1088/1742‑6596/1451/1/012025
    [Google Scholar]
  28. AbhikR. UmasankarV. XaviorM.A. Evaluation of properties for Al-SiC reinforced metal matrix composite for brake pads.Procedia Eng.20149794195010.1016/j.proeng.2014.12.370
    [Google Scholar]
  29. XiaoY. ZhangZ. YaoP. FanK. ZhouH. GongT. ZhaoL. DengM. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains.Tribol. Int.201811958559210.1016/j.triboint.2017.11.038
    [Google Scholar]
  30. XiaoY. YaoP. ZhouH. ZhangZ. GongT. ZhaoL. DengM. Investigation on speed-load sensitivity to tribological properties of copper metal matrix composites for braking application.Metals202010788910.3390/met10070889
    [Google Scholar]
  31. KrenkelW. LanghofN. Ceramic matrix composites for high performance friction applications.Proceedings of the IV Advanced Ceramics and Applications Conference, Atlantis Press, Paris, 17 January 2017, pp. 13–28.10.2991/978‑94‑6239‑213‑7_2
    [Google Scholar]
  32. ZhouW. MeiserM. WichF. LiensdorfT. FreudenbergW. LiY. LanghofN. KrenkelW. Fiber orientation dependence of tribological behavior of short carbon fiber reinforced ceramic matrix composites.J. Am. Ceram. Soc.2022105153855210.1111/jace.18075
    [Google Scholar]
  33. Jeya KumarA.A. Akshy RamaseshanN.P. LakshmananT. Tribological analysis on basalt/aramid hybrid fiber reinforced polyimide composites: An alternate brake pad material. Tribol Ind202143233434710.24874/ti.912.06.20.12
    [Google Scholar]
  34. IbrahimR.A. Tribological performance of polyester composites reinforced by agricultural wastes.Tribol. Int.20159046346610.1016/j.triboint.2015.04.042
    [Google Scholar]
  35. Gautier di ConfiengoG. FagaM.G. Ecological transition in the field of brake pad manufacturing: An overview of the potential green constituents.Sustainability2022145250810.3390/su14052508
    [Google Scholar]
  36. GilardiR. AlzatiL. ThiamM. BrunelJ.F. DesplanquesY. DufrénoyP. SharmaS. BijweJ. Copper substitution and noise reduction in brake pads: Graphite type selection.Materials20125112258226910.3390/ma5112258
    [Google Scholar]
  37. ElakhameZ.U. AlhassanO.A. SamuelA.E. Development and production of brake pads from palm kernel shell composites.Int. J. Sci. Eng. Res.2014510735744
    [Google Scholar]
  38. BindaF.F. OliveiraV.A. FortulanC.A. PalharesL.B. dos SantosC.G. Friction elements based on phenolic resin and slate powder.J. Mater. Res. Technol.2020933378338310.1016/j.jmrt.2020.01.032
    [Google Scholar]
  39. ArmanM. SinghalS. ChopraP. SarkarM. A review on material and wear analysis of automotive Break Pad.Mater. Today Proc.2018514283052831210.1016/j.matpr.2018.10.114
    [Google Scholar]
  40. KumarN. GrewalJ.S. KumarS. KumarN. KashyapK. Mechanical and thermal properties of NaOH treated sisal natural fiber reinforced polymer composites: Barium sulphate used as filler.Mater. Today Proc.2021455575557810.1016/j.matpr.2021.02.310
    [Google Scholar]
  41. PaiA. SubramanianS. SoodT. Tribological response of waste tire rubber as micro-fillers in automotive brake lining materials.Friction2020861153116810.1007/s40544‑019‑0355‑6
    [Google Scholar]
  42. Yaoqing Wu Ming Zeng Ling Yu Liren Fan Synergistic effect of Nano- and micrometer-size ceramic fibers on the tribological and thermal properties of automotive brake lining.J. Reinf. Plast. Compos.201029182732274310.1177/0731684409360996
    [Google Scholar]
  43. Sudhan RajJ. ChristyT.V. Darius GnanarajS. SugozuB. Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials.Eng. Sci. Technol. Int J.202023244545110.1016/j.jestch.2019.06.007
    [Google Scholar]
  44. KumarD. RajmohanT. VenkatachalapathiS. Wear behavior of PEEK matrix composites: A review.Mater. Today Proc.201856145831458910.1016/j.matpr.2018.03.049
    [Google Scholar]
  45. RajaG.M. VasanthanathanA. JeyasubramanianK. Novel ternary epoxy resin composites obtained by blending graphene oxide and polypropylene fillers: An avenue for the enhancement of mechanical characteristics.J. Inorg. Organomet. Polym. Mater.202333238339710.1007/s10904‑022‑02494‑8
    [Google Scholar]
  46. WangQ. XueQ. LiuH. ShenW. XuJ. The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK.Wear19961981-221621910.1016/0043‑1648(96)07201‑8
    [Google Scholar]
  47. MuL. ZhuJ. FanJ. ZhouZ. ShiY. FengX. Self-lubricating polytetrafluoroethylene/polyimide blends reinforced with zinc oxide nanoparticles.J. Nanomater.2016161373373
    [Google Scholar]
  48. YaoX. ZhengY.F. LiangJ.M. ZhangD.L. Microstructures and tensile mechanical properties of an ultrafine grained AA6063–5vol%SiC metal matrix nanocomposite synthesized by powder metallurgy.Mater. Sci. Eng. A201564822523410.1016/j.msea.2015.09.059
    [Google Scholar]
  49. ChenL. ZhaoJ. WangL. PengF. LiuH. ZhangJ. GuJ. GuoZ. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption.Ceram. Int.2019459117561176410.1016/j.ceramint.2019.03.052
    [Google Scholar]
  50. SpackmanC.C. PichaK.C. GrossG.J. NowakJ.F. SmithP.J. ZhengJ. SamuelJ. MishraS. A novel multimaterial additive manufacturing technique for fabricating laminated polymer nanocomposite structures.J. Micro Nano-Manuf.20153101100810.1115/1.4029263
    [Google Scholar]
  51. ChowW.S. Water absorption of epoxy/glass fiber/organo-montmorillonite nanocomposites.Express Polym. Lett.20071210410810.3144/expresspolymlett.2007.18
    [Google Scholar]
  52. SalaheldinH.I. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes.Adv. Nat. Sci.: Nanosci. Nanotechnol.20178404500110.1088/2043‑6254/aa8542
    [Google Scholar]
  53. AhmedM.A. Abdel-MessihM.F. Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method.J. Alloys Compd.201150952154215910.1016/j.jallcom.2010.10.172
    [Google Scholar]
  54. CheR.C. ZhiC.Y. LiangC.Y. ZhouX.G. Fabrication and microwave absorption of carbon nanotubes∕CoFe2O4 spinel nanocomposite.Appl. Phys. Lett.200688303310510.1063/1.2165276
    [Google Scholar]
  55. MirzapourA. AsadollahiM.H. BaghshaeiS. AkbariM. Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite.Compos., Part A Appl. Sci. Manuf.20146315916710.1016/j.compositesa.2014.04.009
    [Google Scholar]
  56. LeeJ.H. JungD. HongC.E. RheeK.Y. AdvaniS.G. Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer.Compos. Sci. Technol.200565131996200210.1016/j.compscitech.2005.03.015
    [Google Scholar]
  57. BasharM. MertinyP. SundararajU. Effect of nanocomposite structures on fracture behavior of epoxy-clay nanocomposites prepared by different dispersion methods.J. Nanomater.2014201411210.1155/2014/312813
    [Google Scholar]
  58. Waqas AnjumM. de ClippelF. DiddenJ. Laeeq KhanA. CouckS. BaronG.V. DenayerJ.F.M. SelsB.F. VankelecomI.F.J. Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers.J. Membr. Sci.201549512112910.1016/j.memsci.2015.08.006
    [Google Scholar]
  59. SekunowoO.I. DurowayeS.I. LawalG.I. Synthesis and characterisation of iron millscale particles reinforced ceramic matrix composite.J King Saud Univ – Eng Sci2019311788510.1016/j.jksues.2017.03.003
    [Google Scholar]
  60. SaindaneU.V. SoniS. MenghaniJ.V. Friction and wear performance of brake pad and optimization of manufacturing parameters using grey relational analysis.Int. J. Eng.202235355255910.5829/IJE.2022.35.03C.07
    [Google Scholar]
  61. GurunathP.V. BijweJ. Friction and wear studies on brake-pad materials based on newly developed resin.Wear20072637-121212121910.1016/j.wear.2006.12.050
    [Google Scholar]
  62. HwangH.J. JungS.L. ChoK.H. KimY.J. JangH. Tribological performance of brake friction materials containing carbon nanotubes.Wear20102683-451952510.1016/j.wear.2009.09.003
    [Google Scholar]
  63. UnaldiM. KusR. The effect of the brake pad components to the some physical properties of the ecological brake pad samples.IOP Conf. Series Mater. Sci. Eng.2017191101203210.1088/1757‑899X/191/1/012032
    [Google Scholar]
  64. ChandradassJ. Amutha SurabhiM. Baskara SethupathiP. JawaharP. Development of low cost brake pad material using asbestos free sugarcane bagasse ash hybrid composites.Mater. Today Proc.2021457050705710.1016/j.matpr.2021.01.877
    [Google Scholar]
  65. ParamasivamK. JayarajJ.J. RamarK. SubramaniY. AjithkumarK. KabilanN. Evaluation of natural fibers for the production of automotive brake pads replacement for asbestos brake pad.AIP Conference Proceedings.December 2020, volume 2311, issue 1 pp. 040005.10.1063/5.0034513
    [Google Scholar]
  66. SoundararajanR. KarthikS. SivaramanS. Automotive brake pad by using, functionally graded hybrid composites and their behaviour.IJMET201899318328
    [Google Scholar]
  67. AhmadijokaniF. AlaeiY. ShojaeiA. ArjmandM. YanN. Frictional behavior of resin-based brake composites: Effect of carbon fibre reinforcement.Wear2019420-42110811510.1016/j.wear.2018.12.098
    [Google Scholar]
  68. JadhavS.P. SawantS.H. A review paper: Development of novel friction material for vehicle brake pad application to minimize environmental and health issues.Mater. Today Proc.20191920921210.1016/j.matpr.2019.06.703
    [Google Scholar]
  69. Guha KeshavM. HemchandranC.G. DharsanB. PradhinK. Vaira VigneshR. GovindarajuM. Manufacturing of continuous fiber reinforced sintered brake pad and friction material.Mater. Today Proc.2021464493449610.1016/j.matpr.2020.09.686
    [Google Scholar]
  70. SukurE.F. OnalG. Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance.Wear2020460-46120348110.1016/j.wear.2020.203481
    [Google Scholar]
  71. NageshS.N. SiddarajuC. PrakashS.V. RameshM.R. Characterization of brake pads by variation in composition of friction materials.Procedia Mater. Sci.2014529530210.1016/j.mspro.2014.07.270
    [Google Scholar]
  72. UyyuruR.K. SurappaM.K. BrusethaugS. Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple.Wear200626011-121248125510.1016/j.wear.2005.08.011
    [Google Scholar]
  73. Dimopoulos EggenschwilerP. SchreiberD. PapettiV. GramstatS. LugovyyD. Electron microscopic characterization of the brake assembly components (disc and pads) from passenger vehicles.Atmosphere202213452310.3390/atmos13040523
    [Google Scholar]
  74. LazimA.R.M. KchaouM. HamidM.K.A. BakarA.R.A. Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers.Wear2016358-35912313610.1016/j.wear.2016.04.006
    [Google Scholar]
  75. VeeraiahG. KumarM.S.S. VarmaV.V. SudhakarI. Synthesis of Nano particles reinforced composites using A356 aluminium alloy as matrix for brake shoes using stir casting route.IOP Conf. Ser.: Mater. Sci. Eng.201845501207710.1088/1757‑899X/455/1/012077
    [Google Scholar]
  76. BijweJ. AranganathanN. SharmaS. DurejaN. KumarR. Nano-abrasives in friction materials-influence on tribological properties.Wear20122961-269370110.1016/j.wear.2012.07.023
    [Google Scholar]
  77. ChenF. LiZ. LuoY. LiD. MaW. ZhangC. TangH. LiF. XiaoP. Braking behaviors of Cu-based PM brake pads mating with C/C–SiC and 30CrMnSi steel discs under high-energy braking.Wear2021486-48720401910.1016/j.wear.2021.204019
    [Google Scholar]
  78. KukutschováJ. MoravecP. TomášekV. MatějkaV. SmolíkJ. SchwarzJ. SeidlerováJ. ŠafářováK. FilipP. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes.Environ. Pollut.20111594998100610.1016/j.envpol.2010.11.03621247681
    [Google Scholar]
  79. Laguna-CamachoJ.R. Juárez-MoralesG. Calderón-RamónC. Velázquez-MartínezV. Hernández-RomeroI. Méndez-MéndezJ.V. Vite-TorresM. A study of the wear mechanisms of disk and shoe brake pads.Eng. Fail. Anal.20155634835910.1016/j.engfailanal.2015.01.004
    [Google Scholar]
  80. JAMD. Characterization of alkaline treated areva javanica fiber and its tribological performance in phenolic friction composites.Mater. Res. Express2019611115307
    [Google Scholar]
  81. AbhulimenE. OrumwenseF. Characterization and development of asbestos-free brake pad, using snail shell and rubber seed husk.Am. J. Eng. Res.2017522434
    [Google Scholar]
  82. DharmavarapuP. ReddyM.B.S.S. Mechanical, low velocity impact, fatigue and tribology behaviour of Silane grafted aramid fibre and nano-silica toughened epoxy composite.Silicon20211361741175010.1007/s12633‑020‑00567‑2
    [Google Scholar]
  83. Kumar SharmaA. BhandariR. AherwarA. RimašauskienėR. Pinca-BretoteanC. A study of advancement in application opportunities of aluminum metal matrix composites.Mater. Today Proc.2020262419242410.1016/j.matpr.2020.02.516
    [Google Scholar]
  84. RathodV.T. KumarJ.S. JainA. Polymer and ceramic nanocomposites for aerospace applications.Appl. Nanosci.20177851954810.1007/s13204‑017‑0592‑9
    [Google Scholar]
  85. KumarA. PariharA.S. A review on mechanical and tribological behaviors of stir cast copper–silicon carbide matrix composites.Int Res J Eng Technol.20163426582664
    [Google Scholar]
  86. ZhangY. RheeK.Y. HuiD. ParkS.J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications.Compos., Part B Eng.2018143192710.1016/j.compositesb.2018.01.028
    [Google Scholar]
  87. IbrahimS.H. El-TayebN.S.M. Effect of nano-silica/alumina hybrid coating on erosion resistance of glass fibre-reinforced polymer for the application of wind turbine blades.Proc. Inst. Mech. Eng, Part J: J. Eng. Tribol.2022236102013203110.1177/13506501211052724
    [Google Scholar]
  88. SombergJ. SaravananP. VadivelH.S. BerglundK. ShiY. UkonsaariJ. EmamiN. Tribological characterisation of polymer composites for hydropower bearings: Experimentally developed versus commercial materials.Tribol. Int.202116210710110.1016/j.triboint.2021.107101
    [Google Scholar]
  89. GowdaT.Y. SanjayM.R. ParameswaranpillaiJ. SiengchinS. FriedrichK. Tribological applications of polymer composites.Tribology of polymer composites.AmsterdamElsevier202135536810.1016/B978‑0‑12‑819767‑7.00017‑7
    [Google Scholar]
  90. SenthilvelanS. GnanamoorthyR. Efficiency of injection-moulded polymer composite spur gears.Proc. Inst. Mech. Eng. J2009223692592810.1243/13506501JET425
    [Google Scholar]
  91. Farfan-CabreraL.I. Tribology of electric vehicles: A review of critical components, current state and future improvement trends.Tribol. Int.201913847348610.1016/j.triboint.2019.06.029
    [Google Scholar]
  92. ZhangD. LiZ. WangL. KongL. GaoF. WangQ. Study on tribological properties of boronized and textured composite surface and its application on camshaft connecting-rod type hydraulic motor.Wear2021482-48320396410.1016/j.wear.2021.203964
    [Google Scholar]
  93. KaramışM.B. Alper CeritA. SelçukB. NairF. The effects of different ceramics size and volume fraction on wear behavior of Al matrix composites (for automobile cam material).Wear2012289738110.1016/j.wear.2012.04.012
    [Google Scholar]
  94. MyshkinN.K. GrigorievA.Y. ZhangG. Sustainable development and polymer tribology.J. Frict. Wear202243635335810.3103/S1068366622060113
    [Google Scholar]
  95. SuC. WangC. SunX. SangX. Study on grinding mechanism of brake pad with copper matrix composites for high-speed train.Adv. Mater. Sci. Eng.201920191810.1155/2019/8970689
    [Google Scholar]
  96. ChenF. LiZ. ZouL.F. MaW.J. LiJ.W. ChenZ. NiuZ-B. LiuP-F. XiaoP. Tribological behavior and mechanism of h-BN modified copper metal matrix composites paired with C/C–SiC.Tribol. Int.202115310656110.1016/j.triboint.2020.106561
    [Google Scholar]
  97. SaindaneU.V. SoniS. MenghaniJ.V. Recent research status on synthesis and characterization of natural fibers reinforced polymer composites and modern friction materials – An overview.Mater. Today Proc.2020261616162010.1016/j.matpr.2020.02.334
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615284437240528101620
Loading
/content/journals/cnm/10.2174/0124054615284437240528101620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test