Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

Excipients are increasingly employed in novel dosage forms to accomplish specialized roles, and they also directly or indirectly alter the extent and rate of drug release and absorption. The trend toward using plant-based and natural goods has raised demand and, in some ways, replaced synthetic additives with natural ones. Natural and semisynthetic materials offer various advantages over synthetic materials since they are chemically inert, less toxic, less expensive, biodegradable, increase product shelf life, and are widely accessible.

Objectives

This review aims to cover the natural excipients’ role in nanoformulations and associated prospects.

Methods

More than 500 manuscripts were collected from ScienceDirect, PubMed, google, and other sources; however the manuscripts were excluded based on their relevance to the subject and finally 80 manuscripts were analyzed for the data.

Results

The substation of synthetic lipids with natural and semisynthetic for developing lipid-based nano drug delivery, and the use of gelatin and chitosan in developing encapsulated and nano particulates are a few examples to understand the above-mentioned transition.

Conclusion

This review provides an overview of the types of excipients used in the formulation of novel drug delivery systems with special emphasis on their characteristics, safety aspects, benefits associated, and common methods through, which they are employed in nanoformulations.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615248522231211105002
2023-12-19
2025-09-06
Loading full text...

Full text loading...

References

  1. ElderD.P. KuentzM. HolmR. Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations.Eur. J. Pharm. Sci.201687889910.1016/j.ejps.2015.12.01826699228
    [Google Scholar]
  2. ChavhanS.A. ShindeS.K.A. SapkalS.B. ShrikhandeV.N. Herbal excipients in novel drug delivery systems.IJRDPL2017632597260510.21276/IJRDPL.2278‑0238.2017.6(3).2597‑2605
    [Google Scholar]
  3. ShirwaikarA. ShirwaikarA. PrabhuS.L. KumarG.A. Herbal excipients in novel drug delivery systems.Indian J. Pharm. Sci.200870441542210.4103/0250‑474X.4458720046764
    [Google Scholar]
  4. LimpongsaE. TabboonP. PongjanyakulT. JaipakdeeN. Preparation and evaluation of directly compressible orally disintegrating tablets of cannabidiol formulated using liquisolid technique.Pharmaceutics20221411240710.3390/pharmaceutics1411240736365225
    [Google Scholar]
  5. ShargelL AndrewB Wu-PongS. Applied biopharmaceutics & pharmacokineticsAppleton & Lange Stamford1999
    [Google Scholar]
  6. LiuL. FishmanM.L. HicksK.B. Pectin in controlled drug delivery – a review.Cellulose2006141152410.1007/s10570‑006‑9095‑7
    [Google Scholar]
  7. RamachandranS. ShaheedhaS. ThirumuruganG. DhanarajuM. Floating controlled drug delivery system of famotidine loaded hollow microspheres (microballoons) in the stomach.Curr. Drug Deliv.201071939710.2174/15672011079039643620044907
    [Google Scholar]
  8. SaravananM. BhaskarK. Srinivasa RaoG. DhanarajuM.D. Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content.J. Microencapsul.200320328930212881111
    [Google Scholar]
  9. MalakerA. AhmadS.A.I. Therapeutic potency of anticancer peptides derived from marine organisms.Int J Eng.2013223058269
    [Google Scholar]
  10. ManoJ.F. Stimuli‐responsive polymeric systems for biomedical applications.Adv. Eng. Mater.200810651552710.1002/adem.200700355
    [Google Scholar]
  11. LaurienzoP. Marine polysaccharides in pharmaceutical applications: An overview.Mar. Drugs2010892435246510.3390/md809243520948899
    [Google Scholar]
  12. GantaS. DevalapallyH. ShahiwalaA. AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release2008126318720410.1016/j.jconrel.2007.12.01718261822
    [Google Scholar]
  13. SonawaneR.O. PatilS.D. Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen.Int. J. Biol. Macromol.2018120Pt B2324233410.1016/j.ijbiomac.2018.08.17730171959
    [Google Scholar]
  14. BornhöftM. ThommesM. KleinebuddeP. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation.Eur. J. Pharm. Biopharm.200559112713110.1016/j.ejpb.2004.05.00715567309
    [Google Scholar]
  15. SezerA.D. AkbuğaJ. Fucosphere—New microsphere carriers for peptide and protein delivery: Preparation and in vitro characterization.J. Microencapsul.200623551352210.1080/0265204060068756316980273
    [Google Scholar]
  16. PinheiroA.C. BourbonA.I. CerqueiraM.A. MaricatoÉ. NunesC. CoimbraM.A. VicenteA.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds.Carbohydr. Polym.20151151910.1016/j.carbpol.2014.07.01625439860
    [Google Scholar]
  17. AlvesA. SousaR.A. ReisR.L. A practical perspective on ulvan extracted from green algae.J. Appl. Phycol.201325240742410.1007/s10811‑012‑9875‑4
    [Google Scholar]
  18. MorelliA. ChielliniF. Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation.Macromol. Chem. Phys.2010211782183210.1002/macp.200900562
    [Google Scholar]
  19. PrabaharanM. ManoJ.F. Chitosan-based particles as controlled drug delivery systems.Drug Deliv.2004121415710.1080/1071754059088978115801720
    [Google Scholar]
  20. FeltO. BuriP. GurnyR. Chitosan: A unique polysaccharide for drug delivery.Drug Dev. Ind. Pharm.1998241197999310.3109/036390498090899429876553
    [Google Scholar]
  21. SantoV.E. GomesM.E. ManoJ.F. ReisR.L. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine.J. Tissue Eng. Regen. Med.20126S3s47s5910.1002/term.151922684916
    [Google Scholar]
  22. GuoY. ShiX. FangQ. ZhangJ. FangH. JiaW. YangG. YangL. Facile preparation of hydroxyapatite–chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs.Mater. Lett.201412511111510.1016/j.matlet.2014.03.084
    [Google Scholar]
  23. VitaleC. BeruttiS. BagnisC. SoragnaG. GabellaP. FrutteroC. MarangellaM. Dermatan sulfate: An alternative to unfractionated heparin for anticoagulation in hemodialysis patients.J. Nephrol.201326115816310.5301/jn.500010522419236
    [Google Scholar]
  24. KnelsonE.H. NeeJ.C. BlobeG.C. Heparan sulfate signaling in cancer.Trends Biochem. Sci.201439627728810.1016/j.tibs.2014.03.00124755488
    [Google Scholar]
  25. DashR. RagauskasA.J. Synthesis of a novel cellulose nanowhisker-based drug delivery system.RSC Advances2012283403340910.1039/c2ra01071b
    [Google Scholar]
  26. Ndong NtoutoumeG.M.A. GranetR. MbakidiJ.P. BrégierF. LégerD.Y. Fidanzi-DugasC. LequartV. JolyN. LiagreB. ChaleixV. SolV. Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems.Bioorg. Med. Chem. Lett.201626394194510.1016/j.bmcl.2015.12.06026739777
    [Google Scholar]
  27. ZhaoW. OdeliusK. EdlundU. ZhaoC. AlbertssonA.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery.Biomacromolecules20151682522252810.1021/acs.biomac.5b0080126196600
    [Google Scholar]
  28. CaoX. PengX. ZhongL. SunR. Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier.J. Agric. Food Chem.20146241100001000710.1021/jf504040s25260117
    [Google Scholar]
  29. KumarP.T.S. RamyaC. JayakumarR. NairS.V. LakshmananV.K. Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds.Colloids Surf. B Biointerfaces201310610911610.1016/j.colsurfb.2013.01.04823434699
    [Google Scholar]
  30. GeorgeA. ShahP.A. ShrivastavP.S. Guar gum: Versatile natural polymer for drug delivery applications.Eur. Polym. J.201911272273510.1016/j.eurpolymj.2018.10.042
    [Google Scholar]
  31. KumarB. KulanthaivelS. MondalA. MishraS. BanerjeeB. BhaumikA. BanerjeeI. GiriS. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping.Colloids Surf. B Biointerfaces201715035236110.1016/j.colsurfb.2016.10.04927847225
    [Google Scholar]
  32. PettinelliN. Rodríguez-LlamazaresS. FarragY. BouzaR. BarralL. Feijoo-BandínS. LagoF. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier.Int. J. Biol. Macromol.202014611011810.1016/j.ijbiomac.2019.12.19331881300
    [Google Scholar]
  33. SagbasS. SahinerN. Modifiable natural gum based microgel capsules as sustainable drug delivery systems.Carbohydr. Polym.201820012813610.1016/j.carbpol.2018.07.08530177149
    [Google Scholar]
  34. TanC. XieJ. ZhangX. CaiJ. XiaS. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin.Food Hydrocoll.20165723624510.1016/j.foodhyd.2016.01.021
    [Google Scholar]
  35. SarikaP.R. NirmalaR.J. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy.Mater. Sci. Eng. C20166533133710.1016/j.msec.2016.04.04427157759
    [Google Scholar]
  36. ShehabeldineA. HasaninM. Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria.Environ. Nanotechnol. Monit. Manag.20191210025210.1016/j.enmm.2019.100252
    [Google Scholar]
  37. YangJ. LiF. LiM. ZhangS. LiuJ. LiangC. SunQ. XiongL. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application.Carbohydr. Polym.201717322323210.1016/j.carbpol.2017.06.00628732861
    [Google Scholar]
  38. de SouzaM.L. dos SantosW.M. de SousaA.L.M.D. de AlbuquerqueW.S.V. NóbregaF.P. de OliveiraM.V.G. Rolim-NetoP.J. Lipid nanoparticles as a skin wound healing drug delivery system: Discoveries and advances.Curr. Pharm. Des.202026364536455010.2174/138161282666620041714453032303163
    [Google Scholar]
  39. TranTHY HoangTH VuTTG Preparation of nano niosomes loaded with rutin and aloe gel extract.VNU J. Sci. 2020361
    [Google Scholar]
  40. KarM ChourasiyaY MaheshwariR TekadeRK Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development.Basic Fundamentals of Drug Delivery Advances in Pharmaceutical Product Development and Research20192983
    [Google Scholar]
  41. McConvilleJ.T. RossA.C. ChambersA.R. SmithG. FlorenceA.J. StevensH.N.E. The effect of wet granulation on the erosion behaviour of an HPMC–lactose tablet, used as a rate-controlling component in a pulsatile drug delivery capsule formulation.Eur. J. Pharm. Biopharm.200457354154910.1016/j.ejpb.2004.01.00415093604
    [Google Scholar]
  42. CanM. AyyalaR.S. SahinerN. Crosslinked poly(Lactose) microgels and nanogels for biomedical applications.J. Colloid Interface Sci.201955380581210.1016/j.jcis.2019.06.07831255942
    [Google Scholar]
  43. HathoutR.M. OmranM.K. Gelatin-based particulate systems in ocular drug delivery.Pharm. Dev. Technol.201621337938610.3109/10837450.2014.99978625567143
    [Google Scholar]
  44. BakraviA. AhamadianY. HashemiH. NamaziH. Synthesis of gelatin‐based biodegradable hydrogel nanocomposite and their application as drug delivery agent.Adv. Polym. Technol.20183772625263510.1002/adv.21938
    [Google Scholar]
  45. BaigM.S. AhadA. AslamM. ImamS.S. AqilM. AliA. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity.Int. J. Biol. Macromol.20168525827010.1016/j.ijbiomac.2015.12.07726740466
    [Google Scholar]
  46. PrüfertF. FischerF. LeichnerC. ZaichikS. Bernkop-SchnürchA. Development and in vitro evaluation of stearic acid phosphotyrosine amide as new excipient for zeta potential changing self-emulsifying drug delivery systems.Pharm. Res.20203747910.1007/s11095‑020‑02802‑232253523
    [Google Scholar]
  47. DantasI.L. BastosK.T.S. MachadoM. GalvãoJ.G. LimaA.D. GonsalvesJ.K.M.C. AlmeidaE.D.P. AraújoA.A.S. de MenesesC.T. SarmentoV.H.V. NunesR.S. LiraA.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus.J. Therm. Anal. Calorim.201813231557156610.1007/s10973‑018‑7072‑7
    [Google Scholar]
  48. SinghR.P. GangadharappaH.V. MruthunjayaK. Phospholipids: Unique carriers for drug delivery systems.J. Drug Deliv. Sci. Technol.20173916617910.1016/j.jddst.2017.03.027
    [Google Scholar]
  49. RasouliE. BasirunW.J. JohanM.R. RezayiM. DarroudiM. ShameliK. ShanavazZ. AkbarzadehO. IzadiyanZ. Facile and greener hydrothermal honey‐based synthesis of Fe 3 O 4 /Au core/shell nanoparticles for drug delivery applications.J. Cell. Biochem.201912046624663110.1002/jcb.2795830368873
    [Google Scholar]
  50. Prateeksha SinghB.R. ShoebM. SharmaS. NaqviA.H. GuptaV.K. SinghB.N. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation.Front. Cell. Infect. Microbiol.201779310.3389/fcimb.2017.0009328386534
    [Google Scholar]
  51. SharmaG. DeviN. ThakurK. JainA. KatareO.P. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model.Drug Deliv. Transl. Res.20188239841310.1007/s13346‑017‑0364‑928224375
    [Google Scholar]
  52. VarshosazJ. TavakoliN. EramS.A. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets.Drug Deliv.200613211311910.1080/1071754050031335616423799
    [Google Scholar]
  53. ChaurasiaM. ChourasiaM.K. JainN.K. JainA. SoniV. GuptaY. JainS.K. Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer.AAPS PharmSciTech200673E143E15110.1208/pt07037417025254
    [Google Scholar]
  54. SatturwarP.M. FulzeleS.V. DorleA.K. Biodegradation and in vivo biocompatibility of rosin: A natural film-forming polymer.AAPS PharmSciTech20034443443910.1208/pt04045515198550
    [Google Scholar]
  55. LamK.S. New aspects of natural products in drug discovery.Trends Microbiol.200715627928910.1016/j.tim.2007.04.00117433686
    [Google Scholar]
  56. McChesneyJ.D. VenkataramanS.K. HenriJ.T. Plant natural products: Back to the future or into extinction?Phytochemistry200768142015202210.1016/j.phytochem.2007.04.03217574638
    [Google Scholar]
  57. ChamarthyS.P. PinalR. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system.Colloids Surf. A Physicochem. Eng. Asp.20083311-2253010.1016/j.colsurfa.2008.05.047
    [Google Scholar]
  58. VenkataR. Chemical and biological aspects of selected polysaccharides.Indian J. Pharm. Sci.1992549097
    [Google Scholar]
  59. Alonso-SandeM. Teijeiro-OsorioD. Remuñán-LópezC. AlonsoM.J. Glucomannan, a promising polysaccharide for biopharmaceutical purposes.Eur. J. Pharm. Biopharm.200972245346210.1016/j.ejpb.2008.02.00518511246
    [Google Scholar]
  60. JiangG. JiaH. QiuJ. MoZ. WenY. ZhangY. WenY. XieQ. BanJ. LuZ. ChenY. WuH. NiQ. ChenF. LuJ. WangZ. LiH. ChenJ. PLGA nanoparticle platform for trans-ocular barrier to enhance drug delivery: A comparative study based on the application of oligosaccharides in the outer membrane of carriers.Int. J. Nanomedicine2020159373938710.2147/IJN.S27275033262593
    [Google Scholar]
  61. MillsS. Pharmaceutical Excipients–An overview including considerations for paediatric dosing.Training Workshop: Pharmaceutical Development with Focus on Paediatric FormulationsBeijing2010
    [Google Scholar]
  62. SabalingamS. JayasuriyaW. Pharmaceutical excipients of marine and animal origin: A Review.Bio Chem Res.20196184196
    [Google Scholar]
  63. ElzoghbyA.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research.J. Control. Release201317231075109110.1016/j.jconrel.2013.09.01924096021
    [Google Scholar]
  64. Gómez-GuillénM.C. GiménezB. López-CaballeroM.E. MonteroM.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review.Food Hydrocoll.20112581813182710.1016/j.foodhyd.2011.02.007
    [Google Scholar]
  65. BabuU.S. BunningV.K. WiesenfeldP. RaybourneR.B. O’DonnellM. Effect of dietary flaxseed on fatty acid composition, superoxide, nitric oxide generation and antilisterial activity of peritoneal macrophages from female Sprague-Dawley rats.Life Sci.199760854555410.1016/S0024‑3205(96)00638‑89042389
    [Google Scholar]
  66. StricklandW.A.Jr NelsonE. BusseL.W. HiguchiT. The physics of tablet compression. IX. Fundamental aspects of tablet lubrication.J. Am. Pharm. Assoc.1956451515510.1002/jps.303045011613278264
    [Google Scholar]
  67. BogdanovS. Quality and standards of pollen and beeswax.Apiacta20043811334341
    [Google Scholar]
  68. HogendoornE.A. SommeijerM.J. VredenbregtM.J. Alternative method for measuring beeswax content in propolis from the Netherlands.J. Apic. Sci.201357281
    [Google Scholar]
  69. WiseP.M. BreslinP.A.S. DaltonP. Effect of taste sensation on cough reflex sensitivity.Lung2014192191310.1007/s00408‑013‑9515‑z24173385
    [Google Scholar]
  70. SialA.R. ShahS. RasoolF. RanjhaN.M. MurtazaG. Effect of different hydrophillic binders on the dissolution profiles of mefenamic acid.Lat. Am. J. Pharm.201231336267
    [Google Scholar]
  71. DubaldM. BourgeoisS. AndrieuV. FessiH. Ophthalmic drug delivery systems for antibiotherapy—a review.Pharmaceutics20181011010.3390/pharmaceutics1001001029342879
    [Google Scholar]
  72. SuriS.S. FenniriH. SinghB. Nanotechnology-based drug delivery systems.J. Occup. Med. Toxicol.2007211610.1186/1745‑6673‑2‑1618053152
    [Google Scholar]
  73. GronebergD.A. RabeK.F. FischerA. Novel concepts of neuropeptide-based drug therapy: Vasoactive intestinal polypeptide and its receptors.Eur. J. Pharmacol.20065331-318219410.1016/j.ejphar.2005.12.05516473346
    [Google Scholar]
  74. DuncanR. The dawning era of polymer therapeutics.Nat. Rev. Drug Discov.20032534736010.1038/nrd108812750738
    [Google Scholar]
  75. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  76. MartinhoN. DamgéC. ReisC.P. Recent advances in drug delivery systems.J. Biomater. Nanobiotechnol.20112551052610.4236/jbnb.2011.225062
    [Google Scholar]
  77. JahangirianH. Ghasemian lemraskiE. WebsterT.J. Rafiee-MoghaddamR. AbdollahiY. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.Int. J. Nanomedicine2017122957297810.2147/IJN.S12768328442906
    [Google Scholar]
  78. SinghalG. BhaveshR. KasariyaK. SharmaA.R. SinghR.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity.J. Nanopart. Res.20111372981298810.1007/s11051‑010‑0193‑y
    [Google Scholar]
  79. Ajazuddin SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.00120471457
    [Google Scholar]
  80. ArpitaS. NidhiG. AmreshG. A review on herbal excipients.IJIHD.202161
    [Google Scholar]
  81. MartinsS.M. SarmentoB. NunesC. LúcioM. ReisS. FerreiraD.C. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration.Eur. J. Pharm. Biopharm.201385348850210.1016/j.ejpb.2013.08.01123994244
    [Google Scholar]
  82. TopalG.R. MészárosM. PorkolábG. SzecskóA. PolgárT.F. SiklósL. DeliM.A. VeszelkaS. BozkirA. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier.Pharmaceutics20201313810.3390/pharmaceutics1301003833383743
    [Google Scholar]
  83. LuY. HuangJ. WangH. LouX. LiaoM. HongL. TaoR. AhmedM.M. ShanC. WangX. FukunagaK. DuY. HanF. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles.Biomaterials201435153053710.1016/j.biomaterials.2013.09.09324120040
    [Google Scholar]
  84. SinghI. SwamiR. PoojaD. JeengarM.K. KhanW. SistlaR. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting.J. Drug Target.201624321222310.3109/1061186X.2015.106832026219519
    [Google Scholar]
  85. JainA. AgarwalA. MajumderS. LariyaN. KhayaA. AgrawalH. MajumdarS. AgrawalG.P. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug.J. Control. Release2010148335936710.1016/j.jconrel.2010.09.00320854859
    [Google Scholar]
  86. MulikR.S. MönkkönenJ. JuvonenR.O. MahadikK.R. ParadkarA.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis.Int. J. Pharm.20103981-219020310.1016/j.ijpharm.2010.07.02120655375
    [Google Scholar]
  87. ZhaiJ. LuworR.B. AhmedN. EscalonaR. TanF.H. FongC. RatcliffeJ. ScobleJ.A. DrummondC.J. TranN. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer.ACS Appl. Mater. Interfaces20181030251742518510.1021/acsami.8b0812529963859
    [Google Scholar]
  88. WangW. ZhuR. XieQ. LiA. XiaoY. LiK. LiuH. WangS. CuiD. WangS. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles.Int. J. Nanomedicine201273667367710.2147/IJN.S3042822888226
    [Google Scholar]
  89. BhandariR. KaurI.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles.Int. J. Pharm.20134411-220221210.1016/j.ijpharm.2012.11.04223220081
    [Google Scholar]
  90. GrilloneA. RivaE.R. MondiniA. ForteC. CalucciL. InnocentiC. de Julian FernandezC. CappelloV. GemmiM. MoscatoS. RoncaF. SaccoR. MattoliV. CiofaniG. Active targeting of sorafenib: Preparation, characterization, and in vitro testing of drug‐loaded magnetic solid lipid nanoparticles.Adv. Healthc. Mater.20154111681169010.1002/adhm.20150023526039933
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615248522231211105002
Loading
/content/journals/cnm/10.2174/0124054615248522231211105002
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test