Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

The two-dimensional structure of graphene has a flat single layer of carbon molecules having a honeycomb crystal lattice configuration. Graphene possesses typical physicochemical characteristics such as elevated conductivity, wide-ranging surface area, good biocompatibility, and excellent mechanical properties. Due to their exceptional properties, graphene derivatives have significant implementations in many fields like electronics, environmental, chemical, pharmaceutical, and others. With its distinctive formation and biological characteristics, pharmaceutical and biomedical applications of graphene have gained the impressive interest of researchers and scientists over the past few years. The exceptional properties of graphene, such as its larger surface area, which is four times greater than other nanoparticles, represented it as a prior choice for drug delivery. Graphene derivatives are monolayer graphene, bilayer graphene, reduced Graphene Oxide (rGO), and Graphene Oxide (GO). This review focused on different pharmaceutical applications and the part of the progress made by different researchers on graphene and its derivatives in the distinct field of interest, like in the delivery of drugs, cancer therapy, gene delivery, antibacterial effect, biosensing, bioimaging, tissue engineering, and others.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615269089240202043246
2024-02-19
2025-10-28
Loading full text...

Full text loading...

References

  1. HanS. SunJ. HeS. TangM. ChaiR. The application of graphene-based biomaterials in biomedicine.Am. J. Transl. Res.20191163246326031312342
    [Google Scholar]
  2. JaleelJ.A. SruthiS. PramodK. Reinforcing nanomedicine using graphene family nanomaterials.J. Control. Release201725521823010.1016/j.jconrel.2017.04.04128461100
    [Google Scholar]
  3. LiuJ. CuiL. LosicD. Graphene and graphene oxide as new nanocarriers for drug delivery applications.Acta Biomater.20139129243925710.1016/j.actbio.2013.08.01623958782
    [Google Scholar]
  4. MaitiD. TongX. MouX. YangK. Carbon-based nanomaterials for biomedical applications: A recent study.Front. Pharmacol.20199140110.3389/fphar.2018.0140130914959
    [Google Scholar]
  5. ZhangB. WeiP. ZhouZ. WeiT. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights.Adv. Drug Deliv. Rev.2016105Pt B14516210.1016/j.addr.2016.08.00927569910
    [Google Scholar]
  6. MaL. ZhouM. HeC. LiS. FanX. NieC. LuoH. QiuL. ChengC. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches.Green Chem.201921184887491810.1039/C9GC02266J
    [Google Scholar]
  7. JhaR. SinghA. SharmaP.K. FuloriaN.K. Smart carbon nanotubes for drug delivery system: A comprehensive study.J. Drug Deliv. Sci. Technol.20205810181110.1016/j.jddst.2020.101811
    [Google Scholar]
  8. FooM.E. GopinathS.C.B. Feasibility of graphene in biomedical applications.Biomed. Pharmacother.20179435436110.1016/j.biopha.2017.07.12228772213
    [Google Scholar]
  9. SajidM.I. JamshaidU. JamshaidT. ZafarN. FessiH. ElaissariA. Carbon nanotubes from synthesis to in vivo biomedical applications.Int. J. Pharm.20165011-227829910.1016/j.ijpharm.2016.01.06426827920
    [Google Scholar]
  10. SinghZ.S. Applications and toxicity of graphene family nanomaterials and their composites.Nanotechnol. Sci. Appl.20169152810.2147/NSA.S10181827051278
    [Google Scholar]
  11. Benítez-MartínezS. López-LorenteÁ.I. ValcárcelM. Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples.Anal. Chem.20148624122791228410.1021/ac503508325407254
    [Google Scholar]
  12. ZhengXT AnanthanarayananA LuoKQ ChenP Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications.Small201511141620163610.1002/smll.201402648
    [Google Scholar]
  13. LiK. LiuW. NiY. LiD. LinD. SuZ. WeiG. Technical synthesis and biomedical applications of graphene quantum dots.J. Mater. Chem. B Mater. Biol. Med.20175254811482610.1039/C7TB01073G32263997
    [Google Scholar]
  14. KumawatM.K. ThakurM. GurungR.B. SrivastavaR. Graphene quantum dots for cell proliferation, nucleus imaging, and photoluminescent sensing applications.Sci. Rep.2017711585810.1038/s41598‑017‑16025‑w29158566
    [Google Scholar]
  15. ChenF. GaoW. QiuX. ZhangH. LiuL. LiaoP. FuW. LuoY. Graphene quantum dots in biomedical applications: Recent advances and future challenges.Frontiers in Laboratory Medicine20171419219910.1016/j.flm.2017.12.006
    [Google Scholar]
  16. MoR. GuZ. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery.Mater. Today201619527428310.1016/j.mattod.2015.11.025
    [Google Scholar]
  17. ZhangH. FanT. ChenW. LiY. WangB. Recent advances of two-dimensional materials in smart drug delivery nano-systems.Bioact. Mater.2020541071108610.1016/j.bioactmat.2020.06.01232695937
    [Google Scholar]
  18. NejabatM. CharbgooF. RamezaniM. Graphene as multifunctional delivery platform in cancer therapy.J. Biomed. Mater. Res. A201710582355236710.1002/jbm.a.3608028371194
    [Google Scholar]
  19. YangK. FengL. LiuZ. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy.Adv. Drug Deliv. Rev.2016105Pt B22824110.1016/j.addr.2016.05.01527233212
    [Google Scholar]
  20. CabaneE. ZhangX. LangowskaK. PalivanC.G. MeierW. Stimuli-responsive polymers and their applications in nanomedicine.Biointerphases201271910.1007/s13758‑011‑0009‑322589052
    [Google Scholar]
  21. WangY. LiZ. HuD. LinC.T. LiJ. LinY. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells.J. Am. Chem. Soc.2010132279274927610.1021/ja103169v20565095
    [Google Scholar]
  22. ChenH. WangZ. ZongS. WuL. ChenP. ZhuD. WangC. XuS. CuiY. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells.ACS Appl. Mater. Interfaces2014620175261753310.1021/am505160v25272041
    [Google Scholar]
  23. YaoC. TuY. DingL. LiC. WangJ. FangH. HuangY. ZhangK. LuQ. WuM. WangY. Tumor cell-specific nuclear targeting of functionalized graphene quantum dots in vivo.Bioconjug. Chem.201728102608261910.1021/acs.bioconjchem.7b0046628903003
    [Google Scholar]
  24. LuoY. CaiX. LiH. LinY. DuD. Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung cancer cells.ACS Appl. Mater. Interfaces2016864048405510.1021/acsami.5b1147126785717
    [Google Scholar]
  25. CaoY. DongH. YangZ. ZhongX. ChenY. DaiW. ZhangX. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy.ACS Appl. Mater. Interfaces20179115916610.1021/acsami.6b1315027957830
    [Google Scholar]
  26. DengL. LiQ. Al-RehiliS. OmarH. AlmalikA. AlshamsanA. ZhangJ. KhashabN.M. Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: A micro-matryoshka for on-demand drug release and antitumor therapy in vivo.ACS Appl. Mater. Interfaces20168116859686810.1021/acsami.6b0032226915062
    [Google Scholar]
  27. GarrigaR. JurewiczI. SeyedinS. BardiN. TottiS. Matta-DomjanB. VelliouE.G. AlkhorayefM.A. CebollaV.L. RazalJ.M. DaltonA.B. MuñozE. Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings.Nanoscale20179237791780410.1039/C6NR09482A28186213
    [Google Scholar]
  28. DingH. ZhangF. ZhaoC. LvY. MaG. WeiW. TianZ. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response.ACS Appl. Mater. Interfaces2017933273962740110.1021/acsami.7b0882428782357
    [Google Scholar]
  29. LiM. YangX. RenJ. QuK. QuX. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease.Adv. Mater.201224131722172810.1002/adma.20110486422407491
    [Google Scholar]
  30. YangK. HuL. MaX. YeS. ChengL. ShiX. LiC. LiY. LiuZ. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles.Adv. Mater.201224141868187210.1002/adma.20110496422378564
    [Google Scholar]
  31. ChenY.W. LiuT.Y. ChangP.H. HsuP.H. LiuH.L. LinH.C. ChenS.Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor.Nanoscale2016825126481265710.1039/C5NR07782F26838477
    [Google Scholar]
  32. DaiC. ZhangS. LiuZ. WuR. ChenY. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication.ACS Nano20171199467948010.1021/acsnano.7b0521528829584
    [Google Scholar]
  33. PengE. ChooE.S.G. ChandrasekharanP. YangC.T. DingJ. ChuangK.H. XueJ.M. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications.Small20128233620363010.1002/smll.20120142722962025
    [Google Scholar]
  34. HatamieS. AhadianM.M. GhiassM.A. Iraji zadA. SaberR. ParsehB. OghabianM.A. ShanehsazzadehS. Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis.Colloids Surf. B Biointerfaces201614627127910.1016/j.colsurfb.2016.06.01827351138
    [Google Scholar]
  35. GuZ. ZhuS. YanL. ZhaoF. ZhaoY. Graphene‐based smart platforms for combined Cancer therapy.Adv. Mater.2019319180066210.1002/adma.20180066230039878
    [Google Scholar]
  36. DolatkhahM. HashemzadehN. BararJ. AdibkiaK. AghanejadA. Barzegar-JalaliM. OmidiY. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer.Colloids Surf. B Biointerfaces202019311110410.1016/j.colsurfb.2020.11110432417466
    [Google Scholar]
  37. YangY. ZhangY.M. ChenY. ZhaoD. ChenJ.T. LiuY. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery.Chemistry201218144208421510.1002/chem.20110344522374621
    [Google Scholar]
  38. GüryelS. WalkerM. GeerlingsP. De ProftF. WilsonM.R. Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites.Phys. Chem. Chem. Phys.20171920129591296910.1039/C7CP01552F28480914
    [Google Scholar]
  39. RasmussenK. RauscherH. MechA. Riego SintesJ. GillilandD. GonzálezM. KearnsP. MossK. VisserM. GroenewoldM. BleekerE.A.J. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.Regul. Toxicol. Pharmacol.20189282810.1016/j.yrtph.2017.10.01929074277
    [Google Scholar]
  40. RahmanM. AkhterS. AhmadM.Z. AhmadJ. AddoR.T. AhmadF.J. PichonC. Emerging advances in cancer nanotheranostics with graphene nanocomposites: Opportunities and challenges.Nanomedicine201510152405242210.2217/nnm.15.6826252175
    [Google Scholar]
  41. XuX. WangJ. WangY. ZhaoL. LiY. LiuC. Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy.Nanomedicine20181472387239510.1016/j.nano.2017.05.00728552643
    [Google Scholar]
  42. ThapaR.K. SoeZ.C. OuW. PoudelK. JeongJ.H. JinS.G. KuS.K. ChoiH.G. LeeY.M. YongC.S. KimJ.O. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors.Colloids Surf. B Biointerfaces201816942943710.1016/j.colsurfb.2018.05.05129843117
    [Google Scholar]
  43. ShengZ. SongL. ZhengJ. HuD. HeM. ZhengM. GaoG. GongP. ZhangP. MaY. CaiL. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.Biomaterials201334215236524310.1016/j.biomaterials.2013.03.09023602365
    [Google Scholar]
  44. MarsalekR. Particle size and zeta potential of ZnO.APCBEE Procedia20149131710.1016/j.apcbee.2014.01.003
    [Google Scholar]
  45. YangW. DengX. HuangW. QingX. ShaoZ. The physicochemical properties of graphene nanocomposites influence the anticancer effect.J. Oncol.2019201911010.1155/2019/725453431354821
    [Google Scholar]
  46. WangJ. MuX. SunM. The thermal, electrical and thermoelectric properties of graphene nanomaterials.Nanomaterials20199221810.3390/nano902021830736378
    [Google Scholar]
  47. KoppensF.H.L. ChangD.E. García de AbajoF.J. Graphene plasmonics: A platform for strong light-matter interactions.Nano Lett.20111183370337710.1021/nl201771h21766812
    [Google Scholar]
  48. ChenJ. BadioliM. Alonso-GonzálezP. ThongrattanasiriS. HuthF. OsmondJ. SpasenovićM. CentenoA. PesqueraA. GodignonP. Zurutuza ElorzaA. CamaraN. de AbajoF.J.G. HillenbrandR. KoppensF.H.L. Optical nano-imaging of gate-tunable graphene plasmons.Nature20124877405778110.1038/nature1125422722861
    [Google Scholar]
  49. PapageorgiouD.G. KinlochI.A. YoungR.J. Mechanical properties of graphene and graphene-based nanocomposites.Prog. Mater. Sci.2017907512710.1016/j.pmatsci.2017.07.004
    [Google Scholar]
  50. LiY. YuanH. von dem BusscheA. CreightonM. HurtR.H. KaneA.B. GaoH. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites.Proc. Natl. Acad. Sci. USA201311030122951230010.1073/pnas.122227611023840061
    [Google Scholar]
  51. TianW. ZhangX. ChenZ. JiH. A review of graphene on NEMS.Recent Pat. Nanotechnol.201610131010.2174/18722105100116032215141227018268
    [Google Scholar]
  52. LeeC WeiX KysarJW HoneJ Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science.2008321588738538810.1126/science.1157996
    [Google Scholar]
  53. ZandiatashbarA. LeeG.H. AnS.J. LeeS. MathewN. TerronesM. HayashiT. PicuC.R. HoneJ. KoratkarN. Effect of defects on the intrinsic strength and stiffness of graphene.Nat. Commun.201451318610.1038/ncomms418624458268
    [Google Scholar]
  54. ZhangP. MaL. FanF. ZengZ. PengC. LoyaP.E. LiuZ. GongY. ZhangJ. ZhangX. AjayanP.M. ZhuT. LouJ. Fracture toughness of graphene.Nat. Commun.201451378210.1038/ncomms478224777167
    [Google Scholar]
  55. PriyadarsiniS. MohantyS. MukherjeeS. BasuS. MishraM. Graphene and graphene oxide as nanomaterials for medicine and biology application.J. Nanostructure Chem.20188212313710.1007/s40097‑018‑0265‑6
    [Google Scholar]
  56. ZhangJ. ZhangF. YangH. HuangX. LiuH. ZhangJ. GuoS. Graphene oxide as a matrix for enzyme immobilization.Langmuir20102696083608510.1021/la904014z20297789
    [Google Scholar]
  57. ZhangM. YinB.C. WangX.F. YeB.C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity.Chem. Commun.20114782399240110.1039/C0CC04887A21305066
    [Google Scholar]
  58. YaoJ. WangH. ChenM. YangM. Recent advances in graphene-based nanomaterials: Properties, toxicity and applications in chemistry, biology and medicine.Mikrochim. Acta2019186639510.1007/s00604‑019‑3458‑x31154528
    [Google Scholar]
  59. RenH. WangC. ZhangJ. ZhouX. XuD. ZhengJ. GuoS. ZhangJ. DNA cleavage system of nanosized graphene oxide sheets and copper ions.ACS Nano20104127169717410.1021/nn101696r21082807
    [Google Scholar]
  60. BonaccorsoF. SunZ. HasanT. FerrariA.C. Graphene photonics and optoelectronics.Nat. Photonics20104961162210.1038/nphoton.2010.186
    [Google Scholar]
  61. VakilA. EnghetaN. Transformation optics using graphene.Science201133260351291129410.1126/science.120269121659598
    [Google Scholar]
  62. XuY. WuQ. SunY. BaiH. ShiG. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels.ACS Nano20104127358736210.1021/nn102710421080682
    [Google Scholar]
  63. LiZ. ZhangW. XingF. Graphene optical biosensors.Int. J. Mol. Sci.20192010246110.3390/ijms2010246131109057
    [Google Scholar]
  64. ShenY. YangS. ZhouP. SunQ. WangP. WanL. LiJ. ChenL. WangX. DingS. ZhangD.W. Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level.Carbon20136215716410.1016/j.carbon.2013.06.007
    [Google Scholar]
  65. JohariP. ShenoyV.B. Modulating optical properties of graphene oxide: Role of prominent functional groups.ACS Nano2011597640764710.1021/nn202732t21875075
    [Google Scholar]
  66. ZhangB. WangY. ZhaiG. Biomedical applications of the graphene-based materials.Mater. Sci. Eng. C20166195396410.1016/j.msec.2015.12.07326838925
    [Google Scholar]
  67. RasoulzadehM. NamaziH. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent.Carbohydr. Polym.201716832032610.1016/j.carbpol.2017.03.01428457456
    [Google Scholar]
  68. MaX. TaoH. YangK. FengL. ChengL. ShiX. LiY. GuoL. LiuZ. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging.Nano Res.20125319921210.1007/s12274‑012‑0200‑y
    [Google Scholar]
  69. ZhangL XiaJ ZhaoQ LiuL ZhangZ Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs.small.20106453754410.1002/smll.200901680
    [Google Scholar]
  70. XuZ. WangS. LiY. WangM. ShiP. HuangX. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.ACS Appl. Mater. Interfaces2014619172681727610.1021/am505308f25216036
    [Google Scholar]
  71. AlibolandiM. MohammadiM. TaghdisiS.M. RamezaniM. AbnousK. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery.Carbohydr. Polym.201715521822910.1016/j.carbpol.2016.08.04627702507
    [Google Scholar]
  72. VinothiniK. RajendranN.K. RamuA. ElumalaiN. RajanM. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier.Biomed. Pharmacother.201911090691710.1016/j.biopha.2018.12.00830572195
    [Google Scholar]
  73. MuthoosamyK. AbubakarI.B. BaiR.G. LohH.S. ManickamS. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment.Sci. Rep.2016613280810.1038/srep3280827597657
    [Google Scholar]
  74. Diaz-DiestraD. ThapaB. Badillo-DiazD. Beltran-HuaracJ. MorellG. WeinerB. Graphene oxide/ZnS: Mn nanocomposite functionalized with folic acid as a nontoxic and effective theranostic platform for breast cancer treatment.Nanomaterials20188748410.3390/nano807048429966355
    [Google Scholar]
  75. MaM. ChengL. ZhaoA. ZhangH. ZhangA. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells.Photodiagn. Photodyn. Ther.20202910164010.1016/j.pdpdt.2019.10164031899381
    [Google Scholar]
  76. WojtoniszakM. UrbasK. PerużyńskaM. KurzawskiM. DroździkM. MijowskaE. Covalent conjugation of graphene oxide with methotrexate and its antitumor activity.Chem. Phys. Lett.2013568-56915115610.1016/j.cplett.2013.03.050
    [Google Scholar]
  77. FengL. LiK. ShiX. GaoM. LiuJ. LiuZ. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance.Adv. Healthc. Mater.2014381261127110.1002/adhm.20130054924652715
    [Google Scholar]
  78. YangD. FengL. DoughertyC.A. LukerK.E. ChenD. CaubleM.A. Banaszak HollM.M. LukerG.D. RossB.D. LiuZ. HongH. In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide.Biomaterials201610436137110.1016/j.biomaterials.2016.07.02927490486
    [Google Scholar]
  79. MaN. LiuJ. HeW. LiZ. LuanY. SongY. GargS. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy.J. Colloid Interface Sci.201749059860710.1016/j.jcis.2016.11.09727923144
    [Google Scholar]
  80. LiuK. ZhangJ.J. ChengF.F. ZhengT.T. WangC. ZhuJ.J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery.J. Mater. Chem.20112132120341204010.1039/c1jm10749f
    [Google Scholar]
  81. SahooN.G. BaoH. PanY. PalM. KakranM. ChengH.K.F. LiL. TanL.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study.Chem. Commun.201147185235523710.1039/c1cc00075f21451845
    [Google Scholar]
  82. WangC. WuC. ZhouX. HanT. XinX. WuJ. ZhangJ. GuoS. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots.Sci. Rep.201331285210.1038/srep0285224092333
    [Google Scholar]
  83. HuH. YuJ. LiY. ZhaoJ. DongH. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery.J. Biomed. Mater. Res. A2012100A114114810.1002/jbm.a.3325221997951
    [Google Scholar]
  84. QinX.C. GuoZ.Y. LiuZ.M. ZhangW. WanM.M. YangB.W. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy.J. Photochem. Photobiol. B201312015616210.1016/j.jphotobiol.2012.12.00523357205
    [Google Scholar]
  85. WuJ. WangY. YangX. LiuY. YangJ. YangR. ZhangN. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells.Nanotechnology2012233535510110.1088/0957‑4484/23/35/35510122875697
    [Google Scholar]
  86. DebA. AndrewsN.G. RaghavanV. Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo.Int. J. Biol. Macromol.201811351552510.1016/j.ijbiomac.2018.02.15329496437
    [Google Scholar]
  87. ZhengX.T. MaX.Q. LiC.M. Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide.J. Colloid Interface Sci.2016467354210.1016/j.jcis.2015.12.05226773607
    [Google Scholar]
  88. ZhangY.M. CaoY. YangY. ChenJ.T. LiuY. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin.Chem. Commun.20145086130661306910.1039/C4CC04533E25222700
    [Google Scholar]
  89. JinR. JiX. YangY. WangH. CaoA. Self-assembled graphene-dextran nanohybrid for killing drug-resistant cancer cells.ACS Appl. Mater. Interfaces20135157181718910.1021/am401523y23875578
    [Google Scholar]
  90. ZhouT. ZhouX. XingD. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier.Biomaterials201435134185419410.1016/j.biomaterials.2014.01.04424513318
    [Google Scholar]
  91. KarkiN. TiwariH. PalM. ChaurasiaA. BalR. JoshiP. SahooN.G. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study.Colloids Surf. B Biointerfaces201816926527210.1016/j.colsurfb.2018.05.02229783152
    [Google Scholar]
  92. JaroszA. SkodaM. DudekI. SzukiewiczD. Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells.Oxid. Med. Cell. Longev.2016201611410.1155/2016/585103526649139
    [Google Scholar]
  93. ZhangX. HuW. LiJ. TaoL. WeiY. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond.Toxicol. Res.201211626810.1039/c2tx20006f
    [Google Scholar]
  94. SuiX LuoC WangC ZhangF ZhangJ GuoS Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake.Nanomedicine: NBM.20161271997200610.1016/j.nano.2016.03.010
    [Google Scholar]
  95. KimS.W. Kyung LeeY. Yeon LeeJ. Hee HongJ. KhangD. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells.Nanotechnology2017284646510210.1088/1361‑6528/aa8c3129053471
    [Google Scholar]
  96. HuangR.C. ChiuW.J. LiY.J. HuangC.C. Detection of microRNA in tumor cells using exonuclease III and graphene oxide-regulated signal amplification.ACS Appl. Mater. Interfaces2014624217802178710.1021/am500534g24730476
    [Google Scholar]
  97. YangL. TsengY.T. SuoG. ChenL. YuJ. ChiuW.J. HuangC.C. LinC.H. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination.ACS Appl. Mater. Interfaces2015795097510610.1021/am508117e25705789
    [Google Scholar]
  98. MarkovicZ.M. Harhaji-TrajkovicL.M. Todorovic-MarkovicB.M. KepićD.P. ArsikinK.M. JovanovićS.P. PantovicA.C. DramićaninM.D. TrajkovicV.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.Biomaterials20113241121112910.1016/j.biomaterials.2010.10.03021071083
    [Google Scholar]
  99. JiangT. SunW. ZhuQ. BurnsN.A. KhanS.A. MoR. GuZ. Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene.Adv. Mater.20152761021102810.1002/adma.20140449825504623
    [Google Scholar]
  100. LiuZ. RobinsonJ.T. SunX. DaiH. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.J. Am. Chem. Soc.200813033108761087710.1021/ja803688x18661992
    [Google Scholar]
  101. PourjavadiA. AsgariS. HosseiniS.H. AkhlaghiM. Codelivery of hydrophobic and hydrophilic drugs by graphene-decorated magnetic dendrimers.Langmuir20183450153041531810.1021/acs.langmuir.8b0271030424605
    [Google Scholar]
  102. RehmanS.R. AugustineR. ZahidA.A. AhmedR. TariqM. HasanA. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications.Int. J. Nanomedicine2019149603961710.2147/IJN.S21812031824154
    [Google Scholar]
  103. TranT.H. NguyenH.T. PhamT.T. ChoiJ.Y. ChoiH.G. YongC.S. KimJ.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer.ACS Appl. Mater. Interfaces2015751286472865510.1021/acsami.5b1042626641922
    [Google Scholar]
  104. ZhaoX. LiuL. LiX. ZengJ. JiaX. LiuP. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin.Langmuir20143034104191042910.1021/la502952f25109617
    [Google Scholar]
  105. DaiC. ChenY. JingX. XiangL. YangD. LinH. LiuZ. HanX. WuR. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation.ACS Nano20171112126961271210.1021/acsnano.7b0724129156126
    [Google Scholar]
  106. QianX. ZhengY. ChenY. Micro/nanoparticle‐augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation.Adv. Mater.201628378097812910.1002/adma.20160201227384408
    [Google Scholar]
  107. AdimoolamM.G. AV. NalamM.R. SunkaraM.V. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20175469189919610.1039/C7TB02599H32264601
    [Google Scholar]
  108. FengL. TaoD. DongZ. ChenQ. ChaoY. LiuZ. ChenM. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection.Biomaterials2017127132410.1016/j.biomaterials.2016.11.02728279918
    [Google Scholar]
  109. HeC. LuK. LiuD. LinW. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells.J. Am. Chem. Soc.2014136145181518410.1021/ja409886224669930
    [Google Scholar]
  110. LinH. GaoS. DaiC. ChenY. ShiJ. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows.J. Am. Chem. Soc.201713945162351624710.1021/jacs.7b0781829063760
    [Google Scholar]
  111. YangX. ZhangX. MaY. HuangY. WangY. ChenY. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers.J. Mater. Chem.200919182710271410.1039/b821416f
    [Google Scholar]
  112. YaoX. NiuX. MaK. HuangP. GrotheJ. KaskelS. ZhuY. Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy.Small2017132160222510.1002/smll.20160222527735129
    [Google Scholar]
  113. GeJ. LanM. ZhouB. LiuW. GuoL. WangH. JiaQ. NiuG. HuangX. ZhouH. MengX. WangP. LeeC.S. ZhangW. HanX. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation.Nat. Commun.201451459610.1038/ncomms559625105845
    [Google Scholar]
  114. MalothK.N. VelpulaN. KodangalS. SangmeshM. VellamchetlaK. UgrappaS. MekaN. Photodynamic therapy–a non-invasive treatment modality for precancerous lesions.J. Lasers Med. Sci.201671303610.15171/jlms.2016.0727330695
    [Google Scholar]
  115. WangS. FanW. KimG. HahH.J. LeeY.E.K. KopelmanR. EthirajanM. GuptaA. GoswamiL.N. PeraP. MorganJ. PandeyR.K. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy.Lasers Surg. Med.201143768669510.1002/lsm.2111322057496
    [Google Scholar]
  116. ChoY. ChoiY. Graphene oxide–photosensitizer conjugate as a redox-responsive theranostic agent.Chem. Commun.201248799912991410.1039/c2cc35197h22932979
    [Google Scholar]
  117. YanL. ChangY.N. YinW. TianG. ZhouL. LiuX. XingG. ZhaoL. GuZ. ZhaoY. On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells.Biomater. Sci.20142101412141810.1039/C4BM00143E32481917
    [Google Scholar]
  118. ZengY.P. LuoS.L. YangZ.Y. HuangJ.W. LiH. LiuC. WangW.D. LiR. A folic acid conjugated polyethylenimine-modified PEGylated nanographene loaded photosensitizer: photodynamic therapy and toxicity studies in vitro and in vivo.J. Mater. Chem. B Mater. Biol. Med.20164122190219810.1039/C6TB00108D32263186
    [Google Scholar]
  119. WeiY. ZhouF. ZhangD. ChenQ. XingD. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy.Nanoscale2016863530353810.1039/C5NR07785K26799192
    [Google Scholar]
  120. TianB. WangC. ZhangS. FengL. LiuZ. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide.ACS Nano2011597000700910.1021/nn201560b21815655
    [Google Scholar]
  121. HuZ. LiJ. LiC. ZhaoS. LiN. WangY. WeiF. ChenL. HuangY. Folic acid-conjugated graphene–ZnO nanohybrid for targeting photodynamic therapy under visible light irradiation.J. Mater. Chem. B Mater. Biol. Med.20131385003501310.1039/c3tb20849d32261090
    [Google Scholar]
  122. ShiD. LiY. DongH. LiY. Graphene-based nanovehicles for photodynamic medical therapy.Int. J. Nanomedicine2015102451245910.2147/IJN.S6860025848263
    [Google Scholar]
  123. SiriviriyanunA. ImaeT. CalderóG. SolansC. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids.Colloids Surf. B Biointerfaces201412146947310.1016/j.colsurfb.2014.06.01024986752
    [Google Scholar]
  124. KimH. KimW.J. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite.Small201410111712610.1002/smll.20120263623696272
    [Google Scholar]
  125. ShenH. ZhangL. LiuM. ZhangZ. Biomedical applications of graphene.Theranostics20122328329410.7150/thno.364222448195
    [Google Scholar]
  126. ZhangL LuZ ZhaoQ HuangJ ShenH ZhangZ Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide.Small201174460464
    [Google Scholar]
  127. LinH. WangY GaoS ChenY ShiJ ZhangZ Theranostic 2D tantalum carbide (MXene).Adv. Mater.2018304
    [Google Scholar]
  128. LiK. FengL. ShenJ. ZhangQ. LiuZ. LeeS.T. LiuJ. Patterned substrates of nano-graphene oxide mediating highly localized and efficient gene delivery.ACS Appl. Mater. Interfaces2014685900590710.1021/am500813424673573
    [Google Scholar]
  129. PaulA. HasanA. KindiH.A. GaharwarA.K. RaoV.T.S. NikkhahM. ShinS.R. KrafftD. DokmeciM.R. Shum-TimD. KhademhosseiniA. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.ACS Nano2014888050806210.1021/nn502078724988275
    [Google Scholar]
  130. KempJ.A. ShimM.S. HeoC.Y. KwonY.J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.Adv. Drug Deliv. Rev.20169831810.1016/j.addr.2015.10.01926546465
    [Google Scholar]
  131. DongH. DaiW. JuH. LuH. WangS. XuL. ZhouS.F. ZhangY. ZhangX. Multifunctional poly (l-lactide)–polyethylene glycol-grafted graphene quantum dots for intracellular microRNA imaging and combined specific-gene-targeting agents’ delivery for improved therapeutics.ACS Appl. Mater. Interfaces2015720110151102310.1021/acsami.5b0280325942410
    [Google Scholar]
  132. YinF. HuK. ChenY. YuM. WangD. WangQ. YongK.T. LuF. LiangY. LiZ. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer.Theranostics2017751133114810.7150/thno.1784128435453
    [Google Scholar]
  133. ZhangL. LuZ. ZhaoQ. HuangJ. ShenH. ZhangZ. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide.Small20117446046410.1002/smll.20100152221360803
    [Google Scholar]
  134. WangC. RaviS. GarapatiU.S. DasM. HowellM. MallelaJ. AlwarappanS. MohapatraS.S. MohapatraS. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: A theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents.J. Mater. Chem. B Mater. Biol. Med.20131354396440510.1039/c3tb20452a24883188
    [Google Scholar]
  135. HuH. TangC. YinC. Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery.Mater. Lett.2014125828510.1016/j.matlet.2014.03.133
    [Google Scholar]
  136. LiuX. MaD. TangH. TanL. XieQ. ZhangY. MaM. YaoS. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors.ACS Appl. Mater. Interfaces20146118173818310.1021/am500812h24836601
    [Google Scholar]
  137. YinD. LiY. LinH. GuoB. DuY. LiX. JiaH. ZhaoX. TangJ. ZhangL. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo.Nanotechnology2013241010510210.1088/0957‑4484/24/10/10510223425941
    [Google Scholar]
  138. SunX. LiuZ. WelsherK. RobinsonJ.T. GoodwinA. ZaricS. DaiH. Nano-graphene oxide for cellular imaging and drug delivery.Nano Res.20081320321210.1007/s12274‑008‑8021‑820216934
    [Google Scholar]
  139. DepanD. ShahJ. MisraR.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response.Mater. Sci. Eng. C20113171305131210.1016/j.msec.2011.04.010
    [Google Scholar]
  140. WenH. DongC. DongH. ShenA. XiaW. CaiX. SongY. LiX. LiY. ShiD. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery.Small20128576076910.1002/smll.20110161322228696
    [Google Scholar]
  141. ZhaoD. YuS. SunB. GaoS. GuoS. ZhaoK. Biomedical applications of chitosan and its derivative nanoparticles.Polymers201810446210.3390/polym1004046230966497
    [Google Scholar]
  142. LaW.G. ParkS. YoonH.H. JeongG.J. LeeT.J. BhangS.H. HanJ.Y. CharK. KimB.S. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide.Small20139234051406010.1002/smll.20130057123839958
    [Google Scholar]
  143. FengL. ZhangS. LiuZ. Graphene based gene transfection.Nanoscale2011331252125710.1039/c0nr00680g21270989
    [Google Scholar]
  144. ShenH. LiuM. HeH. ZhangL. HuangJ. ChongY. DaiJ. ZhangZ. PEGylated graphene oxide-mediated protein delivery for cell function regulation.ACS Appl. Mater. Interfaces20124116317632310.1021/am301936723106794
    [Google Scholar]
  145. PintoA.M. GonçalvesI.C. MagalhãesF.D. Graphene-based materials biocompatibility: A review.Colloids Surf. B Biointerfaces201311118820210.1016/j.colsurfb.2013.05.02223810824
    [Google Scholar]
  146. SantosC.M. MangadlaoJ. AhmedF. LeonA. AdvinculaR.C. RodriguesD.F. Graphene nanocomposite for biomedical applications: Fabrication, antimicrobial and cytotoxic investigations.Nanotechnology2012233939510110.1088/0957‑4484/23/39/39510122962260
    [Google Scholar]
  147. KumarS. GhoshS. MunichandraiahN. VasanH.N. 1.5 V battery driven reduced graphene oxide–silver nanostructure coated carbon foam (rGO–Ag–CF) for the purification of drinking water.Nanotechnology2013242323510110.1088/0957‑4484/24/23/23510123670243
    [Google Scholar]
  148. ShiL. ChenJ. TengL. WangL. ZhuG. LiuS. LuoZ. ShiX. WangY. RenL. The antibacterial applications of graphene and its derivatives.Small201612314165418410.1002/smll.20160184127389848
    [Google Scholar]
  149. XieC. LuX. HanL. XuJ. WangZ. JiangL. WangK. ZhangH. RenF. TangY. Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications.ACS Appl. Mater. Interfaces2016831707171710.1021/acsami.5b0923226710937
    [Google Scholar]
  150. LiuS. ZengT.H. HofmannM. BurcombeE. WeiJ. JiangR. KongJ. ChenY. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress.ACS Nano2011596971698010.1021/nn202451x21851105
    [Google Scholar]
  151. ZhangP. ZhangX. ZhangS. LuX. LiQ. SuZ. WeiG. One-pot green synthesis, characterizations, and biosensor application of self-assembled reduced graphene oxide–gold nanoparticle hybrid membranes.J. Mater. Chem. B Mater. Biol. Med.20131476525653110.1039/c3tb21270j32261329
    [Google Scholar]
  152. KumarA LeeCH Host− guest chemistry of the peptidoglycan.J. Med. Chem.201353134813482910.5772/55728
    [Google Scholar]
  153. LiuH. LvM. DengB. LiJ. YuM. HuangQ. FanC. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations.Sci. Rep.201441592010.1038/srep0592025082297
    [Google Scholar]
  154. SchwartzV.B. ThétiotF. RitzS. PützS. ChoritzL. LappasA. FörchR. LandfesterK. JonasU. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n‐isopropylacrylamide) hydrogel surface layers.Adv. Funct. Mater.201222112376238610.1002/adfm.201102980
    [Google Scholar]
  155. MoghayediM. GoharshadiE.K. GhazviniK. AhmadzadehH. LudwigR. Namayandeh-JorabchiM. Improving antibacterial activity of phosphomolybdic acid using graphene.Mater. Chem. Phys.2017188586710.1016/j.matchemphys.2016.12.037
    [Google Scholar]
  156. FisherJ.F. MobasheryS. Host-guest chemistry of the peptidoglycan.J. Med. Chem.201053134813482910.1021/jm100086u20524613
    [Google Scholar]
  157. ChenJ. DengF. HuY. SunJ. YangY. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell.J. Power Sources2015290808610.1016/j.jpowsour.2015.03.033
    [Google Scholar]
  158. LiD. ZhangW. YuX. WangZ. SuZ. WeiG. When biomolecules meet graphene: From molecular level interactions to material design and applications.Nanoscale2016847194911950910.1039/C6NR07249F27878179
    [Google Scholar]
  159. BergerC. SongZ. LiT. LiX. OgbazghiA.Y. FengR. DaiZ. MarchenkovA.N. ConradE.H. FirstP.N. de HeerW.A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics.J. Phys. Chem. B200410852199121991610.1021/jp040650f
    [Google Scholar]
  160. ChangH. TangL. WangY. JiangJ. LiJ. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.Anal. Chem.20108262341234610.1021/ac902538420180560
    [Google Scholar]
  161. TangL. WangY. LiuY. LiJ. DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay.ACS Nano2011553817382210.1021/nn200147n21534537
    [Google Scholar]
  162. LuC.H. YangH.H. ZhuC.L. ChenX. ChenG.N. A graphene platform for sensing biomolecules.Angew. Chem. Int. Ed.200948264785478710.1002/anie.20090147919475600
    [Google Scholar]
  163. LimS.K. ChenP. LeeF.L. MoochhalaS. LiedbergB. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection.Anal. Chem.201587189408941210.1021/acs.analchem.5b0227026303386
    [Google Scholar]
  164. LiM. ZhouX. DingW. GuoS. WuN. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II).Biosens. Bioelectron.20134188989310.1016/j.bios.2012.09.06023098856
    [Google Scholar]
  165. Peña-BahamondeJ. NguyenH.N. FanourakisS.K. RodriguesD.F. Recent advances in graphene-based biosensor technology with applications in life sciences.J. Nanobiotechnology20181617510.1186/s12951‑018‑0400‑z30243292
    [Google Scholar]
  166. SinghD.P. HerreraC.E. SinghB. SinghS. SinghR.K. KumarR. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications.Mater. Sci. Eng. C20188617319710.1016/j.msec.2018.01.00429525091
    [Google Scholar]
  167. HeL. HannonG.J. MicroRNAs: small RNAs with a big role in gene regulation.Nat. Rev. Genet.20045752253110.1038/nrg137915211354
    [Google Scholar]
  168. MacfarlaneL.A. MurphyP.R. R Murphy P. MicroRNA: Biogenesis, function and role in cancer.Curr. Genomics201011753756110.2174/13892021079317589521532838
    [Google Scholar]
  169. KongW.H. SungD.K. KimK.S. JungH.S. GhoE.J. YunS.H. HahnS.K. Self-assembled complex of probe peptide – E. Coli RNA I conjugate and nano graphene oxide for apoptosis diagnosis.Biomaterials201233307556756410.1016/j.biomaterials.2012.06.08622818651
    [Google Scholar]
  170. IsinD EksinE ErdemA Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis.Mater Sci Eng C Mater Biol Appl2017751242124910.1016/j.msec.2017.02.166
    [Google Scholar]
  171. TuY. LiW. WuP. ZhangH. CaiC. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection.Anal. Chem.20138542536254210.1021/ac303772m23320509
    [Google Scholar]
  172. Al-SagurH. KomathiS. KhanM.A. GurekA.G. HassanA. A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel.Biosens. Bioelectron.20179263864510.1016/j.bios.2016.10.03827836595
    [Google Scholar]
  173. SchuitF.C. HuypensP. HeimbergH. PipeleersD.G. Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus.Diabetes200150111110.2337/diabetes.50.1.111147773
    [Google Scholar]
  174. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.00719896746
    [Google Scholar]
  175. LiuY. YuD. ZengC. MiaoZ. DaiL. Biocompatible graphene oxide-based glucose biosensors.Langmuir20102696158616010.1021/la100886x20349968
    [Google Scholar]
  176. González-GaitánC. Ruiz-RosasR. MorallónE. Cazorla-AmorósD. Effects of the surface chemistry and structure of carbon nanotubes on the coating of glucose oxidase and electrochemical biosensors performance.RSC Advances2017743268672687810.1039/C7RA02380D
    [Google Scholar]
  177. ZhangY. MaR. ZhenX.V. KudvaY.C. BühlmannP. KoesterS.J. Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors.ACS Appl. Mater. Interfaces2017944388633886910.1021/acsami.7b1486429023095
    [Google Scholar]
  178. GaudinV. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review.Biosens. Bioelectron.20179036337710.1016/j.bios.2016.12.00527940240
    [Google Scholar]
  179. WangH. ZhangQ. ChuX. ChenT. GeJ. YuR. Graphene oxide-peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells.Angew. Chem. Int. Ed.201150317065706910.1002/anie.20110135121681874
    [Google Scholar]
  180. HanT.H. LeeW.J. LeeD.H. KimJ.E. ChoiE.Y. KimS.O. Peptide/graphene hybrid assembly into core/shell nanowires.Adv. Mater.201022182060206410.1002/adma.20090322120352629
    [Google Scholar]
  181. LiuF. PiaoY. ChoiK.S. SeoT.S. Fabrication of free-standing graphene composite films as electrochemical biosensors.Carbon201250112313310.1016/j.carbon.2011.07.061
    [Google Scholar]
  182. HuangC. BaiH. LiC. ShiG. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents.Chem. Commun.201147174962496410.1039/c1cc10412h21431118
    [Google Scholar]
  183. Geetha BaiR. NinanN. MuthoosamyK. ManickamS. Graphene: A versatile platform for nanotheranostics and tissue engineering.Prog. Mater. Sci.201891246910.1016/j.pmatsci.2017.08.004
    [Google Scholar]
  184. SaburiE. IslamiM. HosseinzadehS. MoghadamA.S. MansourR.N. AzadianE. JoneidiZ. NikpoorA.R. GhadianiM.H. KhodaiiZ. ArdeshirylajimiA. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.Gene2019696727910.1016/j.gene.2019.02.02830772518
    [Google Scholar]
  185. GuoC. Book-NewellB. IrudayarajJ. Protein-directed reduction of graphene oxide and intracellular imaging.Chem. Commun. (Camb.)20114747126581266010.1039/c1cc15052a22041815
    [Google Scholar]
  186. FuC. BaiH. ZhuJ. NiuZ. WangY. LiJ. YangX. BaiY. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide.PLoS One20171211e018835210.1371/journal.pone.018835229186202
    [Google Scholar]
  187. ElkhenanyH. AmelseL. LafontA. BourdoS. CaldwellM. NeilsenN. DervishiE. DerekO. BirisA.S. AndersonD. DharM. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: Potential for bone tissue engineering.J. Appl. Toxicol.201535436737410.1002/jat.302425220951
    [Google Scholar]
  188. KuS.H. ParkC.B. Myoblast differentiation on graphene oxide.Biomaterials20133482017202310.1016/j.biomaterials.2012.11.05223261212
    [Google Scholar]
  189. TangM. SongQ. LiN. JiangZ. HuangR. ChengG. Enhancement of electrical signaling in neural networks on graphene films.Biomaterials201334276402641110.1016/j.biomaterials.2013.05.02423755830
    [Google Scholar]
  190. WeiC. LiuZ. JiangF. ZengB. HuangM. YuD. Cellular behaviours of bone marrow‐derived mesenchymal stem cells towards pristine graphene oxide nanosheets.Cell Prolif.2017505e1236710.1111/cpr.1236728771866
    [Google Scholar]
  191. KimJ. YangK. LeeJ.S. HwangY.H. ParkH.J. ParkK.I. LeeD.Y. ChoS.W. Enhanced self‐renewal and accelerated differentiation of human fetal neural stem cells using graphene oxide nanoparticles.Macromol. Biosci.2017178160054010.1002/mabi.20160054028394476
    [Google Scholar]
  192. LuX. FengX. WerberJ.R. ChuC. ZuckerI. KimJ.H. OsujiC.O. ElimelechM. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.Proc. Natl. Acad. Sci.201711446E9793E980110.1073/pnas.171099611429078354
    [Google Scholar]
  193. GurunathanS. Woong HanJ. Abdal DayeA. EppakayalaV. KimJ. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.Int. J. Nanomedicine201275901591410.2147/IJN.S3739723226696
    [Google Scholar]
  194. FiorilloM. VerreA.F. IliutM. Peiris-PagésM. OzsvariB. GandaraR. CappelloA.R. SotgiaF. VijayaraghavanA. LisantiM.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”.Oncotarget2015663553356210.18632/oncotarget.334825708684
    [Google Scholar]
  195. YoonH.H. BhangS.H. KimT. YuT. HyeonT. KimB.S. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier.Adv. Funct. Mater.201424416455646410.1002/adfm.201400793
    [Google Scholar]
  196. FurieB. FurieB.C. Mechanisms of thrombus formation.N. Engl. J. Med.2008359993894910.1056/NEJMra080108218753650
    [Google Scholar]
  197. PaulW. SharmaC.P. Blood compatibility and biomedical applications of graphene.Trends Biomater. Artif. Organs20112539194
    [Google Scholar]
  198. PatelisN. MorisD. MatheikenS. KlonarisC. The potential role of graphene in developing the next generation of endomaterials.BioMed Res. Int.201620161710.1155/2016/318095428025640
    [Google Scholar]
  199. Kenry LohK.P. LimC.T. Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications.Small201511385105511710.1002/smll.20150084126237338
    [Google Scholar]
  200. HuoD. LiuG. LiY. WangY. GuanG. YangM. WeiK. YangJ. ZengL. LiG. ZengW. ZhuC. Construction of antithrombotic tissue-engineered blood vessel via reduced graphene oxide based dual-enzyme biomimetic cascade.ACS Nano20171111109641097310.1021/acsnano.7b0483629035553
    [Google Scholar]
  201. ChakrabartiS. ChattopadhyayP. IslamJ. RayS. RajuP.S. MazumderB. Aspects of nanomaterials in wound healing.Curr. Drug Deliv.2018161264110.2174/156720181566618091811013430227817
    [Google Scholar]
  202. HashmiA. NayakV. SinghK.R.B. JainB. BaidM. AlexisF. SinghA.K. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection.Materials Today Advances20221310020810.1016/j.mtadv.2022.10020835039802
    [Google Scholar]
  203. SenguptaJ. AdhikariA. HussainC.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review.Carbon Trends2021410007210.1016/j.cartre.2021.100072
    [Google Scholar]
  204. GeorgakilasV. PermanJ.A. TucekJ. ZborilR. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures.Chem. Rev.2015115114744482210.1021/cr500304f26012488
    [Google Scholar]
  205. RenteriaJ. NikaD. BalandinA. Graphene thermal properties: Applications in thermal management and energy storage.Appl. Sci.20144452554710.3390/app4040525
    [Google Scholar]
  206. TadyszakK. WychowaniecJ. LitowczenkoJ. Biomedical applications of graphene-based structures.Nanomaterials201881194410.3390/nano811094430453490
    [Google Scholar]
  207. ItooA.M. VemulaS.L. GuptaM.T. GiramM.V. KumarS.A. GhoshB. BiswasS. Multifunctional graphene oxide nanoparticles for drug delivery in cancer.J. Control. Release2022350265910.1016/j.jconrel.2022.08.01135964787
    [Google Scholar]
  208. GrilliF. GohariH.P. ZouS. Characteristics of graphene oxide for gene transfection and controlled release in breast cancer cells.Int. J. Mol. Sci.20222312680210.3390/ijms2312680235743245
    [Google Scholar]
  209. LiangS. DengX. MaP. ChengZ. LinJ. Recent advances in nanomaterial‐assisted combinational sonodynamic cancer therapy.Adv. Mater.20203247200321410.1002/adma.20200321433064322
    [Google Scholar]
  210. WeiG. YangG. WangY. JiangH. FuY. YueG. JuR. Phototherapy-based combination strategies for bacterial infection treatment.Theranostics20201026122411226210.7150/thno.5272933204340
    [Google Scholar]
  211. TaheriazamA. AbadG.G.Y. HajimazdaranyS. ImaniM.H. ZiaolhaghS. ZandiehM.A. BayanzadehS.D. MirzaeiS. HamblinM.R. EntezariM. ArefA.R. ZarrabiA. ErtasY.N. RenJ. RajabiR. PaskehM.D.A. HashemiM. HushmandiK. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis.J. Control. Release202335450352210.1016/j.jconrel.2023.01.02836641122
    [Google Scholar]
  212. TuY. LvM. XiuP. HuynhT. ZhangM. CastelliM. LiuZ. HuangQ. FanC. FangH. ZhouR. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets.Nat. Nanotechnol.20138859460110.1038/nnano.2013.12523832191
    [Google Scholar]
  213. MoghayediM. GoharshadiE.K. GhazviniK. AhmadzadehH. RanjbaranL. MasoudiR. LudwigR. Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite.Colloids Surf. B Biointerfaces201715936637410.1016/j.colsurfb.2017.08.00128810193
    [Google Scholar]
  214. ZhangH.Z. ZhangC. ZengG.M. GongJ.L. OuX.M. HuanS.Y. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.J. Colloid Interface Sci.20164719410210.1016/j.jcis.2016.03.01526994349
    [Google Scholar]
  215. RisticB.Z. MilenkovicM.M. DakicI.R. Todorovic-MarkovicB.M. MilosavljevicM.S. BudimirM.D. PaunovicV.G. DramicaninM.D. MarkovicZ.M. TrajkovicV.S. Photodynamic antibacterial effect of graphene quantum dots.Biomaterials201435154428443510.1016/j.biomaterials.2014.02.01424612819
    [Google Scholar]
  216. JaworskiS. WierzbickiM. SawoszE. JungA. GielerakG. BiernatJ. JaremekH. ŁojkowskiW. WoźniakB. WojnarowiczJ. StobińskiL. MałolepszyA. Mazurkiewicz-PawlickaM. ŁojkowskiM. KurantowiczN. ChwalibogA. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent.Nanoscale Res. Lett.201813111610.1186/s11671‑018‑2533‑229687296
    [Google Scholar]
  217. JiaZ. ShiY. XiongP. ZhouW. ChengY. ZhengY. XiT. WeiS. From solution to biointerface: Graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation.ACS Appl. Mater. Interfaces2016827171511716510.1021/acsami.6b0519827327408
    [Google Scholar]
  218. GeZ. YangL. XiaoF. WuY. YuT. ChenJ. LinJ. ZhangY. Graphene family nanomaterials: Properties and potential applications in dentistry.Int. J. Biomater.2018201811210.1155/2018/153967830627167
    [Google Scholar]
  219. OshinO. KireevD. HlukhovaH. IdachabaF. AkinwandeD. AtayeroA. Graphene-based biosensor for early detection of iron deficiency.Sensors20202013368810.3390/s2013368832630192
    [Google Scholar]
  220. ChenX.J. ZhangX.Q. LiuQ. ZhangJ. ZhouG. Nanotechnology: A promising method for oral cancer detection and diagnosis.J. Nanobiotechnology20181615210.1186/s12951‑018‑0378‑629890977
    [Google Scholar]
  221. IslamM. LantadaA.D. MagerD. KorvinkJ.G. Carbon‐based materials for articular tissue engineering: From innovative scaffolding materials toward engineered living carbon.Adv. Healthc. Mater.2022111210183410.1002/adhm.20210183434601815
    [Google Scholar]
  222. LyuK. ChenH. GaoJ. JinJ. ShiH. SchwartzD.K. WangD. Protein desorption kinetics depends on the timescale of observation.Biomacromolecules202223114709471710.1021/acs.biomac.2c0091736205402
    [Google Scholar]
  223. Ghorbanzadeh SheishS. EmadiR. AhmadianM. SadeghzadeS. TavangarianF. Fabrication and characterization of polyvinylpyrrolidone-eggshell membrane-reduced graphene oxide nanofibers for tissue engineering applications.Polymers202113691310.3390/polym1306091333809630
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615269089240202043246
Loading
/content/journals/cnm/10.2174/0124054615269089240202043246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test