Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

Self-assembly of preformed nanoparticles into larger and more complex materials, termed nanoarchitectonics, is an area of great interest as the resulting higher-order architectures can exhibit advanced supramolecular properties important in sensor design, catalysis, and ferromagnetic properties.

Objective

The aim of the current investigation is to explore the application of self-assembling protein networks to serve as molecular scaffolds for immobilization of enzyme catalysts. The use of 12 nm ferritin cage proteins to serve as components of these scaffolds would expand the application of these types of multifunctional proteins to the fabrication of advanced biomaterials.

Method

cutinase was immobilized on a supramolecular protein scaffold using bioconjugation to biotinylate the enzyme of interest. The protein-based scaffold consisted of a ferritin-biotin-avidin system, and the interaction of biotin and avidin was used to suspend the enzyme molecules onto this network. Matrix-assisted laser desorption mass spectrometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy were employed to analyze the supramolecular cage protein scaffold at various stages of fabrication.

Results

The activities of these scaffold-bound enzymes towards chromogenic esters and polyethylene terephthalate (PET) were analyzed and found to remain active towards both substrates following biotinylation and immobilization.

Conclusion

Biotinylated cutinase enzymes can be immobilized on nanodimensional protein networks composed of avidin and biotinylated horse spleen ferritin and exhibit catalytic activity toward a small substrate, p-nitrophenylbutyrate, as well as an industrial plastic. Self-assembling protein networks may provide new approaches for biomolecular immobilization.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615288184240131074038
2024-02-07
2025-09-08
Loading full text...

Full text loading...

References

  1. ZhangW. MoS. LiuM. LiuL. YuL. WangC. Rationally designed protein building blocks for programmable hierarchical architectures.Front Chem.2020858797510.3389/fchem.2020.58797533195088
    [Google Scholar]
  2. ArigaK. Molecular nanoarchitectonics: Unification of nanotechnology and molecular/materials science.Beilstein J. Nanotechnol.20231443445310.3762/bjnano.14.3537091285
    [Google Scholar]
  3. ArigaK. FakhrullinR. Nanoarchitectonics in materials science: Method for everything in materials science. Materials20231619636710.3390/ma1619636737834504
    [Google Scholar]
  4. KarthickV. Kumar ShresthaL. KumarV.G. PranjaliP. KumarD. PalA. ArigaK. Nanoarchitectonics horizons: Materials for life sciences.Nanoscale20221430106301064710.1039/D2NR02293A35842941
    [Google Scholar]
  5. RamseyA.V. BischoffA.J. FrancisM.B. Enzyme activated gold nanoparticles for versatile site-selective bioconjugation.J. Am. Chem. Soc.2021143197342735010.1021/jacs.0c1167833939917
    [Google Scholar]
  6. AslanK. LuhrsC.C. Pérez-LunaV.H. Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin.J. Phys. Chem. B200410840156311563910.1021/jp036089n
    [Google Scholar]
  7. PiccininiE. PallarolaD. BattagliniF. AzzaroniO. Self-limited self-assembly of nanoparticles into supraparticles: Towards supramolecular colloidal materials by design.Mol. Syst. Des. Eng.20161215516210.1039/C6ME00016A
    [Google Scholar]
  8. SrivastavaS. SamantaB. JordanB.J. HongR. XiaoQ. TuominenM.T. RotelloV.M. Integrated magnetic bionanocomposites through nanoparticle-mediated assembly of ferritin.J. Am. Chem. Soc.200712938117761178010.1021/ja073163x17803305
    [Google Scholar]
  9. LyuY. MartínezÁ. D’IncàF. MancinF. ScriminP. The biotin–avidin interaction in biotinylated gold nanoparticles and the modulation of their aggregation.Nanomaterials2021116155910.3390/nano1106155934199307
    [Google Scholar]
  10. JungS.M. KimH.J. KimB.J. YoonT.S. KimY.S. LeeH.H. Charging effect in Au nanoparticle memory device with biomolecule binding mechanism.J. Nanosci. Nanotechnol.20111175698570110.1166/jnn.2011.437622121593
    [Google Scholar]
  11. GanJ. AshrafS.S. BilalM. IqbalH.M.N. Biodegradation of environmental pollutants using catalase-based biocatalytic systems.Environ. Res.2022214Pt 211391410.1016/j.envres.2022.11391435932834
    [Google Scholar]
  12. SharmaB. DangiA.K. ShuklaP. Contemporary enzyme based technologies for bioremediation: A review.J. Environ. Manage.2018210102210.1016/j.jenvman.2017.12.07529329004
    [Google Scholar]
  13. HunsenM. AbulA. XieW. GrossR. Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: Kinetic and mechanistic studies.Biomacromolecules20089251852210.1021/bm701269p18198834
    [Google Scholar]
  14. LiuY. SongL. FengN. JiangW. JinY. LiX. Recent advances in the synthesis of biodegradable polyesters by sustainable polymerization: Lipase-catalyzed polymerization.RSC Adv.20201059362303624010.1039/D0RA07138B35517080
    [Google Scholar]
  15. NikulinM. ŠvedasV. Prospects of using biocatalysis for the synthesis and modification of polymers.Molecules2021269275010.3390/molecules2609275034067052
    [Google Scholar]
  16. HenniganJ.N. LynchM.D. The past, present, and future of enzyme-based therapies.Drug Discov. Today202227111713310.1016/j.drudis.2021.09.00434537332
    [Google Scholar]
  17. HuffmanM.A. FryszkowskaA. AlvizoO. Borra-GarskeM. CamposK.R. CanadaK.A. DevineP.N. DuanD. ForstaterJ.H. GrosserS.T. HalseyH.M. HughesG.J. JoJ. JoyceL.A. KolevJ.N. LiangJ. MaloneyK.M. MannB.F. MarshallN.M. McLaughlinM. MooreJ.C. MurphyG.S. NawratC.C. NazorJ. NovickS. PatelN.R. Rodriguez-GranilloA. RobaireS.A. ShererE.C. TruppoM.D. WhittakerA.M. VermaD. XiaoL. XuY. YangH. Design of an in vitro biocatalytic cascade for the manufacture of islatravir.Science201936664701255125910.1126/science.aay848431806816
    [Google Scholar]
  18. YushkovaE.D. NazarovaE.A. MatyuhinaA.V. NoskovaA.O. ShavronskayaD.O. VinogradovV.V. SkvortsovaN.N. KrivoshapkinaE.F. Application of Immobilized enzymes in food industry.J. Agric. Food Chem.20196742115531156710.1021/acs.jafc.9b0438531553885
    [Google Scholar]
  19. IyerM. ShreshthaI. BaradiaH. ChattopadhyayS. Challenges and opportunities of using immobilized lipase as biosensor.Biotechnol. Genet. Eng. Rev.20223818711010.1080/02648725.2022.205049935285414
    [Google Scholar]
  20. AlcántaraA.R. Domínguez de MaríaP. LittlechildJ.A. SchürmannM. SheldonR.A. WohlgemuthR. Biocatalysis as key to sustainable industrial chemistry.ChemSusChem2022159e20210270910.1002/cssc.20210270935238475
    [Google Scholar]
  21. SoniS. Trends in lipase engineering for enhanced biocatalysis.Biotechnol. Appl. Biochem.202269126527210.1002/bab.210533438779
    [Google Scholar]
  22. CaoY. LiX. GeJ. Enzyme catalyst engineering toward the integration of biocatalysis and chemocatalysis.Trends Biotechnol.202139111173118310.1016/j.tibtech.2021.01.00233551176
    [Google Scholar]
  23. CaparcoA.A. DautelD.R. ChampionJ.A. Protein mediated enzyme immobilization.Small20221819210642510.1002/smll.20210642535182030
    [Google Scholar]
  24. Enespa.  ChandraP. SinghD.P. Sources, purification, immobilization and industrial applications of microbial lipases: An overview.Crit. Rev. Food Sci. Nutr.202263246653668610.1080/10408398.2022.2038076
    [Google Scholar]
  25. CavalcanteF.T.T. CavalcanteA.L.G. de SousaI.G. NetoF.S. dos SantosJ.C.S. Current status and future perspectives of supports and protocols for enzyme immobilization.Catalysts20211110122210.3390/catal11101222
    [Google Scholar]
  26. ZhuB. WangD. WeiN. Enzyme discovery and engineering for sustainable plastic recycling.Trends Biotechnol.2022401223710.1016/j.tibtech.2021.02.00833676748
    [Google Scholar]
  27. TangK.H.D. LockS.S.M. YapP.S. CheahK.W. ChanY.H. YiinC.L. KuA.Z.E. LoyA.C.M. ChinB.L.F. ChaiY.H. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects.Sci. Total Environ.202283215486810.1016/j.scitotenv.2022.15486835358520
    [Google Scholar]
  28. GeyerR. JambeckJ.R. LawK.L. Production, use, and fate of all plastics ever made.Sci. Adv.201737e170078210.1126/sciadv.170078228776036
    [Google Scholar]
  29. MohananN. MontazerZ. SharmaP.K. LevinD.B. Microbial and enzymatic degradation of synthetic plastics.Front. Microbiol.20201158070910.3389/fmicb.2020.58070933324366
    [Google Scholar]
  30. ZhangJ. WangL. TrasandeL. KannanK. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces.Environ. Sci. Technol. Lett.202181198999410.1021/acs.estlett.1c00559
    [Google Scholar]
  31. TorresF.G. Dioses-SalinasD.C. Pizarro-OrtegaC.I. De-la-TorreG.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends.Sci. Total Environ.202175714387510.1016/j.scitotenv.2020.14387533310573
    [Google Scholar]
  32. EllisL.D. RorrerN.A. SullivanK.P. OttoM. McGeehanJ.E. Román-LeshkovY. WierckxN. BeckhamG.T. Chemical and biological catalysis for plastics recycling and upcycling.Nat. Catal.20214753955610.1038/s41929‑021‑00648‑4
    [Google Scholar]
  33. BarthM. HonakA. OeserT. WeiR. Belisário-FerrariM.R. ThenJ. SchmidtJ. ZimmermannW. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.Biotechnol. J.20161181082108710.1002/biot.20160000827214855
    [Google Scholar]
  34. PerzV. BleymaierK. SinkelC. KueperU. BonnekesselM. RibitschD. GuebitzG.M. Substrate specificities of cutinases on aliphatic–aromatic polyesters and on their model substrates.N. Biotechnol.201633229530410.1016/j.nbt.2015.11.00426594021
    [Google Scholar]
  35. FengS. YueY. ZhengM. LiY. ZhangQ. WangW. IsPETase- and IsMHETase-catalyzed cascade degradation mechanism toward polyethylene terephthalate.ACS Sustain. Chem.& Eng.20219299823983210.1021/acssuschemeng.1c02420
    [Google Scholar]
  36. BakerP.J. PoultneyC. LiuZ. GrossR. MontclareJ.K. Identification and comparison of cutinases for synthetic polyester degradation.Appl. Microbiol. Biotechnol.201293122924010.1007/s00253‑011‑3402‑421713515
    [Google Scholar]
  37. KawaiF. KawabataT. OdaM. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling.ACS Sustain. Chem.& Eng.20208248894890810.1021/acssuschemeng.0c01638
    [Google Scholar]
  38. MartínezA. MaicasS. Cutinases: Characteristics and insights in industrial production.Catalysts20211110119410.3390/catal11101194
    [Google Scholar]
  39. TournierV. DuquesneS. GuillamotF. CramailH. TatonD. MartyA. AndréI. Enzymes’ power for plastics degradation.Chem. Rev.202312395612570110.1021/acs.chemrev.2c0064436916764
    [Google Scholar]
  40. de CastroA.M. CarnielA. NicomedesJ.J. da ConceiçãoG.A. ValoniÉ. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources.J. Ind. Microbiol. Biotechnol.201744683584410.1007/s10295‑017‑1942‑z28424881
    [Google Scholar]
  41. HuangQ.S. YanZ.F. ChenX.Q. DuY.Y. LiJ. LiuZ.Z. XiaW. ChenS. WuJ. Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii.Sci. Total Environ.202280815210710.1016/j.scitotenv.2021.15210734864034
    [Google Scholar]
  42. KanY. HeL. LuoY. BaoR. IsPETase is a novel biocatalyst for poly(ethylene terephthalate) (PET) hydrolysis.ChemBioChem202122101706171610.1002/cbic.20200076733434375
    [Google Scholar]
  43. BååthJ.A. BorchK. JensenK. BraskJ. WesthP. Comparative biochemistry of four polyester (PET) hydrolases*.ChemBioChem20212291627163710.1002/cbic.20200079333351214
    [Google Scholar]
  44. BadenesS.M. LemosF. CabralJ.M.S. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.Biotechnol. Lett.201032339940310.1007/s10529‑009‑0172‑519943181
    [Google Scholar]
  45. BadenesS.M. LemosF. CabralJ.M.S. Performance of a cutinase membrane reactor for the production of biodiesel in organic media.Biotechnol. Bioeng.201110861279128910.1002/bit.2305421290382
    [Google Scholar]
  46. Di BisceglieF. QuartinelloF. VielnascherR. GuebitzG.M. PellisA. Cutinase-catalyzed polyester-polyurethane degradation: Elucidation of the hydrolysis mechanism.Polymers202214341110.3390/polym1403041135160402
    [Google Scholar]
  47. GalbiatiE. CassaniM. VerderioP. MarteganiE. ColomboM. TortoraP. MazzucchelliS. ProsperiD. Peptide-nanoparticle ligation mediated by cutinase fusion for the development of cancer cell-targeted nanoconjugates.Bioconjug. Chem.201526468068910.1021/acs.bioconjchem.5b0000525741889
    [Google Scholar]
  48. PellisA. VastanoM. QuartinelloF. Herrero AceroE. GuebitzG.M. His-Tag immobilization of cutinase 1 from Thermobifida cellulosilytica for solvent-free synthesis of polyesters.Biotechnol. J.20171210170032210.1002/biot.20170032228731627
    [Google Scholar]
  49. ShirkeA.N. ButterfossG.L. SaikiaR. BasuA. de MariaL. SvendsenA. GrossR.A. Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation.Biotechnol. J.2017128170018810.1002/biot.20170018828488758
    [Google Scholar]
  50. NikolaivitsE. MakrisG. TopakasE. Immobilization of a cutinase from Fusarium oxysporum and application in pineapple flavor synthesis.J. Agric. Food Chem.201765173505351110.1021/acs.jafc.7b0065928403608
    [Google Scholar]
  51. SuA. KiokekliS. NaviwalaM. ShirkeA.N. PavlidisI.V. GrossR.A. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs.Enzyme Microb. Technol.202013310946710.1016/j.enzmictec.2019.10946731874689
    [Google Scholar]
  52. MuleyA.B. ChaudhariS.A. BankarS.B. SinghalR.S. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication.Ultrason. Sonochem.20195517418510.1016/j.ultsonch.2019.02.01930852153
    [Google Scholar]
  53. SuA. ShirkeA. BaikJ. ZouY. GrossR. Immobilized cutinases: Preparation, solvent tolerance and thermal stability.Enzyme Microb. Technol.2018116334010.1016/j.enzmictec.2018.05.01029887014
    [Google Scholar]
  54. SipponenM.H. FarooqM. KoivistoJ. PellisA. SeitsonenJ. ÖsterbergM. Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media.Nat. Commun.201891230010.1038/s41467‑018‑04715‑629895870
    [Google Scholar]
  55. CabralJ.M.S. Aires-BarrosM.R. PinheiroH. PrazeresD.M.F. Biotransformation in organic media by enzymes and whole cells.J. Biotechnol.1997591-213314310.1016/S0168‑1656(97)00176‑49487721
    [Google Scholar]
  56. SerralhaF.N. LopesJ.M. Aires-BarrosM.R. PrazeresD.M.F. CabralJ.M.S. LemosF. RibeiroR.F. Stability of a recombinant cutinase immobilized on zeolites.Enzyme Microb. Technol.2002311-2293410.1016/S0141‑0229(02)00068‑6
    [Google Scholar]
  57. CostaL. BrissosV. LemosF. Ramôa RibeiroF. CabralJ.M.S. Enhancing the thermal stability of lipases through mutagenesis and immobilization on zeolites.Bioprocess Biosyst. Eng.2009321536110.1007/s00449‑008‑0220‑x18443829
    [Google Scholar]
  58. CostaL. BrissosV. LemosF. RibeiroF.R. CabralJ.M.S. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.Bioprocess Biosyst. Eng.200831432332710.1007/s00449‑007‑0165‑517940805
    [Google Scholar]
  59. ChaudhariS.A. SinghalR.S. A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates.Int. J. Biol. Macromol.20179861062110.1016/j.ijbiomac.2017.02.03328192137
    [Google Scholar]
  60. KumariV. KumarS. KaurI. BhallaT.C. Graft copolymerization of acrylamide on chitosan- co -chitin and its application for immobilization of Aspergillus sp. RL2Ct cutinase.Bioorg. Chem.201770344310.1016/j.bioorg.2016.11.00627866660
    [Google Scholar]
  61. WonS.J. YimJ.H. KimH.K. Functional production, characterization, and immobilization of a cold-adapted cutinase from Antarctic Rhodococcus sp.Protein Expr. Purif.2022195-19610607710.1016/j.pep.2022.10607735314296
    [Google Scholar]
  62. UrquhartT. DaubE. HonekJ.F. Bioorthogonal modification of the major sheath protein of bacteriophage M13: extending the versatility of bionanomaterial scaffolds.Bioconjug. Chem.201627102276228010.1021/acs.bioconjchem.6b0046027626459
    [Google Scholar]
  63. AshkanZ. HemmatiR. HomaeiA. DinariA. JamlidoostM. TashakorA. Immobilization of enzymes on nanoinorganic support materials: An update.Int. J. Biol. Macromol.202116870872110.1016/j.ijbiomac.2020.11.12733232698
    [Google Scholar]
  64. BorzoueeF. VarshosazJ. CohanR.A. NorouzianD. PirposhtehR.T. A comparative analysis of different enzyme immobilization nanomaterials: Progress, constraints and recent trends.Curr. Med. Chem.202128203980400310.2174/1875533XMTEycNDIh133319656
    [Google Scholar]
  65. EllisG.A. DíazS.A. MedintzI.L. Enhancing enzymatic performance with nanoparticle immobilization: Improved analytical and control capability for synthetic biochemistry.Curr. Opin. Biotechnol.202171779010.1016/j.copbio.2021.06.02134293630
    [Google Scholar]
  66. MylkieK. NowakP. RybczynskiP. Ziegler-BorowskaM. Polymer-coated magnetite nanoparticles for protein immobilization.Materials202114224810.3390/ma1402024833419055
    [Google Scholar]
  67. UrquhartT. HowieB. ZhangL. LeungK.T. HonekJ.F. Bioconjugation of bacteriophage Pf1 and extension to Pf1-based bionanomaterials.Curr. Nanosci.202117113915010.2174/1573413716999200614142202
    [Google Scholar]
  68. ZahirinejadS. HemmatiR. HomaeiA. DinariA. HosseinkhaniS. MohammadiS. VianelloF. Nano-organic supports for enzyme immobilization: Scopes and perspectives.Colloids Surf. B Biointerfaces202120411177410.1016/j.colsurfb.2021.11177433932893
    [Google Scholar]
  69. MohantyA. ParidaA. RautR.K. BeheraR.K. Ferritin: A promising nanoreactor and nanocarrier for bionanotechnology.ACS Bio & Med Chem Au20222325828110.1021/acsbiomedchemau.2c0000337101573
    [Google Scholar]
  70. SongN. ZhangJ. ZhaiJ. HongJ. YuanC. LiangM. Ferritin: A multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery.Acc. Chem. Res.202154173313332510.1021/acs.accounts.1c0026734415728
    [Google Scholar]
  71. HanB.G. WaltonR.W. SongA. HwuP. StubbsM.T. YannoneS.M. ArbeláezP. DongM. GlaeserR.M. Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals.J. Struct. Biol.2012180124925310.1016/j.jsb.2012.04.02522584152
    [Google Scholar]
  72. ChuY.W. WangB.Y. LinH.S. LinT.Y. HungY.J. EngebretsonD.A. LeeW. CareyJ.R. Layer by layer assembly of biotinylated protein networks for signal amplification.Chem. Commun.201349242397239910.1039/c2cc38233d23329177
    [Google Scholar]
  73. van der MeerS.B. KnuschkeT. FredeA. SchulzeN. WestendorfA.M. EppleM. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater.20175741442510.1016/j.actbio.2017.05.04928552820
    [Google Scholar]
  74. MenD. ZhangT.T. HouL.W. ZhouJ. ZhangZ.P. ShiY.Y. ZhangJ.L. CuiZ.Q. DengJ.Y. WangD.B. ZhangX.E. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay.ACS Nano2015911108521086010.1021/acsnano.5b0360726431499
    [Google Scholar]
  75. RothC. WeiR. OeserT. ThenJ. FöllnerC. ZimmermannW. SträterN. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca.Appl. Microbiol. Biotechnol.201498187815782310.1007/s00253‑014‑5672‑024728714
    [Google Scholar]
  76. PengY. FuS. LiuH. LuciaL.A. Accurately determining esterase activity via the isosbestic point of p-nitrophenol.BioResources2016114100991011110.15376/biores.11.4.10099‑10111
    [Google Scholar]
  77. HarderE. DammW. MapleJ. WuC. ReboulM. XiangJ.Y. WangL. LupyanD. DahlgrenM.K. KnightJ.L. KausJ.W. CeruttiD.S. KrilovG. JorgensenW.L. AbelR. FriesnerR.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins.J. Chem. Theory Comput.201612128129610.1021/acs.jctc.5b0086426584231
    [Google Scholar]
  78. LiM. WongK.K.W. MannS. Organization of inorganic nanoparticles using biotin-streptavidin connectors.Chem. Mater.1999111232610.1021/cm980610m
    [Google Scholar]
  79. KeS. WrightJ.C. KwonG.S. Intermolecular interaction of avidin and PEGylated biotin.Bioconjug. Chem.20071862109211410.1021/bc700204k17944528
    [Google Scholar]
  80. HermansonG.T. Bioconjugate Techniques3rd editionAcademic Press, Inc.London, UK2013
    [Google Scholar]
  81. LopandicM. MerzaF. HonekJ.F. Thermodynamic overview of bioconjugation reactions pertinent to lysine and cysteine peptide and protein residues.Compounds20233346450310.3390/compounds3030035
    [Google Scholar]
  82. MerzaF. Supramolecular Assembly of Three-Dimensional Protein Networks.2020Available from: https://uwspace.uwaterloo.ca/handle/10012/16233
  83. TernströmT. SvendsenA. AkkeM. AdlercreutzP. Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride.Biochim. Biophys. Acta. Proteins Proteomics200517481748310.1016/j.bbapap.2004.12.01415752695
    [Google Scholar]
  84. YuanH. LiuG. ChenY. YiZ. JinW. ZhangG. A versatile tag for simple preparation of cutinase towards enhanced biodegradation of polyethylene terephthalate.Int. J. Biol. Macromol.202322514916110.1016/j.ijbiomac.2022.11.12636403765
    [Google Scholar]
  85. JiaY. SamakN.A. HaoX. ChenZ. YangG. ZhaoX. MuT. YangM. XingJ. Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation.Biochem. Eng. J.202117610820510.1016/j.bej.2021.108205
    [Google Scholar]
  86. SchwamingerS.P. FehnS. SteegmüllerT. RauwolfS. LöweH. Pflüger-GrauK. BerensmeierS. Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET.Nanoscale Adv.20213154395439910.1039/D1NA00243K36133462
    [Google Scholar]
  87. AustinH.P. AllenM.D. DonohoeB.S. RorrerN.A. KearnsF.L. SilveiraR.L. PollardB.C. DominickG. DumanR. El OmariK. MykhaylykV. WagnerA. MichenerW.E. AmoreA. SkafM.S. CrowleyM.F. ThorneA.W. JohnsonC.W. WoodcockH.L. McGeehanJ.E. BeckhamG.T. Characterization and engineering of a plastic-degrading aromatic polyesterase.Proc. Natl. Acad. Sci.201811519E4350E435710.1073/pnas.171880411529666242
    [Google Scholar]
  88. CarnielA. ValoniÉ. NicomedesJ. GomesA.C. CastroA.M. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid.Process Biochem.201759849010.1016/j.procbio.2016.07.023
    [Google Scholar]
  89. RibitschD. Herrero AceroE. PrzyluckaA. ZitzenbacherS. MaroldA. GamerithC. TscheließnigR. JungbauerA. RennhoferH. LichteneggerH. AmenitschH. BonazzaK. KubicekC.P. DruzhininaI.S. GuebitzG.M. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins.Appl. Environ. Microbiol.201581113586359210.1128/AEM.04111‑1425795674
    [Google Scholar]
  90. FurukawaM. KawakamiN. TomizawaA. MiyamotoK. Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches.Sci. Rep.2019911603810.1038/s41598‑019‑52379‑z31690819
    [Google Scholar]
  91. HestericováM. HeinischT. LenzM. WardT.R. Ferritin encapsulation of artificial metalloenzymes: Engineering a tertiary coordination sphere for an artificial transfer hydrogenase.Dalton Trans.20184732108371084110.1039/C8DT02224K30019062
    [Google Scholar]
  92. ChakrabortiS. LinT.Y. GlattS. HeddleJ.G. Enzyme encapsulation by protein cages.RSC Advances20201022132931330110.1039/C9RA10983H35492120
    [Google Scholar]
  93. JiangB. FangL. WuK. YanX. FanK. Ferritins as natural and artificial nanozymes for theranostics.Theranostics202010268770610.7150/thno.3982731903145
    [Google Scholar]
  94. van der VenA.M. GyamfiH. SuttisansaneeU. AhmadM.S. SuZ. TaylorR.M. PooleA. ChioreanS. DaubE. UrquhartT. HonekJ.F. Molecular engineering of E. coli bacterioferritin: A versatile nanodimensional protein cage.Molecules20232812466310.3390/molecules2812466337375226
    [Google Scholar]
  95. TangZ. WuH. ZhangY. LiZ. LinY. Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications.Anal. Chem.201183228611861610.1021/ac202049q21910434
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615288184240131074038
Loading
/content/journals/cnm/10.2174/0124054615288184240131074038
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): avidin; biotin; cutinase; ferritin; nanoarchitectonics; PET; plastic; protein network
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test