Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

The naturally available carbohydrate polymer, starch, is biodegradable and biocompatible, making it suitable for drug encapsulation due to the presence of various hydroxy functionalities. Multidrug resistance in antibacterial agents can sometimes limit their use and pose toxicity issues due to dose-related problems resulting from the low bioavailability or solubility of hydrophobic drugs. To address this issue, antibiotics are delivered using nanocarriers that protect therapeutic agents from degradation and enhance the delivery of hydrophobic drugs. This review article discusses the utilization of starch nanoparticles as drug delivery vehicles or carriers for antibacterial agents.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615271640231122034023
2023-12-05
2025-09-07
Loading full text...

Full text loading...

References

  1. NaylorN.R. AtunR. ZhuN. KulasabanathanK. SilvaS. ChatterjeeA. KnightG.M. RobothamJ.V. Estimating the burden of antimicrobial resistance: A systematic literature review.Antimicrob. Resist. Infect. Control2018715810.1186/s13756‑018‑0336‑y29713465
    [Google Scholar]
  2. LimC. TakahashiE. HongsuwanM. WuthiekanunV. ThamlikitkulV. HinjoyS. DayN.P.J. PeacockS.J. LimmathurotsakulD. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country.eLife20165e1808210.7554/eLife.1808227599374
    [Google Scholar]
  3. DunachieS.J. DayN.P.J. DolecekC. The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria.Curr. Opin. Microbiol.2020579510110.1016/j.mib.2020.09.01333147565
    [Google Scholar]
  4. a PandeyR. KhullerG.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy.Tuberculosis200585227234
    [Google Scholar]
  5. b PandeyR. KhullerG.K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model.J. Antimicrob. Chemother.2006571146115210.1093/jac/dkl12816597631
    [Google Scholar]
  6. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  7. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  8. GargT. RathG. MurthyR. GuptaU. VatsalaP. GoyalA. Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis.Curr. Pharm. Des.201521223076308910.2174/138161282166615053116325426027577
    [Google Scholar]
  9. BiswasA.K. IslamM.R. ChoudhuryZ.S. MostafaA. KadirM.F. Nanotechnology based approaches in cancer therapeutics.Adv. Nat. Sci.: Nanosci. Nanotechnol.20145404300110.1088/2043‑6262/5/4/043001
    [Google Scholar]
  10. BeraS. MondalD. Antibacterial efficacies of nanostructured aminoglycosides.ACS Omega2022764724473410.1021/acsomega.1c0439935187293
    [Google Scholar]
  11. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.00221763369
    [Google Scholar]
  12. TorchilinV.P. Nanocarriers.Pharm. Res.200724122333233410.1007/s11095‑007‑9463‑517934800
    [Google Scholar]
  13. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.00819447208
    [Google Scholar]
  14. Ghosh ChaudhuriR. PariaS. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications.Chem. Rev.201211242373243310.1021/cr100449n22204603
    [Google Scholar]
  15. FleigeE. QuadirM.A. HaagR. KwonI.C. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.02022349241
    [Google Scholar]
  16. AboutalebE NooriM GandomiN AtyabiF FazeliMR JamalifarH DinarvandR A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation.Sci. Rep.20201011412810.1038/s41598‑020‑70726‑332839480
    [Google Scholar]
  17. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mat. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  18. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.1000329313004
    [Google Scholar]
  19. JiaL. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: Approaches, experimental evidences and theory.Curr. Nanosci.20051323724310.2174/15734130577464293919865587
    [Google Scholar]
  20. GigliobiancoM. CasadidioC. CensiR. Di MartinoP. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability.Pharmaceutics201810313410.3390/pharmaceutics1003013430134537
    [Google Scholar]
  21. LeitzkeS. BuckeW. BornerK. MüllerR. HahnH. EhlersS. Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection.Antimicrob. Agents Chemother.199842245946110.1128/AAC.42.2.4599527808
    [Google Scholar]
  22. Drulis-KawaZ. Dorotkiewicz-JachA. Liposomes as delivery systems for antibiotics.Int. J. Pharm.20103871-218719810.1016/j.ijpharm.2009.11.03319969054
    [Google Scholar]
  23. Gonzalez GomezA. HosseinidoustZ. Liposomes for antibiotic encapsulation and delivery.ACS Infect. Dis.20206589690810.1021/acsinfecdis.9b0035732208673
    [Google Scholar]
  24. BurkeevM.Z. TazhbaevE.M. ZhaparovaL.Z. ZhapparN.K. ZhumagalievaT.S. Synthesis and characterization of poly (DL-lactic acid) nanoparticles loaded with the antituberculosis drug isoniazid.Pharm. Chem. J.201650960861110.1007/s11094‑016‑1500‑4
    [Google Scholar]
  25. SahA.K. DewanganM. SureshP.K. Potential of chitosan-based carrier for periodontal drug delivery.Colloids Surf. B Biointerfaces201917818519810.1016/j.colsurfb.2019.02.04430856588
    [Google Scholar]
  26. DubeA. ReynoldsJ.L. LawW.C. MapongaC.C. PrasadP.N. MorseG.D. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases.Nanomedicine201410483183810.1016/j.nano.2013.11.01224333593
    [Google Scholar]
  27. AbouelmagdS.A. Abd EllahN.H. AmenO. AbdelmoezA. MohamedN.G. Self-assembled tannic acid complexes for pH-responsive delivery of antibiotics: Role of drug-carrier interactions.Int. J. Pharm.2019562768510.1016/j.ijpharm.2019.03.00930851388
    [Google Scholar]
  28. SunL. ChenX. ChenR. JiZ. MuH. LiuC. YuJ. WangJ. XiaR. ZhangS. XuY. MaK. XiaL. Balancing the antibacterial and osteogenic effects of double-layer TiO 2 nanotubes loaded with silver nanoparticles for the osseointegration of implants.Nanoscale20231562911292310.1039/D2NR06154F36692007
    [Google Scholar]
  29. MaK. XuS. TaoT. QianJ. CuiQ. RehmanS. ZhuX. ChenR. ZhaoH. WangC. QiZ. DaiH. ZhangX. XieC. LuY. WangH. WangJ. Magnetosome-inspired synthesis of soft ferrimagnetic nanoparticles for magnetic tumor targeting.Proc. Natl. Acad. Sci.202211945e221122811910.1073/pnas.221122811936322742
    [Google Scholar]
  30. ZhaoX. XuS. JiangY. WangC. ur RehmanS. JiS. WangJ. TaoT. XuH. ChenR. CaiY. JiangY. WangH. MaK. WangJ. BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs.Chem. Eng. J.202345414044010.1016/j.cej.2022.140440
    [Google Scholar]
  31. KotrangeH. NajdaA. BainsA. GruszeckiR. ChawlaP. TosifM.M. Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics.Int. J. Mol. Sci.20212217959610.3390/ijms2217959634502504
    [Google Scholar]
  32. DengK. LiY. LiangX. ShenC. ZengZ. XuX. Virus-inspired nanoparticles as versatile antibacterial carriers for antibiotic delivery against Gram-negative and Gram-positive bacteria.Chin. Chem. Lett.20223331619162210.1016/j.cclet.2021.09.045
    [Google Scholar]
  33. UddinM.J. DawanJ. JeonG. YuT. HeX. AhnJ. The role of bacterial membrane vesicles in the dissemination of antibiotic resistance and as promising carriers for therapeutic agent delivery.Microorganisms20208567010.3390/microorganisms805067032380740
    [Google Scholar]
  34. a BeraS. MondalD. A role for ultrasound in the fabrication of carbohydrate-supported nanomaterials.J. Ultrasound2019221311562020
    [Google Scholar]
  35. b BeraS. MondalD. Chapter-7 Stimuli-sensitive nanomaterials for antimicrobial drug delivery.Drug Targeting and Stimuli Sensitive Drug Delivery Systems.Elsevier2018
    [Google Scholar]
  36. c DesaiSK. Carbohydrate Research.2020495271302
    [Google Scholar]
  37. a HouX. WangH. ShiY. YueZ. Recent advances of antibacterial starch-based materials.Carbohydr. Polym.2023302120392
    [Google Scholar]
  38. b SyafiqR. NazrinA. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review.Polymers20201210240333086533
    [Google Scholar]
  39. SharmaS. ShekharS. SharmaB. SarkarA. JainP. Starch-based nanosystems for theranostic applications.Polymeric Nanosystems2023148349510.1016/B978‑0‑323‑85656‑0.00020‑6
    [Google Scholar]
  40. TagliapietraB.L. de MeloB.G. SanchesE.A. Plata-OviedoM. CampeloP.H. ClericiM.T.P.S. From micro to nanoscale: A critical review on the concept, production, characterization, and application of starch nanostructure.Stärke20217311-12210007910.1002/star.202100079
    [Google Scholar]
  41. a GuidaC. AguiarA.C. CunhaR.L. Green techniques for starch modification to stabilize Pickering emulsions: A current review and future perspectives.Curr. Opin. Food Sci.2021385261
    [Google Scholar]
  42. b MarquesAP. The biocompatibility of novel starch-based polymers and composites: In vitro studies.Biomaterials2002231471
    [Google Scholar]
  43. c RochaniAK. Polysaccharide nanoparticles: From fabrication to applications.J. Mater. Chem. B Mater. Biol. Med.2021970307062
    [Google Scholar]
  44. AssisR.Q. LopesS.M. CostaT.M.H. FlôresS.H. RiosA.O. Active biodegradable cassava starch films incorporated lycopene nanocapsules.Ind. Crops Prod.201710981882710.1016/j.indcrop.2017.09.043
    [Google Scholar]
  45. AliK.A. RoyP.K. HossainC.M. DuttaD. VichareR. BiswalM.R. Chapter 2-Starch-based nanomaterials in drug delivery applications.Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications.Academic Press2021
    [Google Scholar]
  46. LiuM. ZhangX. YangB. LiZ. DengF. YangY. ZhangX. WeiY. Fluorescent nanoparticles from starch: Facile preparation, tunable luminescence and bioimaging.Carbohydr. Polym.2015121495510.1016/j.carbpol.2014.12.04725659670
    [Google Scholar]
  47. WaghmareV.S. WadkeP.R. DyawanapellyS. DeshpandeA. JainR. DandekarP. Starch based nanofibrous scaffolds for wound healing applications.Bioact. Mater.20183325526610.1016/j.bioactmat.2017.11.00629744465
    [Google Scholar]
  48. TorresF.G. CommeauxS. TroncosoO.P. Starch‐based biomaterials for wound‐dressing applications.Stärke2013657-854355110.1002/star.201200259
    [Google Scholar]
  49. BhatiaM. RohillaS. Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam.Saudi Pharm. J.202028892793510.1016/j.jsps.2020.06.01332792837
    [Google Scholar]
  50. CaldonazoA. AlmeidaS.L. BonettiA.F. LazoR.E.L. MengardaM. MurakamiF.S. MurakamiF.S. Pharmaceutical applications of starch nanoparticles: A scoping review.Int. J. Biol. Macromol.202118169770410.1016/j.ijbiomac.2021.03.06133766602
    [Google Scholar]
  51. OthmanS.H. RonziN.D.A. Shapi’iR.A. DunM. AriffinS.H. MohammedM.A.P. Biodegradability of starch nanocomposite films containing different concentrations of chitosan nanoparticles in compost and planting soils.Coatings202313477710.3390/coatings13040777
    [Google Scholar]
  52. PalA. PalR. Rheology of emulsions thickened by starch nanoparticles.Nanomaterials20221214239110.3390/nano1214239135889614
    [Google Scholar]
  53. YeF. MiaoM. JiangB. CampanellaO.H. JinZ. ZhangT. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.Food Chem.201722915215810.1016/j.foodchem.2017.02.06228372158
    [Google Scholar]
  54. MittalD. Gurjeet KaurP.S. Nanoparticle-based sustainable agriculture and food science, recent advances and future.Front. Nanotechnol.2020257995410.3389/fnano.2020.579954
    [Google Scholar]
  55. AlvesM. J. Food applications of starch nanomaterials, A review.Starch2021732100046
    [Google Scholar]
  56. FakharI MuhammadN MuhammadA Synthesis and food applications of resistant starch-based nanoparticles.J. Nanomater.20228729258
    [Google Scholar]
  57. KimS.Y. ShinH.Y. KimJ.Y. ParkS.J. Safety assessment of starch nanoparticles as an emulsifier in human skin cells, 3D cultured artificial skin, and human skin.Molecules202328280610.3390/molecules2802080636677864
    [Google Scholar]
  58. a MoránD. GutiérrezG. Blanco-LópezM.C. MarefatiA. RaynerM. MatosM. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation.Appl. Sci.20211110454710.3390/app11104547
    [Google Scholar]
  59. b MoránD. Saweres-ArgüellesC. MarchianoV. BazsefidparS. Serrano-PertierraE. MatosM. GutierrezG. Blanco-LópezM.C. Sustainable antibiofilm self-assembled colloidal systems.Front. Soft Matter.20222104188110.3389/frsfm.2022.1041881
    [Google Scholar]
  60. LinN. HuangJ. ChangP.R. AndersonD.P. YuJ.J. Preparation, modification and application of starch nanocrystals in nanomaterials, A review.Nanomater20111113
    [Google Scholar]
  61. OdeniyiM. OmotesoO. AdepojuA. JaiyeobaK. Starch nanoparticles in drug delivery: A review.Polim. Med.2019481414510.17219/pim/9999330657657
    [Google Scholar]
  62. LiuD. WuQ. ChenH. ChangP.R. Transitional properties of starch colloid with particle size reduction from micro- to nanometer.J. Colloid Interface Sci.2009339111712410.1016/j.jcis.2009.07.03519666174
    [Google Scholar]
  63. XuY. DingW. LiuJ. LiY. KennedyJ.F. GuQ. ShaoS. Preparation and characterization of organic-soluble acetylated starch nanocrystals.Carbohydr. Polym.20108041078108410.1016/j.carbpol.2010.01.027
    [Google Scholar]
  64. LeCorreD. BrasJ. DufresneA. Ceramic membrane filtration for isolating starch nanocrystals.Carbohydr. Polym.20118641565157210.1016/j.carbpol.2011.06.064
    [Google Scholar]
  65. HassanN.A. DarweshO.M. SmudaS.S. AltemimiA.B. HuA. CacciolaF. HaoujarI. AbedelmaksoudT.G. Recent trends in the preparation of nano-starch particles.Molecules20222717549710.3390/molecules2717549736080267
    [Google Scholar]
  66. a TorresF.G. De-la-TorreG.E. Synthesis, characteristics, and applications of modified starch nanoparticles, A review.Int. J. Biol. Macromol.2022194289
    [Google Scholar]
  67. b ZhangL. TianY. Effect of temperaturecycled retrogradation on slow digestibility of waxy rice starch.Int. J. Biol. Macromol.20125110241027
    [Google Scholar]
  68. Le CorreD. BrasJ. DufresneA. Starch nanoparticles: A review.Biomacromolecules20101151139115310.1021/bm901428y20405913
    [Google Scholar]
  69. Acevedo-GuevaraL. Nieto-SuazaL. SanchezL.T. PinzonM.I. VillaC.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin.Int. J. Biol. Macromol.201811149850410.1016/j.ijbiomac.2018.01.06329337095
    [Google Scholar]
  70. WinartiC. SunartiT.C. MangunwidjajaD. RichanaN. Preparation of arrowroot starch nanoparticles by butanol-complex precipitation, and its application as bioactive encapsulation matrix.Int. Food Res. J.20142122072213
    [Google Scholar]
  71. MartaH. RizkiD.I. MardawatiE. DjaliM. MohammadM. CahyanaY. Starch nanoparticles: Preparation, properties and applications.Polymers2023155116710.3390/polym1505116736904409
    [Google Scholar]
  72. LeCorreD. BrasJ. DufresneA. Evidence of micro- and nanoscaled particles during starch nanocrystals preparation and their isolation.Biomacromolecules20111283039304610.1021/bm200673n21682267
    [Google Scholar]
  73. KimH.Y. LeeJ.H. KimJ.Y. LimW.J. LimS.T. Characterization of nanoparticles prepared by acid hydrolysis of various starches.Stärke201264536737310.1002/star.201100105
    [Google Scholar]
  74. TorresF.G. ArroyoJ. TineoC. TroncosoO. Tailoring the properties of native andean potato starch nanoparticles using acid and alkaline treatments.Stärke2019713-4180023410.1002/star.201800234
    [Google Scholar]
  75. Maryam KasimA. Novelina Emriadi Preparation and characterization of sago (metroxylon sp.) Starch nanoparticles using hydrolysis-precipitation method.J. Phys. Conf. Ser.20201481101202110.1088/1742‑6596/1481/1/012021
    [Google Scholar]
  76. JeongO. ShinM. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch.Food Chem.2018256778410.1016/j.foodchem.2018.02.09829606475
    [Google Scholar]
  77. Perez HerreraM. VasanthanT. Rheological characterization of gum and starch nanoparticle blends.Food Chem.2018243434910.1016/j.foodchem.2017.09.01129146361
    [Google Scholar]
  78. VahanianE. Enzymatic pretreatment for preparing starch nanocrystals.Biomacromolecules201113132137
    [Google Scholar]
  79. SunQ. LiG. DaiL. JiN. XiongL. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation.Food Chem.201416222322810.1016/j.foodchem.2014.04.06824874379
    [Google Scholar]
  80. OhS.M. LeeB.H. SeoD.H. ChoiH.W. KimB.Y. BaikM.Y. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans.Food Sci. Biotechnol.202029558559810.1007/s10068‑020‑00768‑w32419957
    [Google Scholar]
  81. KimJ.Y. ParkD.J. LimS.T. Fragmentation of waxy rice starch granules by enzymatic hydrolysis.Cereal Chem.200885218218710.1094/CCHEM‑85‑2‑0182
    [Google Scholar]
  82. Caicedo ChaconW.D. Ayala ValenciaG. Aparicio RojasG.M. Agudelo HenaoA.C. Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.Stärke2019711-2180008110.1002/star.201800081
    [Google Scholar]
  83. Bel HaajS. MagninA. PétrierC. BoufiS. Starch nanoparticles formation via high power ultrasonication.Carbohydr. Polym.20139221625163210.1016/j.carbpol.2012.11.02223399199
    [Google Scholar]
  84. da SilvaN.M.C. CorreiaP.R.C. DruzianJ.I. FakhouriF.M. FialhoR.L.L. de AlbuquerqueE.C.M.C. PBAT/TPS composite films reinforced with starch nanoparticles produced by ultrasound.Int. J. Polym. Sci.2017201711010.1155/2017/4308261
    [Google Scholar]
  85. BoufiS. Bel HaajS. MagninA. PignonF. Impéror-ClercM. MorthaG. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.Ultrason. Sonochem.20184132733610.1016/j.ultsonch.2017.09.03329137759
    [Google Scholar]
  86. ZhuF. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch.Trends Food Sci. Technol.201543111710.1016/j.tifs.2014.12.008
    [Google Scholar]
  87. MinakawaA.F.K. Faria-TischerP.C.S. MaliS. Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches.Food Chem.2019283111810.1016/j.foodchem.2019.01.01530722849
    [Google Scholar]
  88. ApostolidisE. MandalaI. Modification of resistant starch nanoparticles using high-pressure homogenization treatment.Food Hydrocoll.202010310567710.1016/j.foodhyd.2020.105677
    [Google Scholar]
  89. ShiA. LiD. WangL. LiB. AdhikariB. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability.Carbohydr. Polym.20118341604161010.1016/j.carbpol.2010.10.011
    [Google Scholar]
  90. SongD. ThioY.S. DengY. Starch nanoparticle formation via reactive extrusion and related mechanism study.Carbohydr. Polym.201185120821410.1016/j.carbpol.2011.02.016
    [Google Scholar]
  91. XiaoS. LiuX. TongC. ZhaoL.C. LiuX.J. ZhouA.M. CaoY. Dialdehyde starch nanoparticles as antitumor drug delivery system: An in vitro, in vivo, and immunohistological evaluation.Chin. Sci. Bull.201257243226323210.1007/s11434‑012‑5342‑5
    [Google Scholar]
  92. ZhigangL. LinrongS. MeinaZ. Preparation of starch nanoparticles in a new ionic liquid-in-oil micro-emulsion.J Formul Sci Bioavailab20171116
    [Google Scholar]
  93. FazeliM. LipponenJ. Developing self-assembled starch nanoparticles in starch nanocomposite films.ACS Omega2022749449624497110.1021/acsomega.2c0525136530235
    [Google Scholar]
  94. YuM. JiN. WangY. DaiL. XiongL. SunQ. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components.Compr. Rev. Food Sci. Food Saf.20212011075110010.1111/1541‑4337.1267733443809
    [Google Scholar]
  95. LamannaM. MoralesN.J. GarcíaN.L. GoyanesS. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler.Carbohydr. Polym.2013971909710.1016/j.carbpol.2013.04.08123769521
    [Google Scholar]
  96. YuY. WangJ. Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice.Food Res. Int.200740229730310.1016/j.foodres.2006.03.001
    [Google Scholar]
  97. DesaiS.K. BeraS. SinghM. MondalD. A role for ultrasound in the fabrication of carbohydrate-supported nanomaterials.J. Appl. Polym. Sci.20171344446310.1002/app.44463
    [Google Scholar]
  98. Santander-OrtegaM J StaunerT LoretzB Ortega-VinuesaJL Bastos-GonzalezD WenzG SchaeferUF LehrCM Nanoparticles made from novel starch derivatives for transdermal drug delivery.J. Contr. Release20101418592
    [Google Scholar]
  99. QiuC. YangJ. GeS. ChangR. XiongL. SunQ. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch.Lebensm. Wiss. Technol.20167430331010.1016/j.lwt.2016.07.062
    [Google Scholar]
  100. YangJ. LiF. LiM. ZhangS. LiuJ. LiangC. SunQ. XiongL. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application.Carbohydr. Polym.201717322323210.1016/j.carbpol.2017.06.00628732861
    [Google Scholar]
  101. Mahmoudi NajafiS.H. BaghaieM. AshoriA. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model.Int. J. Biol. Macromol.201687485410.1016/j.ijbiomac.2016.02.03026893054
    [Google Scholar]
  102. HariN. Jayakumaran NairA. Development and characterization of chitosan-based antimicrobial films incorporated with streptomycin loaded starch nanoparticles.Eur J Mol Clin Med20163122910.1016/j.nhtm.2016.04.002
    [Google Scholar]
  103. ShiA. LiD. LiuH. AdhikariB. WangQ. Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles.Int. J. Biol. Macromol.201687556110.1016/j.ijbiomac.2016.02.03826893049
    [Google Scholar]
  104. IsmailN.S. GopinathS.C.B. Enhanced antibacterial effect by antibiotic loaded starch nanoparticle.J. Associa. Arab Univ. Basic Appl. Sci.201724113614010.1016/j.jaubas.2016.10.005
    [Google Scholar]
  105. DesaiS.K. MondalD. BeraS. First-line anti-tubercutilosis drugs-loaded starch nanocrystals for combating the threat of M. tuberculosis H37Rv strain.Carbohydr. Res.202049510807010.1016/j.carres.2020.10807032634645
    [Google Scholar]
  106. DesaiS K MondalD BeraS Polyurethane-functionalized starch nanocrystals as anti-tuberculosis drug carrier.Sci Rep.2021118331
    [Google Scholar]
  107. EinipourS.K. SadrjahaniM. RezapourA. Preparation and evaluation of antibacterial wound dressing based on vancomycin-loaded silk/dialdehyde starch nanoparticles.Drug Deliv. Transl. Res.202212112778279210.1007/s13346‑022‑01139‑035224685
    [Google Scholar]
  108. QinY. WangJ. QiuC. HuY. XuX. JinZ. Self-assembly of metal–phenolic networks as functional coatings for preparation of antioxidant, antimicrobial, and ph-sensitive-modified starch nanoparticles.ACS Sustain. Chem. Eng.2019720173791738910.1021/acssuschemeng.9b04332
    [Google Scholar]
  109. WangR. QinX. DuY. ShanZ. ShiC. HuangK. WangJ. ZhiK. Dual-modified starch nanoparticles containing aromatic systems with highly efficient encapsulation of curcumin and their antibacterial applications.Food Res. Int.2022162Pt A11192610.1016/j.foodres.2022.11192636461275
    [Google Scholar]
  110. BalakrishnanP. SreekalaM.S. GeethammaV.G. KalarikkalN. KokolV. VolovaT. ThomasS. Physicochemical, mechanical, barrier and antibacterial properties of starch nanocomposites crosslinked with pre-oxidised sucrose.Ind. Crops Prod.201913039840810.1016/j.indcrop.2019.01.007
    [Google Scholar]
  111. dos SantosS.B.F. PereiraS.A. RodriguesF.A.M. da SilvaA.C.C. de AlmeidaR.R. SousaA.C.C. FechineL.M.U.D. DenardinJ.C. AranedaF. SáL.G.A.V. da SilvaC.R. Nobre JúniorH.V. RicardoN.M.P.S. Antibacterial activity of fluoxetine-loaded starch nanocapsules.Int. J. Biol. Macromol.20201642813281710.1016/j.ijbiomac.2020.08.18432853612
    [Google Scholar]
  112. HassanN. MaliheP. MohsenH. Oxidized starch/CuO bio-nanocomposite hydrogels as an antibacterial and stimuli-responsive agent with potential colon-specific naproxen delivery.Int. J. Polym. Mater.202012961305
    [Google Scholar]
  113. GholamaliI. HosseiniS.N. AlipourE. YadollahiM. Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system.Stärke2019713-4180011810.1002/star.201800118
    [Google Scholar]
  114. HakkeV.S. LandgeV.K. SonawaneS.H. Uday Bhaskar BabuG. AshokkumarM. M M FloresE. The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process.Ultrason. Sonochem.20228810606910.1016/j.ultsonch.2022.10606935751937
    [Google Scholar]
  115. FangY. FuJ. TaoC. LiuP. CuiB. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid.Int. J. Biol. Macromol.20201551350135810.1016/j.ijbiomac.2019.11.11031743704
    [Google Scholar]
  116. QinY. XueL. HuY. QiuC. JinZ. XuX. WangJ. Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization.Ultrason. Sonochem.20206610507410.1016/j.ultsonch.2020.10507432224448
    [Google Scholar]
  117. AlzateP. ZalduendoM.M. GerschensonL. FloresS.K. Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate.Stärke20166811-121038104710.1002/star.201600098
    [Google Scholar]
  118. AlzateP. GerschensonL. FloresS. Ultrasound application for production of nano-structured particles from esterified starches to retain potassium sorbate.Carbohydr. Polym.202024711675910.1016/j.carbpol.2020.11675932829872
    [Google Scholar]
  119. ZhaiX. ZhouS. ZhangR. WangW. HouH. Antimicrobial starch/poly(butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging.Int. J. Biol. Macromol.202220629830510.1016/j.ijbiomac.2022.02.15835240209
    [Google Scholar]
  120. BezzekhamiM.A. BelaliaM. HamedD. BououdinaM. BerfaiB.B. HarraneA. Nanoarchitectonics of starch nanoparticles rosin catalyzed by algerian natural montmorillonite (Maghnite-H+) for enhanced antimicrobial activity.J. Inorg. Organomet. Polym. Mater.202333119320610.1007/s10904‑022‑02490‑y
    [Google Scholar]
  121. EmolagaCS. PaglicawanMA. BigolUP. Preparation of starch nanocrystals with antimicrobial property.Mater Sci Forum20221073143810.4028/p‑58oc1n
    [Google Scholar]
  122. FonsecaL.M. CruxenC.E.S. BruniG.P. FiorentiniÂ.M. ZavarezeE.R. LimL.T. DiasA.R.G. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol.Int. J. Biol. Macromol.20191391182119010.1016/j.ijbiomac.2019.08.09631415859
    [Google Scholar]
  123. RaigondP. SoodA. KaliaA. JoshiA. KaundalB. RaigondB. DuttS. SinghB. ChakrabartiS.K. Antimicrobial activity of potato starch-based active biodegradable nanocomposite films.Potato Res.2019621698310.1007/s11540‑018‑9397‑9
    [Google Scholar]
  124. DaiX. GuoQ. ZhaoY. ZhangP. ZhangT. ZhangX. LiC. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing.ACS Appl. Mater. Interfaces2016839257982580710.1021/acsami.6b0926727622986
    [Google Scholar]
  125. Trigo-GutierrezJ.K. Vega-ChacónY. SoaresA.B. MimaE.G.O. Antimicrobial activity of curcumin in nanoformulations, A comprehensive review.Int. J. Mol. Sci.20212213713010.3390/ijms2213713034281181
    [Google Scholar]
  126. QinY. WangJ. QiuC. HuY. XuX. JinZ. Effects of degree of polymerization on size, crystal structure, and digestibility of debranched starch nanoparticles and their enhanced antioxidant and antibacterial activities of curcumin.ACS Sustain. Chem. Eng.2019798499851110.1021/acssuschemeng.9b00290
    [Google Scholar]
  127. Nieto-SuazaL. Acevedo-GuevaraL. SánchezL.T. PinzónM.I. VillaC.C. Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles.Food Struct.20192210013110.1016/j.foostr.2019.100131
    [Google Scholar]
  128. ChinS.F. Mohd YazidS.N.A. PangS.C. Preparation and characterization of starch nanoparticles for controlled release of curcumin.Int. J. Polym. Sci.201420141810.1155/2014/340121
    [Google Scholar]
  129. NallasamyP. RamalingamT. NooruddinT. ShanmuganathanR. ArivalaganP. NatarajanS. Polyherbal drug loaded starch nanoparticles as promising drug delivery system: Antimicrobial, antibiofilm and neuroprotective studies.Process Biochem.20209235536410.1016/j.procbio.2020.01.026
    [Google Scholar]
  130. AmaniF. SamiM. RezaeiA. Characterization and antibacterial activity of encapsulated rosemary essential oil within amylose nanostructures as a natural antimicrobial in food applications.Stärke2021737-8210002110.1002/star.202100021
    [Google Scholar]
  131. QiuC. ChangR. YangJ. GeS. XiongL. ZhaoM. LiM. SunQ. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.Food Chem.20172211426143310.1016/j.foodchem.2016.11.00927979111
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615271640231122034023
Loading
/content/journals/cnm/10.2174/0124054615271640231122034023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test