Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Introduction

This study introduces an innovative and eco-friendly approach to synthesizing copper Nanoparticles (NPs) using waste tea, offering a cost-effective alternative. The synthesized waste tea-mediated Cu NPs (WT-CuO NPs) were verified through FTIR, XRD, FE-SEM, EDAX & HR-TEM analytical techniques.

Methods

This research presents a novel and environmentally friendly method for producing copper Nanoparticles (NPs) by utilizing discarded tea, providing a cost-efficient alternative. The study involves the synthesis of CuO nanoparticles through the utilization of waste tea extract.

Results

Optimal degradation outcomes were observed under visible light and sunlight exposure, at a pH of 8, utilizing 50 ppm Rhodamine B dye concentration and 50 mg of WT-CuO NPs, an impressive 98.90% effectiveness in breaking down the material was achieved in just 90 minutes of exposure to visible light. Furthermore, a notable 89.85% degradation efficiency was observed under sunlight exposure during the same time frame.

Conclusion

The practical utility of WT-CuO nanoparticles was exhibited through their remarkable performance in degrading Rhodamine B dye (RhB). A significant 98.90% degradation efficiency was achieved within 90 minutes of exposure to visible light, while a substantial 89.85% degradation efficiency was achieved under sunlight exposure within the same time frame.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615218191240416050232
2025-06-27
2026-01-02
Loading full text...

Full text loading...

References

  1. KumarA. PandeyG. A review on the factors affecting the photocatalytic degradation of hazardous materials.Mater Sci Eng Int J20171311010.15406/mseij.2017.01.00018
    [Google Scholar]
  2. PhaltaneS.A. VanalakarS.A. BhatT.S. PatilP.S. SartaleS.D. KadamL.D. Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles.J. Mater. Sci. Mater. Electron.201728118186819110.1007/s10854‑017‑6527‑0
    [Google Scholar]
  3. RochkindM. PasternakS. PazY. Using dyes for evaluating photocatalytic properties: A critical review.Molecules20142018811010.3390/molecules20010088 25546623
    [Google Scholar]
  4. ChariN. FelixL. DavoodbashaM. AliS.A. NooruddinT. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens.Biocatal. Agric. Biotechnol.20171033634110.1016/j.bcab.2017.04.013
    [Google Scholar]
  5. DongY. JiangX. MoJ. ZhouY. ZhouJ. Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries.Chem. Eng. J.202038112261410.1016/j.cej.2019.122614
    [Google Scholar]
  6. FukuX. ModibediM. MatheM. Green synthesis of Cu/Cu2O/CuO nanostructures and the analysis of their electrochemical properties.SN Appl. Sci.20202590210.1007/s42452‑020‑2704‑5
    [Google Scholar]
  7. PradeepT. Anshup. Noble metal nanoparticles for water purification: A critical review.Thin Solid Films2009517246441647810.1016/j.tsf.2009.03.195
    [Google Scholar]
  8. SathiyavimalS. VasantharajS. BharathiD. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria.J. Photochem. Photobiol. B201818812613410.1016/j.jphotobiol.2018.09.014 30267962
    [Google Scholar]
  9. SoneB.T. DialloA. FukuX.G. Gurib-FakimA. MaazaM. Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics.Arab. J. Chem.202013116017010.1016/j.arabjc.2017.03.004
    [Google Scholar]
  10. ZeidE.F.A. IbrahemI.A. MohamedW.A.A. AliA.M. Study the influence of silver and cobalt on the photocatalytic activity of copper oxide nanoparticles for the degradation of methyl orange and real wastewater dyes.Mater. Res. Express20207202620110.1088/2053‑1591/ab7400
    [Google Scholar]
  11. KhashanK.S. SulaimanG.M. AbdulameerF.A. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid.Arab. J. Sci. Eng.201641130131010.1007/s13369‑015‑1733‑7
    [Google Scholar]
  12. MusićS. DragčevićĐ. MaljkovićM. PopovićS. Influence of chemical synthesis on the crystallization and properties of zinc oxide.Mater. Chem. Phys.200377252153010.1016/S0254‑0584(02)00088‑3
    [Google Scholar]
  13. WilsonN. Nanoparticles: Environmental problems or problem solvers.Bioscience201868424124610.1093/biosci/biy015
    [Google Scholar]
  14. ChavaliM.S. NikolovaM.P. Metal oxide nanoparticles and their applications in nanotechnology.SN Appl. Sci.20191660710.1007/s42452‑019‑0592‑3
    [Google Scholar]
  15. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  16. PrabhashP.G. NairS.S. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap.AIP Adv.20166505500310.1063/1.4948747
    [Google Scholar]
  17. SinghP.K. KumarP. HussainM. DasA.K. NayakG.C. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process.Bull. Mater. Sci.201639246947810.1007/s12034‑016‑1159‑1
    [Google Scholar]
  18. LogpriyaS. BhuvaneshwariV. VaidehiD. Preparation and characterization of ascorbic acid-mediated chitosan–copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity.J. Nanostructure Chem.20188330130910.1007/s40097‑018‑0273‑6
    [Google Scholar]
  19. BotsaS.M. BasavaiahK. Removal of nitrophenols from wastewater by monoclinic cuo/rgo nanocomposite.Nanotechnol Environ Eng2019411710.1007/s41204‑018‑0045‑z
    [Google Scholar]
  20. BotsaS.M. DharmasothR. BasavaiahK. A facile synthesis of Cu2O and CuO nanoparticles via sonochemical assisted method.Curr. Nanosci.201915220921310.2174/1573413714666180530085447
    [Google Scholar]
  21. ChaudharyK. Subodh, Prakash K, Mogha NK, Masram DT. Fruit waste (Pulp) decorated CuO NFs as promising platform for enhanced catalytic response and its peroxidase mimics evaluation.Arab. J. Chem.20201344869488110.1016/j.arabjc.2019.09.007
    [Google Scholar]
  22. ChowdhuryR. KhanA. RashidM.H. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction.RSC Advances20201024143741438510.1039/D0RA01479F 35498484
    [Google Scholar]
  23. KayalvizhiS. SengottaiyanA. SelvankumarT. SenthilkumarB. SudhakarC. SelvamK. Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance.Optik202020216350710.1016/j.ijleo.2019.163507
    [Google Scholar]
  24. RehanaD. MahendiranD. KumarR.S. RahimanA.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.Biomed. Pharmacother.2017891067107710.1016/j.biopha.2017.02.101 28292015
    [Google Scholar]
  25. RenugaD. JeyasundariJ. AthithanS.A.S. JacobB.A.Y. Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application.Mater. Res. Express20207404500710.1088/2053‑1591/ab7b94
    [Google Scholar]
  26. ScuderiV. AmiardG. BoninelliS. Photocatalytic activity of CuO and Cu2O nanowires.Mater. Sci. Semicond. Process.201642899310.1016/j.mssp.2015.08.008
    [Google Scholar]
  27. SreeG.S. BotsaS.M. ReddyB.J.M. RanjithaK.V.B. Enhanced UV–Visible triggered photocatalytic degradation of Brilliant green by reduced graphene oxide based NiO and CuO ternary nanocomposite and their antimicrobial activity.Arab. J. Chem.20201345137515010.1016/j.arabjc.2020.02.012
    [Google Scholar]
  28. TadjarodiA. AkhavanO. BijanzadK. Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis(2-aminonicotinato) copper(II) microflakes.Trans. Nonferrous Met. Soc. China201525113634364210.1016/S1003‑6326(15)64004‑3
    [Google Scholar]
  29. TurakhiaB. DivakaraM.B. SantoshM.S. ShahS. Green synthesis of copper oxide nanoparticles: A promising approach in the development of antibacterial textiles.J. Coat. Technol. Res.202017253154010.1007/s11998‑019‑00303‑5
    [Google Scholar]
  30. WangC. HigginsD. WangF. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries.Nano Energy2014933434410.1016/j.nanoen.2014.08.009
    [Google Scholar]
  31. RaoM.P. SathishkumarP. MangalarajaR.V. AsiriA.M. SivashanmugamP. AnandanS. Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes.J. Environ. Chem. Eng.2018622003201010.1016/j.jece.2018.03.008
    [Google Scholar]
  32. DubeyS. SharmaY.C. Calotropis procera mediated one pot green synthesis of Cupric oxide nanoparticles (CuO‐NPs) for adsorptive removal of Cr(VI) from aqueous solutions.Appl. Organomet. Chem.20173112e384910.1002/aoc.3849
    [Google Scholar]
  33. ShiL.B. TangP.F. ZhangW. ZhaoY.P. ZhangL.C. ZhangH. Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7).Trop. J. Pharm. Res.201716118519210.4314/tjpr.v16i1.25
    [Google Scholar]
  34. Udayabhanu NethravathiPC KumarPMA Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties.Mater Sci Semicond Process201533818810.1016/j.mssp.2015.01.034
    [Google Scholar]
  35. JayakumaraiG. GokulpriyaC. SudhapriyaR. SharmilaG. MuthukumaranC. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract.Appl. Nanosci.2015581017102110.1007/s13204‑015‑0402‑1
    [Google Scholar]
  36. AbboudY. SaffajT. ChagraouiA. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata).Appl. Nanosci.20144557157610.1007/s13204‑013‑0233‑x
    [Google Scholar]
  37. PadilT.V.V. ČerníkM. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.Int. J. Nanomedicine20138889898 23467397
    [Google Scholar]
  38. NagajyothiP.C. MuthuramanP. SreekanthT.V.M. KimD.H. ShimJ. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells.Arab. J. Chem.201710221522510.1016/j.arabjc.2016.01.011
    [Google Scholar]
  39. MariA. VincentM.V. MookkaiahR. SubramaniR. Catharanthus roseus leaf extract mediated facile green synthesis of copper oxide nanoparticles and its photocatalytic activity.Chemi Methodol20204442443610.33945/SAMI/CHEMM.2020.4.5
    [Google Scholar]
  40. YeT. GuiwenZ. WeipingZ. ShangdaX. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors.Mater. Res. Bull.199732550150610.1016/S0025‑5408(97)00007‑X
    [Google Scholar]
  41. SureshD. NethravathiP.C. Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities.Mater. Sci. Semicond. Process.20153144645410.1016/j.mssp.2014.12.023
    [Google Scholar]
  42. SinghP. KimY.J. ZhangD. YangD.C. Biological synthesis of nanoparticles from plants and microorganisms.Trends Biotechnol.201634758859910.1016/j.tibtech.2016.02.006 26944794
    [Google Scholar]
  43. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  44. El-BahyZ.M. IsmailA.A. MohamedR.M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue).J. Hazard. Mater.2009166113814310.1016/j.jhazmat.2008.11.022 19097702
    [Google Scholar]
  45. ChoiJ. ParkH. HoffmannM.R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2.J. Phys. Chem. C2010114278379210.1021/jp908088x
    [Google Scholar]
  46. MonizS.J.A. TangJ. Charge transfer and photocatalytic activity in CuO/TiO 2 nanoparticle heterojunctions synthesised through a rapid, one‐pot, microwave solvothermal route.ChemCatChem20157111659166710.1002/cctc.201500315
    [Google Scholar]
  47. NigamP. BanatI.M. SinghD. MarchantR. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes.Process Biochem.199631543544210.1016/0032‑9592(95)00085‑2
    [Google Scholar]
  48. RobinsonT. McMullanG. MarchantR. NigamP. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative.Bioresour. Technol.200177324725510.1016/S0960‑8524(00)00080‑8 11272011
    [Google Scholar]
  49. HoffmannM.R. MartinS.T. ChoiW. BahnemannD.W. Environmental applications of semiconductor photocatalysis.Chem. Rev.1995951699610.1021/cr00033a004
    [Google Scholar]
  50. ZamanM.B. ChandelT. PoollaR. Hydrothermal synthesis of Cu 2 FeSnS 4 anisotropic nanoarchitectures: Controlled morphology for enhanced photocatalytic performance.Mater. Res. Express20196707505810.1088/2053‑1591/ab1797
    [Google Scholar]
  51. ZamanB.M. MirR.A. PoollaR. Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications.Int. J. Hydrogen Energy20194441230232303310.1016/j.ijhydene.2019.07.026
    [Google Scholar]
  52. HaseenaS. ShanavasS. DuraimuruganJ. Investigation on photocatalytic and antibacterial ability of green treated copper oxide nanoparticles using Artabotrys hexapetalus and Bambusa vulgaris plant extract.Mater. Res. Express201961212506410.1088/2053‑1591/ab59a9
    [Google Scholar]
  53. PakzadK. AlinezhadH. NasrollahzadehM. Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation.Ceram. Int.20194514171731718210.1016/j.ceramint.2019.05.272
    [Google Scholar]
  54. Shayegan MehrE. SorbiunM. RamazaniA. FardoodT.S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using Ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation.J. Mater. Sci. Mater. Electron.20182921333134010.1007/s10854‑017‑8039‑3
    [Google Scholar]
  55. AnandhavalliN. MolB. ManikandanS. AnushaN. PonnusamiV. RajanK.S. Green synthesis of cupric oxide nanoparticles using the water extract of Murrya koenigi and its photocatalytic activity.Asian J. Chem.20152772523252610.14233/ajchem.2015.17966
    [Google Scholar]
  56. NavadaK.M. NagarajaG.K. D’SouzaJ.N. KouserS. RanjithaR. ManasaD.J. Phyto assisted synthesis and characterization of Scoparia dulsis L. leaf extract mediated porous nano CuO photocatalysts and its anticancer behavior.Appl. Nanosci.202010114221424010.1007/s13204‑020‑01536‑2
    [Google Scholar]
  57. VasantharajS. SathiyavimalS. SaravananM. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential.J. Photochem. Photobiol. B201919114314910.1016/j.jphotobiol.2018.12.026 30639996
    [Google Scholar]
  58. DasP. GhoshS. GhoshR. DamS. BaskeyM. Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for waste water treatment and efficient antibacterial agent.J. Photochem. Photobiol. B2018189667310.1016/j.jphotobiol.2018.09.023 30312922
    [Google Scholar]
  59. AminuzzamanM KeiLM LiangWH Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities.AIP Conference Proceedings020016
    [Google Scholar]
  60. BansalM. PatnalaP.K. DugmoreT. Adsorption of eriochrome black-T(EBT) using tea waste as a low cost adsorbent by batch studies: A green approach for dye effluent treatments.Curr Res Green Sustain Chem2020310003610.1016/j.crgsc.2020.100036
    [Google Scholar]
  61. MampillyR.B. PathanA. BhasinC.P. Iron capped spent tea leaves as nano-adsorbent for removal of eriochrome black T from aqueous phase.Asian J. Chem.202134718141820
    [Google Scholar]
  62. DasJ. DasK.C. ThakurataD.G. DharS.S. Visible light‐assisted degradation of binary mixture of dyes using purple tea‐mediated zinc oxide nanoparticles.Environ. Qual. Manage.2022321273510.1002/tqem.21803
    [Google Scholar]
  63. MampillyR.B. PathanA. BhasinC.P. Visible light-assisted degradation of malachite green dye using waste tea-mediated zinc nanoparticles.Int J Thin Film Sci Technol2023121395110.18576/ijtfst/120105
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615218191240416050232
Loading
/content/journals/cnm/10.2174/0124054615218191240416050232
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test