Skip to content
2000
image of Phyto-Active Components Delivered through Lipid Nanodrug Carriers as a Promising Avenue for the Treatment of Alzheimer’s Disease: Their Present Status and Industrial Viability

Abstract

Introduction

Present years have witnessed an unprecedented growth of Alzheimer’s disease (AD) with limited scope for conventional therapeutics. Plant-derived active components (PACs) are being widely utilized as alternate, compatible, efficacious, eco-friendly strategies to ameliorate therapeutic benefits in AD while minimizing toxic effects. However, delivery of PACs in the regular dosage form often faces challenges due to low stability and bioavailability, brain-specific delivery, dose-related toxic effects, etc., which can be subsided by experimentally fabricated lipid nanodrug carriers (LNCs). The objective of this study is to provide a comprehensive, evidence-based review on recent progress in the PACs-loaded lipid nanocarriers (PLNs)-based therapeutic strategies for AD.

Methods

For the study implementation, a systematic literature review was carried out from various scientific potential databases like Scopus, Pubmed, Web of Science, etc., and relevant evidence-based pre-clinical research data was pooled to draw conclusive outcomes.

Results

LNCs are treated as promising avenues to effectively deliver various PACs into the brain due to their high lipophilicity with ultra-micron size and tunable surface features, which make them eligible to pass through the blood-brain barrier. Both passive and active targeting of PLNs has been explored to target AD by overcoming the off-target bio delivery problems.

Conclusion

The review provided updated preclinical study-based data on the potentialities of PLNs in overcoming AD. Simultaneously, equal weightage was devoted to the issues faced beyond the laboratory in their successful technology transfer. The study would be beneficial in unveiling important insights into the implications of PLNs for their futuristic clinical applicability.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615322050240817172547
2024-09-10
2025-10-19
Loading full text...

Full text loading...

References

  1. Kaur N. Sarkar B. Gill I. Kaur S. Mittal S. Dhiman M. Padala PR. Perez‐Polo R. Mantha AK. Indian herbs and their therapeutic potential against Alzheimer's disease and other neurological disorders. 2017 10.1002/9781119155195.ch4
    [Google Scholar]
  2. Niu H. Álvarez-Álvarez I. Guillén-Grima F. Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017 32 8 523 532 10.1016/j.nrl.2016.02.016 27130306
    [Google Scholar]
  3. Sun J. Dong Q.X. Wang S.W. Zheng Y.B. Liu X.X. Lu T.S. Yuan K. Shi J. Hu B. Lu L. Han Y. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian J. Psychiatr. 2023 87 103705 10.1016/j.ajp.2023.103705 37506575
    [Google Scholar]
  4. Alzheimer's disease facts and figures. 2023 Available from: https://www.alz.org/alzheimers-dementia/facts-figures
  5. Early detection & management of Alzheimer’s disease & Dementia in India: A policy perspective. 2023 Available from: https://niscpr.res.in/includes/images/bulletin/bulletin-2023-03-15.pdf
  6. Wimo A. Jönsson L. Bond J. Prince M. Winblad B. The worldwide economic impact of dementia 2010. Alzheimers Dement. 2013 9 1 1 11.e3 10.1016/j.jalz.2012.11.006 23305821
    [Google Scholar]
  7. Al-Worafi YM. Handbook of Medical and Health Sciences in Developing Countries 2023 10.1007/978‑3‑030‑74786‑2.
    [Google Scholar]
  8. Nady D.S. Bakowsky U. Fahmy S.A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients. J. Drug Deliv. Sci. Technol. 2023 89 105047 10.1016/j.jddst.2023.105047
    [Google Scholar]
  9. Pluta R. Miziak B. Czuczwar S.J. Post-ischemic permeability of the blood–brain barrier to amyloid and platelets as a factor in the maturation of Alzheimer’s disease-type brain neurodegeneration. Int. J. Mol. Sci. 2023 24 13 10739 10.3390/ijms241310739 37445917
    [Google Scholar]
  10. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  11. Dong X. Current strategies for brain drug delivery. Theranostics 2018 8 6 1481 1493 10.7150/thno.21254 29556336
    [Google Scholar]
  12. Xie J. Shen Z. Anraku Y. Kataoka K. Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019 224 119491 10.1016/j.biomaterials.2019.119491 31546096
    [Google Scholar]
  13. Pathak C. Vaidya FU. Pandey SM. Mechanism for development of nanobased drug delivery system. Applications of Targeted Nano Drugs and Delivery Systems 2019 35 67 10.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  14. Benameur T. Giacomucci G. Panaro M.A. Ruggiero M. Trotta T. Monda V. Pizzolorusso I. Lofrumento D.D. Porro C. Messina G. New promising therapeutic avenues of curcumin in brain diseases. Molecules 2021 27 1 236 10.3390/molecules27010236 35011468
    [Google Scholar]
  15. Patel PM. Modi CM. Patel HB. Patel UD. Ramchandani DM. Patel HR. Paida BV. Phytosome: An emerging technique for improving herbal drug delivery. J Phytopharmacol 2023 12 1 51 58 10.31254/phyto.2023.12108
    [Google Scholar]
  16. Alghamdi M.A. Fallica A.N. Virzì N. Kesharwani P. Pittalà V. Greish K. The promise of nanotechnology in personalized medicine. J. Pers. Med. 2022 12 5 673 10.3390/jpm12050673 35629095
    [Google Scholar]
  17. Girdhar V. Patil S. Banerjee S. Singhvi G. Nanocarriers for drug delivery: Mini review. Curr. Nanomed. 2018 8 2 88 99 10.2174/2468187308666180501092519
    [Google Scholar]
  18. Samadder A. Bhattacharjee B. Dey S. Chakrovorty A. Dey R. Sow P. Tarafdar D. Biswas M. Nandi S. Enhanced drug carriage efficiency of curcumin-loaded PLGA nanoparticles in combating diabetic nephropathy via mitigation of renal apoptosis. J. Pharmacopuncture 2024 27 1 1 13 10.3831/KPI.2024.27.1.1 38560336
    [Google Scholar]
  19. Haq T. Ullah R. Khan M.N. Wahab S. Ali B. Kaplan A. Javed M.A. Phyto-drug (Silymarin)-encapsulated cerium oxide nanoparticles (S-CeONPs) for i̇n-vitro release, ameliorating antimicrobial, anticancer, anti-inflammatory and antioxidant potential. Bionanoscience 2024 14 2 973 987 10.1007/s12668‑023‑01295‑8
    [Google Scholar]
  20. García-Melero J. López-Mitjavila J.J. García-Celma M.J. Rodriguez-Abreu C. Grijalvo S. Rosmarinic acid-loaded polymeric nanoparticles prepared by low-energy nano-emulsion templating: Formulation, biophysical characterization, and in vitro studies. Materials (Basel) 2022 15 13 4572 10.3390/ma15134572 35806696
    [Google Scholar]
  21. Munot N. Kandekar U. Giram P.S. Khot K. Patil A. Cavalu S. A comparative study of quercetin-loaded nanocochleates and liposomes: Formulation, characterization, assessment of degradation and in vitro anticancer potential. Pharmaceutics 2022 14 8 1601 10.3390/pharmaceutics14081601 36015227
    [Google Scholar]
  22. Hossen S. Hossain M.K. Basher M.K. Mia M.N.H. Rahman M.T. Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019 15 1 18 10.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  23. Chamundeeswari M. Jeslin J. Verma M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019 17 2 849 865 10.1007/s10311‑018‑00841‑1
    [Google Scholar]
  24. Kanojia N. Thapa K. Kaur G. Sharma A. Puri V. Verma N. Update on therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer’s and Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2023 79 104074 10.1016/j.jddst.2022.104074
    [Google Scholar]
  25. De Martini L.B. Sulmona C. Brambilla L. Rossi D. Cell-penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs. Cells 2023 12 12 1643 10.3390/cells12121643 37371113
    [Google Scholar]
  26. Heithoff B.P. George K.K. Phares A.N. Zuidhoek I.A. Munoz-Ballester C. Robel S. Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain. Glia 2021 69 2 436 472 10.1002/glia.23908 32955153
    [Google Scholar]
  27. Teleanu D.M. Chircov C. Grumezescu A.M. Volceanov A. Teleanu R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018 10 4 269 10.3390/pharmaceutics10040269 30544966
    [Google Scholar]
  28. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  29. S A.S. Vellapandian C. Structure of the blood brain barrier and its role in the transporters for the movement of substrates across the barriers. Curr. Drug Metab. 2023 24 4 250 269 10.2174/1389200224666230608110349 37291784
    [Google Scholar]
  30. Sharma S. Dang S. Nanocarrier-based drug delivery to brain: Interventions of surface modification. Curr. Neuropharmacol. 2023 21 3 517 535 10.2174/1570159X20666220706121412 35794771
    [Google Scholar]
  31. Furtado D. Björnmalm M. Ayton S. Bush A.I. Kempe K. Caruso F. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 2018 30 46 1801362 10.1002/adma.201801362 30066406
    [Google Scholar]
  32. Teixeira M.I. Lopes C.M. Amaral M.H. Costa P.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf. B Biointerfaces 2023 221 112999 10.1016/j.colsurfb.2022.112999 36368148
    [Google Scholar]
  33. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  34. Pulgar V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019 12 1019 10.3389/fnins.2018.01019 30686985
    [Google Scholar]
  35. Terstappen G.C. Meyer A.H. Bell R.D. Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 2021 20 5 362 383 10.1038/s41573‑021‑00139‑y 33649582
    [Google Scholar]
  36. Zhang T.T. Li W. Meng G. Wang P. Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater. Sci. 2016 4 2 219 229 10.1039/C5BM00383K 26646694
    [Google Scholar]
  37. Kumari Y. Raj K. Kumar Singh P. Promising nano-carriers-based targeted drug delivery approaches for the effective treatment of Alzheimer’s disease. Enzymatic Targets for Drug Discovery Against Alzheimer’s Disease. 2023 181 181 204 10.2174/9789815136142123010011
    [Google Scholar]
  38. Ghadiri M. Vasheghani-Farahani E. Atyabi F. Kobarfard F. Mohamadyar-Toupkanlou F. Hosseinkhani H. Transferrin‐conjugated magnetic dextran‐spermine nanoparticles for targeted drug transport across blood‐brain barrier. J. Biomed. Mater. Res. A 2017 105 10 2851 2864 10.1002/jbm.a.36145 28639394
    [Google Scholar]
  39. García-Pinel B. Porras-Alcalá C. Ortega-Rodríguez A. Sarabia F. Prados J. Melguizo C. López-Romero J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel) 2019 9 4 638 10.3390/nano9040638 31010180
    [Google Scholar]
  40. Tundisi L.L. Ataide J.A. Costa J.S.R. Coêlho D.F. Liszbinski R.B. Lopes A.M. Oliveira-Nascimento L. de Jesus M.B. Jozala A.F. Ehrhardt C. Mazzola P.G. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf. B Biointerfaces 2023 222 113043 10.1016/j.colsurfb.2022.113043 36455361
    [Google Scholar]
  41. Katabathula S. Davis P.B. Xu R. Comorbidity‐driven multi‐modal subtype analysis in mild cognitive impairment of Alzheimer’s disease. Alzheimers Dement. 2023 19 4 1428 1439 10.1002/alz.12792 36166485
    [Google Scholar]
  42. Dong J. Hao T. Association of maternal and paternal risk factors with risk of congenital heart disease in infants: A case-control study. Ir J Med Sci. 2024 193 1 95 99 10.1007/s11845‑023‑03409‑3
    [Google Scholar]
  43. Silzer T.K. Phillips N.R. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria. Mitochondrion 2018 43 16 24 10.1016/j.mito.2018.04.004 29678670
    [Google Scholar]
  44. Kozlov S. Afonin A. Evsyukov I. Bondarenko A. Alzheimer’s disease: As it was in the beginning. Rev. Neurosci. 2017 28 8 825 843 10.1515/revneuro‑2017‑0006 28704198
    [Google Scholar]
  45. Fish P.V. Steadman D. Bayle E.D. Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2019 29 2 125 133 10.1016/j.bmcl.2018.11.034 30501965
    [Google Scholar]
  46. Park J.S. Rehman I.U. Choe K. Ahmad R. Lee H.J. Kim M.O. A triterpenoid lupeol as an antioxidant and anti-neuroinflammatory agent: Impacts on oxidative stress in Alzheimer’s disease. Nutrients 2023 15 13 3059 10.3390/nu15133059 37447385
    [Google Scholar]
  47. Tolar M. Abushakra S. Hey J.A. Porsteinsson A. Sabbagh M. Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res. Ther. 2020 12 1 95 10.1186/s13195‑020‑00663‑w 32787971
    [Google Scholar]
  48. William Raja T.R. Duraipandiyan V. Ignacimuthu S. Janakiraman U. Packiam S.M. Role of polyphenols in alleviating Alzheimer’s disease: A review. Curr. Med. Chem. 2023 30 35 4032 4047 10.2174/0929867330666221202152540 36476438
    [Google Scholar]
  49. Jadidian F. Amirhosseini M. Abbasi M. Hamedanchi N.F. Zerangian N. Erabi G. Abdi A. Hosseini M. Torabi K. Shahini A. Aghakhani A. Pharmacotherapeutic potential of Vitis vinifera (grape) in age-related neurological diseases. Bol. Latinoam. Caribe Plantas Med. Aromat. 2024 23 3 349 370 10.37360/blacpma.24.23.3.24
    [Google Scholar]
  50. Talreja S. Tiwari S. An in depth exploration of Ginkgo Biloba: A review. 2023 1 7 326 334 10.5281/zenodo.8190129
    [Google Scholar]
  51. Shan M. Bai Y. Fang X. Lan X. Zhang Y. Cao Y. Zhu D. Luo H. American Ginseng for the treatment of Alzheimer’s disease: A review. Molecules 2023 28 15 5716 10.3390/molecules28155716 37570686
    [Google Scholar]
  52. Khan H. Ullah H. Aschner M. Cheang W.S. Akkol E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019 10 1 59 10.3390/biom10010059 31905923
    [Google Scholar]
  53. Fernandes L. Cardim-Pires T.R. Foguel D. Palhano F.L. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front. Neurosci. 2021 15 718188 10.3389/fnins.2021.718188 34594185
    [Google Scholar]
  54. Tapeinos C. Battaglini M. Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017 264 306 332 10.1016/j.jconrel.2017.08.033 28844756
    [Google Scholar]
  55. Othman A.K. El Kurdi R. Badran A. Mesmar J. Baydoun E. Patra D. Liposome-based nanocapsules for the controlled release of dietary curcumin: PDDA and silica nanoparticle-coated DMPC liposomes enhance the fluorescence efficiency and anticancer activity of curcumin. RSC Advances 2022 12 18 11282 11292 10.1039/D2RA00071G 35425076
    [Google Scholar]
  56. Kurdi R.E. Mesmar J. Estephan M. Badran A. Baydoun E. Patra D. Anticancer activity of diarachidonyl phosphatidyl choline liposomal curcumin coated with chitosan against breast and pancreatic cancer cells. Bionanoscience 2022 12 4 1158 1165 10.1007/s12668‑022‑01019‑4
    [Google Scholar]
  57. Satapathy B.S. Biswal B. Pattnaik S. Parida R. Sahoo R.N. A mucoadhesive nanolipo gel containing Aegle marmelos gum to enhance transdermal effectiveness of linezolid for vaginal infection: In vitro evaluation, in vitro-ex vivo correlation, pharmacokinetic studies. Int. J. Pharm. 2023 648 123542 10.1016/j.ijpharm.2023.123542 37925044
    [Google Scholar]
  58. Zhang J. Gu L. Jiang Y. Ma Y. Zhang Z. Shen S. Shen S. Peng Q. Xiao W. Artesunate-nanoliposome-TPP, a novel drug delivery system that targets the mitochondria, attenuates cisplatin-induced acute kidney injury by suppressing oxidative stress and inflammatory effects. Int. J. Nanomedicine 2024 19 1385 1408 10.2147/IJN.S444076 38371457
    [Google Scholar]
  59. Ordóñez-Gutiérrez L. Re F. Bereczki E. Ioja E. Gregori M. Andersen A.J. Antón M. Moghimi S.M. Pei J.J. Masserini M. Wandosell F. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine 2015 11 2 421 430 10.1016/j.nano.2014.09.015 25461285
    [Google Scholar]
  60. Balducci C. Mancini S. Minniti S. La Vitola P. Zotti M. Sancini G. Mauri M. Cagnotto A. Colombo L. Fiordaliso F. Grigoli E. Salmona M. Snellman A. Haaparanta-Solin M. Forloni G. Masserini M. Re F. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J. Neurosci. 2014 34 42 14022 14031 10.1523/JNEUROSCI.0284‑14.2014 25319699
    [Google Scholar]
  61. Kong L. Li X. Ni Y. Xiao H. Yao Y. Wang Y. Ju R. Li H. Liu J. Fu M. Wu Y. Yang J. Cheng L. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int. J. Nanomedicine 2020 15 2841 2858 10.2147/IJN.S239608 32425521
    [Google Scholar]
  62. Kuo Y.C. Tsao C.W. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int. J. Nanomedicine 2017 12 2857 2869 10.2147/IJN.S132472 28435263
    [Google Scholar]
  63. Hüttemann M. Helling S. Sanderson T.H. Sinkler C. Samavati L. Mahapatra G. Varughese A. Lu G. Liu J. Ramzan R. Vogt S. Grossman L.I. Doan J.W. Marcus K. Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim. Biophys. Acta Bioenerg. 2012 1817 4 598 609 10.1016/j.bbabio.2011.07.001 21771582
    [Google Scholar]
  64. Liu B. Xue Q. Tang Y. Cao J. Guengerich F.P. Zhang H. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. Mutat. Res. Rev. Mutat. Res. 2016 768 53 67 10.1016/j.mrrev.2016.03.006 27234563
    [Google Scholar]
  65. Webers A. Heneka M.T. Gleeson P.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol. 2020 98 1 28 41 10.1111/imcb.12301 31654430
    [Google Scholar]
  66. Presta I. Vismara M.F.M. Novellino F. Donato A. Zaffino P. Scali E. Pirrone K.C. Spadea M.F. Malara N. Donato G. Innate immunity cells and the neurovascular unit. Int. J. Mol. Sci. 2018 19 12 3856 10.3390/ijms19123856 30513991
    [Google Scholar]
  67. Parihar M.S. Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 2004 11 5 456 467 10.1016/j.jocn.2003.12.007 15177383
    [Google Scholar]
  68. Kheiri G. Dolatshahi M. Rahmani F. Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy. Rev. Neurosci. 2018 30 1 9 30 10.1515/revneuro‑2018‑0008 29804103
    [Google Scholar]
  69. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  70. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  71. Wang J. Ni Q. Wang Y. Zhang Y. He H. Gao D. Ma X. Liang X.J. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J. Control. Release 2021 331 282 295 10.1016/j.jconrel.2020.08.045 32866590
    [Google Scholar]
  72. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  73. Javed S. Mangla B. Almoshari Y. Sultan M.H. Ahsan W. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol. Rev. 2022 11 1 1744 1777 10.1515/ntrev‑2022‑0109
    [Google Scholar]
  74. Nava-Arzaluz MG. Piñón-Segundo E. Ganem-Rondero A. Lipid nanocarriers as skin drug delivery systems. Nanoparticles in Pharmacotherapy 2019 311 390 10.1016/B978‑0‑12‑816504‑1.00007‑7
    [Google Scholar]
  75. Tiwari A. Gulbake AS. Kumar P. Lipid nanoparticles and nanoemulsions exploited in the diagnosis and treatment of infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022 229 273 10.1016/B978‑0‑323‑91201‑3.00010‑4
    [Google Scholar]
  76. Lingayat V.J. Zarekar N.S. Shendge R.S. Solid lipid nanoparticles: A review. Nanosci. Nanotechnol. Res. 2017 4 2 67 72 10.12691/nnr‑4‑2‑5
    [Google Scholar]
  77. Thirupathi G. Kumara Swamy S. Ramesh A. Solid lipid nanocarriers as alternative drug delivery system for improved oral delivery of drugs. J. Drug Deliv. Ther. 2020 10 6-s 168 172 10.22270/jddt.v10i6‑s.4410
    [Google Scholar]
  78. Poovi G. Vijayakumar T.M. Damodharan N. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the effect of physicochemical formulation factors in the optimization process, different preparation technique, characterization, and toxicity. Curr. Nanosci. 2019 15 5 436 453 10.2174/1573413714666180809120435
    [Google Scholar]
  79. Gordillo-Galeano A. Mora-Huertas C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018 133 285 308 10.1016/j.ejpb.2018.10.017 30463794
    [Google Scholar]
  80. Agrawal M. Saraf S. Saraf S. Dubey S.K. Puri A. Patel R.J. Ajazuddin Ravichandiran V. Murty U.S. Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release 2020 321 372 415 10.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  81. Pattani A.S. Mandawgade S.D. Patravale V.B. Development and comparative anti-microbial evaluation of lipid nanoparticles and nanoemulsion of Polymyxin B. J. Nanosci. Nanotechnol. 2006 6 9 2986 2990 10.1166/jnn.2006.459 17048508
    [Google Scholar]
  82. Albano J.M.R. Ribeiro L.N.M. Couto V.M. Barbosa Messias M. Rodrigues da Silva G.H. Breitkreitz M.C. de Paula E. Pickholz M. Rational design of polymer-lipid nanoparticles for docetaxel delivery. Colloids Surf. B Biointerfaces 2019 175 56 64 10.1016/j.colsurfb.2018.11.077 30517905
    [Google Scholar]
  83. Ahmed T.A. Alzahrani M.M. Sirwi A. Alhakamy N.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics 2021 13 2 151 10.3390/pharmaceutics13020151 33498849
    [Google Scholar]
  84. Aghababaei F. Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals (Basel) 2023 16 7 1020 10.3390/ph16071020 37513932
    [Google Scholar]
  85. Pinheiro R.G.R. Granja A. Loureiro J.A. Pereira M.C. Pinheiro M. Neves A.R. Reis S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci. 2020 148 105314 10.1016/j.ejps.2020.105314 32200044
    [Google Scholar]
  86. Vedagiri A. Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016 58 111 125 10.1016/j.npep.2016.03.002 27021394
    [Google Scholar]
  87. Santonocito D. Raciti G. Campisi A. Sposito G. Panico A. Siciliano E. Sarpietro M. Damiani E. Puglia C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel) 2021 11 2 391 10.3390/nano11020391 33546352
    [Google Scholar]
  88. Ahmad S. Hafeez A. Formulation and development of curcumin–piperine-loaded S-SNEDDS for the treatment of Alzheimer’s disease. Mol. Neurobiol. 2023 60 2 1067 1082 10.1007/s12035‑022‑03089‑7 36414909
    [Google Scholar]
  89. Singh N. Vishwas S. Kaur A. Kaur H. Kakoty V. Khursheed R. Chaitanya M.V.N.L. Babu M.R. Awasthi A. corrie L. Harish V. Yanadaiah P. Gupta S. Sayed A.A. El-Sayed A. Ali I. Kensara O.A. Ghaboura N. Gupta G. Dou A.M. Algahtani M. El-kott A.F. Dua K. Singh S.K. Abdel-Daim M.M. Harnessing role of sesamol and its nanoformulations against neurodegenerative diseases. Biomed. Pharmacother. 2023 167 115512 10.1016/j.biopha.2023.115512 37725878
    [Google Scholar]
  90. Meng Q. Wang A. Hua H. Jiang Y. Wang Y. Mu H. Wu Z. Sun K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 705 718 10.2147/IJN.S151474 29440896
    [Google Scholar]
  91. Kumar R. Garg R. Khurana N. A comparative in vivo evaluation of anti-alzheimer activity of bacopa extract and its solid lipid nanoparticles. Curr. Bioact. Compd. 2021 17 7 e010621187982 10.2174/1573407216999201113121756
    [Google Scholar]
  92. El-Hawwary S.S. Abd Almaksoud H.M. Saber F.R. Elimam H. Sayed A.M. El Raey M.A. Abdelmohsen U.R. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances 2021 11 29 18009 18025 10.1039/D1RA01725J 35480186
    [Google Scholar]
  93. Yusuf M. Khan M. Alrobaian M.M. Alghamdi S.A. Warsi M.H. Sultana S. Khan R.A. Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. J. Drug Deliv. Sci. Technol. 2021 61 102214 10.1016/j.jddst.2020.102214
    [Google Scholar]
  94. Dashputre N.L. Laddha U.D. Darekar P.P. Kadam J.D. Patil S.B. Sable R.R. Udavant P.B. Tajanpure A.B. Kakad S.P. Kshirsagar S.J. Potential therapeutic effects of naringin loaded PLGA nanoparticles for the management of Alzheimer’s disease: In vitro, ex vivo and in vivo investigation. Heliyon 2023 9 9 e19374 10.1016/j.heliyon.2023.e19374 37662728
    [Google Scholar]
  95. Jain D. Hasan N. Zafar S. Thakur J. Haider K. Parvez S. Ahmad F.J. Transferrin functionalized nanostructured lipid carriers for targeting Rivastigmine and Resveratrol to Alzheimer’s disease: Synthesis, in vitro characterization and brain uptake analysis. J. Drug Deliv. Sci. Technol. 2023 86 104555 10.1016/j.jddst.2023.104555
    [Google Scholar]
  96. Omidfar F. Gheybi F. Davoodi J. Amirinejad M. Badiee A. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation. Biotechnol. Appl. Biochem. 2023 70 2 846 856 10.1002/bab.2404 36112716
    [Google Scholar]
  97. Darwish A.B. Mohsen A.M. ElShebiney S. Elgohary R. Younis M.M. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats. Sci. Rep. 2024 14 1 8247 10.1038/s41598‑024‑58601‑x 38589438
    [Google Scholar]
  98. Saini S. Sharma T. Jain A. Kaur H. Katare O.P. Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces 2021 205 111838 10.1016/j.colsurfb.2021.111838 34022704
    [Google Scholar]
  99. Ghosh A. Khanam N. Nath D. Solid lipid nanoparticle: A potent vehicle of the kaempferol for brain delivery through the blood-brain barrier in the focal cerebral ischemic rat. Chem. Biol. Interact. 2024 397 111084 10.1016/j.cbi.2024.111084 38823537
    [Google Scholar]
  100. Andrade S. Loureiro J.A. Pereira M.C. Transferrin-functionalized liposomes for the delivery of gallic acid: A therapeutic approach for Alzheimer’s disease. Pharmaceutics 2022 14 10 2163 10.3390/pharmaceutics14102163 36297599
    [Google Scholar]
  101. Firdaus Z. Singh T.D. An insight in pathophysiological mechanism of Alzheimer’s disease and its management using plant natural products. Mini Rev. Med. Chem. 2021 21 1 35 57 10.2174/18755607MTA4bNzEgz 32744972
    [Google Scholar]
  102. Ozkan G. Kostka T. Esatbeyoglu T. Capanoglu E. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules 2020 25 23 5545 10.3390/molecules25235545 33256012
    [Google Scholar]
  103. Szebeni J. Storm G. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem. Biophys. Res. Commun. 2015 468 3 490 497 10.1016/j.bbrc.2015.06.177 26182876
    [Google Scholar]
  104. Gbian D.L. Omri A. Lipid-based drug delivery systems for diseases managements. Biomedicines 2022 10 9 2137 10.3390/biomedicines10092137 36140237
    [Google Scholar]
  105. Kamil Hussain M. Saquib M. Faheem Khan M. Techniques for extraction, isolation, and standardization of bioactive compounds from medicinal plants. Natural Bio-active Compounds Sub Title: Volume 2: Chemistry, Pharmacology and Health Care Practices Springer 2019 10.1007/978‑981‑13‑7205‑6
    [Google Scholar]
  106. Aalinkeel R. Kutscher H.L. Singh A. Cwiklinski K. Khechen N. Schwartz S.A. Prasad P.N. Mahajan S.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J. Drug Target. 2018 26 2 182 193 10.1080/1061186X.2017.1354002 28697660
    [Google Scholar]
  107. Sachdeva A.K. Misra S. Pal Kaur I. Chopra K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence. Eur. J. Pharmacol. 2015 747 132 140 10.1016/j.ejphar.2014.11.014 25449035
    [Google Scholar]
  108. Trapani A. Castellani S. Guerra L. De Giglio E. Fracchiolla G. Corbo F. Cioffi N. Passantino G. Poeta M.L. Montemurro P. Mallamaci R. Cardone R.A. Conese M. Combined dopamine and grape seed extract-loaded solid lipid nanoparticles: Nasal mucosa permeation, and uptake by olfactory ensheathing cells and neuronal SH-SY5Y cells. Pharmaceutics 2023 15 3 881 10.3390/pharmaceutics15030881 36986742
    [Google Scholar]
  109. Kuo Y.C. Tsai H.C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater. Sci. Eng. C 2018 91 445 457 10.1016/j.msec.2018.05.062 30033276
    [Google Scholar]
  110. Chen Z.L. Huang M. Wang X.R. Fu J. Han M. Shen Y.Q. Xia Z. Gao J.Q. Transferrin-modified liposome promotes α-mangostin to penetrate the blood–brain barrier. Nanomedicine 2016 12 2 421 430 10.1016/j.nano.2015.10.021 26711963
    [Google Scholar]
  111. Cano A. Ettcheto M. Chang J.H. Barroso E. Espina M. Kühne B.A. Barenys M. Auladell C. Folch J. Souto E.B. Camins A. Turowski P. García M.L. Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 2019 301 62 75 10.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  112. Raju M. Kunde S.S. Auti S.T. Kulkarni Y.A. Wairkar S. Berberine loaded nanostructured lipid carrier for Alzheimer’s disease: Design, statistical optimization and enhanced in vivo performance. Life Sci. 2021 285 119990 10.1016/j.lfs.2021.119990 34592234
    [Google Scholar]
  113. Hanafy A.S. Farid R.M. Helmy M.W. ElGamal S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016 23 8 3111 3122 10.3109/10717544.2016.1153748 26942549
    [Google Scholar]
  114. Mehta P. Shende P. Collation of fullerenes and carbon nanotubes with genistein for synergistic anti-Alzheimer’s activity by amyloid-β deaggregation. J. Drug Deliv. Sci. Technol. 2024 91 105205 10.1016/j.jddst.2023.105205
    [Google Scholar]
  115. Nasr M. Wahdan S.A. Neuroprotective effects of novel nanosystems simultaneously loaded with vinpocetine and piracetam after intranasal administration. Life Sci. 2019 226 117 129 10.1016/j.lfs.2019.04.014 30981765
    [Google Scholar]
  116. El-Nashar H.A.S. Abbas H. Zewail M. Noureldin M.H. Ali M.M. Shamaa M.M. Khattab M.A. Ibrahim N. Neuroprotective effect of artichoke-based nanoformulation in sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceuticals (Basel) 2022 15 10 1202 10.3390/ph15101202 36297313
    [Google Scholar]
  117. Gad S.R. El-Gogary R.I. George M.Y. Hathout R.M. Nose-to-brain delivery of 18β-glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer’s disease. Int. J. Pharm. 2023 645 123387 10.1016/j.ijpharm.2023.123387 37678474
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615322050240817172547
Loading
/content/journals/cnm/10.2174/0124054615322050240817172547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test