Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Introduction

Present years have witnessed an unprecedented growth of Alzheimer’s disease (AD) with limited scope for conventional therapeutics. Plant-derived active components (PACs) are being widely utilized as alternate, compatible, efficacious, eco-friendly strategies to ameliorate therapeutic benefits in AD while minimizing toxic effects. However, delivery of PACs in the regular dosage form often faces challenges due to low stability and bioavailability, brain-specific delivery, dose-related toxic effects, , which can be subsided by experimentally fabricated lipid nanodrug carriers (LNCs). The objective of this study was to provide a comprehensive, evidence-based review on recent progress in the PACs-loaded lipid nanocarriers (PLNs)-based therapeutic strategies for AD.

Methods

For the study implementation, a systematic literature review was carried out from various scientific potential databases like Scopus, Pubmed, Web of Science, , and relevant evidence-based pre-clinical research data was pooled to draw conclusive outcomes.

Results

LNCs are treated as promising avenues to effectively deliver various PACs into the brain due to their high lipophilicity with ultra-micron size and tunable surface features, which make them eligible to pass through the blood-brain barrier. Both passive and active targeting of PLNs has been explored to target AD by overcoming the off-target bio delivery problems.

Conclusion

The review provided updated preclinical study-based data on the potentialities of PLNs in overcoming AD. Simultaneously, equal weightage was devoted to the issues faced beyond the laboratory in their successful technology transfer. The study would be beneficial in unveiling important insights into the implications of PLNs for their futuristic clinical applicability.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615322050240817172547
2024-09-10
2025-12-07
Loading full text...

Full text loading...

References

  1. KaurN. SarkarB. GillI. KaurS. MittalS. DhimanM. PadalaPR. Perez‐PoloR. ManthaAK. Indian herbs and their therapeutic potential against Alzheimer's disease and other neurological disorders.201710.1002/9781119155195.ch4
    [Google Scholar]
  2. NiuH. Álvarez-ÁlvarezI. Guillén-GrimaF. Aguinaga-OntosoI. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis.Neurologia201732852353210.1016/j.nrl.2016.02.01627130306
    [Google Scholar]
  3. SunJ. DongQ.X. WangS.W. ZhengY.B. LiuX.X. LuT.S. YuanK. ShiJ. HuB. LuL. HanY. Artificial intelligence in psychiatry research, diagnosis, and therapy.Asian J. Psychiatr.20238710370510.1016/j.ajp.2023.10370537506575
    [Google Scholar]
  4. Alzheimer's disease facts and figures.2023Available from: https://www.alz.org/alzheimers-dementia/facts-figures
  5. Early detection & management of Alzheimer’s disease & Dementia in India: A policy perspective.2023Available from: https://niscpr.res.in/includes/images/bulletin/bulletin-2023-03-15.pdf
  6. WimoA. JönssonL. BondJ. PrinceM. WinbladB. The worldwide economic impact of dementia 2010.Alzheimers Dement.201391111.e310.1016/j.jalz.2012.11.00623305821
    [Google Scholar]
  7. Al-WorafiYM. Handbook of Medical and Health Sciences in Developing Countries202310.1007/978‑3‑030‑74786‑2.
    [Google Scholar]
  8. NadyD.S. BakowskyU. FahmyS.A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients.J. Drug Deliv. Sci. Technol.20238910504710.1016/j.jddst.2023.105047
    [Google Scholar]
  9. PlutaR. MiziakB. CzuczwarS.J. Post-ischemic permeability of the blood–brain barrier to amyloid and platelets as a factor in the maturation of Alzheimer’s disease-type brain neurodegeneration.Int. J. Mol. Sci.202324131073910.3390/ijms24131073937445917
    [Google Scholar]
  10. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  11. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  12. XieJ. ShenZ. AnrakuY. KataokaK. ChenX. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies.Biomaterials201922411949110.1016/j.biomaterials.2019.11949131546096
    [Google Scholar]
  13. PathakC. VaidyaFU. PandeySM. Mechanism for development of nanobased drug delivery system.Applications of Targeted Nano Drugs and Delivery Systems2019356710.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  14. BenameurT. GiacomucciG. PanaroM.A. RuggieroM. TrottaT. MondaV. PizzolorussoI. LofrumentoD.D. PorroC. MessinaG. New promising therapeutic avenues of curcumin in brain diseases.Molecules202127123610.3390/molecules2701023635011468
    [Google Scholar]
  15. PatelPM. ModiCM. PatelHB. PatelUD. RamchandaniDM. PatelHR. PaidaBV. Phytosome: An emerging technique for improving herbal drug delivery.J Phytopharmacol2023121515810.31254/phyto.2023.12108
    [Google Scholar]
  16. AlghamdiM.A. FallicaA.N. VirzìN. KesharwaniP. PittalàV. GreishK. The promise of nanotechnology in personalized medicine.J. Pers. Med.202212567310.3390/jpm1205067335629095
    [Google Scholar]
  17. GirdharV. PatilS. BanerjeeS. SinghviG. Nanocarriers for drug delivery: Mini review.Curr. Nanomed.201882889910.2174/2468187308666180501092519
    [Google Scholar]
  18. SamadderA. BhattacharjeeB. DeyS. ChakrovortyA. DeyR. SowP. TarafdarD. BiswasM. NandiS. Enhanced drug carriage efficiency of curcumin-loaded PLGA nanoparticles in combating diabetic nephropathy via mitigation of renal apoptosis.J. Pharmacopuncture202427111310.3831/KPI.2024.27.1.138560336
    [Google Scholar]
  19. HaqT. UllahR. KhanM.N. WahabS. AliB. KaplanA. JavedM.A. Phyto-drug (Silymarin)-encapsulated cerium oxide nanoparticles (S-CeONPs) for i̇n-vitro release, ameliorating antimicrobial, anticancer, anti-inflammatory and antioxidant potential.Bionanoscience202414297398710.1007/s12668‑023‑01295‑8
    [Google Scholar]
  20. García-MeleroJ. López-MitjavilaJ.J. García-CelmaM.J. Rodriguez-AbreuC. GrijalvoS. Rosmarinic acid-loaded polymeric nanoparticles prepared by low-energy nano-emulsion templating: Formulation, biophysical characterization, and in vitro studies.Materials (Basel)20221513457210.3390/ma1513457235806696
    [Google Scholar]
  21. MunotN. KandekarU. GiramP.S. KhotK. PatilA. CavaluS. A comparative study of quercetin-loaded nanocochleates and liposomes: Formulation, characterization, assessment of degradation and in vitro anticancer potential.Pharmaceutics2022148160110.3390/pharmaceutics1408160136015227
    [Google Scholar]
  22. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  23. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  24. KanojiaN. ThapaK. KaurG. SharmaA. PuriV. VermaN. Update on therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer’s and Parkinson’s disease.J. Drug Deliv. Sci. Technol.20237910407410.1016/j.jddst.2022.104074
    [Google Scholar]
  25. De MartiniL.B. SulmonaC. BrambillaL. RossiD. Cell-penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs.Cells20231212164310.3390/cells1212164337371113
    [Google Scholar]
  26. HeithoffB.P. GeorgeK.K. PharesA.N. ZuidhoekI.A. Munoz-BallesterC. RobelS. Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain.Glia202169243647210.1002/glia.2390832955153
    [Google Scholar]
  27. TeleanuD.M. ChircovC. GrumezescuA.M. VolceanovA. TeleanuR.I. Blood-brain delivery methods using nanotechnology.Pharmaceutics201810426910.3390/pharmaceutics1004026930544966
    [Google Scholar]
  28. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  29. SA.S. VellapandianC. Structure of the blood brain barrier and its role in the transporters for the movement of substrates across the barriers.Curr. Drug Metab.202324425026910.2174/138920022466623060811034937291784
    [Google Scholar]
  30. SharmaS. DangS. Nanocarrier-based drug delivery to brain: Interventions of surface modification.Curr. Neuropharmacol.202321351753510.2174/1570159X2066622070612141235794771
    [Google Scholar]
  31. FurtadoD. BjörnmalmM. AytonS. BushA.I. KempeK. CarusoF. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases.Adv. Mater.20183046180136210.1002/adma.20180136230066406
    [Google Scholar]
  32. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases.Colloids Surf. B Biointerfaces202322111299910.1016/j.colsurfb.2022.11299936368148
    [Google Scholar]
  33. GhoraiS.M. DeepA. MagooD. GuptaC. GuptaN. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood–brain barrier (BBB).Pharmaceutics2023157199910.3390/pharmaceutics1507199937514185
    [Google Scholar]
  34. PulgarV.M. Transcytosis to cross the blood brain barrier, new advancements and challenges.Front. Neurosci.201912101910.3389/fnins.2018.0101930686985
    [Google Scholar]
  35. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood–brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  36. ZhangT.T. LiW. MengG. WangP. LiaoW. Strategies for transporting nanoparticles across the blood–brain barrier.Biomater. Sci.20164221922910.1039/C5BM00383K26646694
    [Google Scholar]
  37. KumariY. RajK. Kumar SinghP. Promising nano-carriers-based targeted drug delivery approaches for the effective treatment of Alzheimer’s disease.Enzymatic Targets for Drug Discovery Against Alzheimer’s Disease.202318118120410.2174/9789815136142123010011
    [Google Scholar]
  38. GhadiriM. Vasheghani-FarahaniE. AtyabiF. KobarfardF. Mohamadyar-ToupkanlouF. HosseinkhaniH. Transferrin‐conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier.J. Biomed. Mater. Res. A2017105102851286410.1002/jbm.a.3614528639394
    [Google Scholar]
  39. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. López-RomeroJ.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials (Basel)20199463810.3390/nano904063831010180
    [Google Scholar]
  40. TundisiL.L. AtaideJ.A. CostaJ.S.R. CoêlhoD.F. LiszbinskiR.B. LopesA.M. Oliveira-NascimentoL. de JesusM.B. JozalaA.F. EhrhardtC. MazzolaP.G. Nanotechnology as a tool to overcome macromolecules delivery issues.Colloids Surf. B Biointerfaces202322211304310.1016/j.colsurfb.2022.11304336455361
    [Google Scholar]
  41. KatabathulaS. DavisP.B. XuR. Comorbidity‐driven multi‐modal subtype analysis in mild cognitive impairment of Alzheimer’s disease.Alzheimers Dement.20231941428143910.1002/alz.1279236166485
    [Google Scholar]
  42. DongJ. HaoT. Association of maternal and paternal risk factors with risk of congenital heart disease in infants: A case-control study.Ir J Med Sci.20241931959910.1007/s11845‑023‑03409‑3
    [Google Scholar]
  43. SilzerT.K. PhillipsN.R. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria.Mitochondrion201843162410.1016/j.mito.2018.04.00429678670
    [Google Scholar]
  44. KozlovS. AfoninA. EvsyukovI. BondarenkoA. Alzheimer’s disease: As it was in the beginning.Rev. Neurosci.201728882584310.1515/revneuro‑2017‑000628704198
    [Google Scholar]
  45. FishP.V. SteadmanD. BayleE.D. WhitingP. New approaches for the treatment of Alzheimer’s disease.Bioorg. Med. Chem. Lett.201929212513310.1016/j.bmcl.2018.11.03430501965
    [Google Scholar]
  46. ParkJ.S. RehmanI.U. ChoeK. AhmadR. LeeH.J. KimM.O. A triterpenoid lupeol as an antioxidant and anti-neuroinflammatory agent: Impacts on oxidative stress in Alzheimer’s disease.Nutrients20231513305910.3390/nu1513305937447385
    [Google Scholar]
  47. TolarM. AbushakraS. HeyJ.A. PorsteinssonA. SabbaghM. Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval.Alzheimers Res. Ther.20201219510.1186/s13195‑020‑00663‑w32787971
    [Google Scholar]
  48. William RajaT.R. DuraipandiyanV. IgnacimuthuS. JanakiramanU. PackiamS.M. Role of polyphenols in alleviating Alzheimer’s disease: A review.Curr. Med. Chem.202330354032404710.2174/092986733066622120215254036476438
    [Google Scholar]
  49. JadidianF. AmirhosseiniM. AbbasiM. HamedanchiN.F. ZerangianN. ErabiG. AbdiA. HosseiniM. TorabiK. ShahiniA. AghakhaniA. Pharmacotherapeutic potential of Vitis vinifera (grape) in age-related neurological diseases.Bol. Latinoam. Caribe Plantas Med. Aromat.202423334937010.37360/blacpma.24.23.3.24
    [Google Scholar]
  50. TalrejaS. TiwariS. An in depth exploration of Ginkgo Biloba: A review.Int J Pharm Sci20231732633410.5281/zenodo.8190129
    [Google Scholar]
  51. ShanM. BaiY. FangX. LanX. ZhangY. CaoY. ZhuD. LuoH. American Ginseng for the treatment of Alzheimer’s disease: A review.Molecules20232815571610.3390/molecules2815571637570686
    [Google Scholar]
  52. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom1001005931905923
    [Google Scholar]
  53. FernandesL. Cardim-PiresT.R. FoguelD. PalhanoF.L. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases.Front. Neurosci.20211571818810.3389/fnins.2021.71818834594185
    [Google Scholar]
  54. TapeinosC. BattagliniM. CiofaniG. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases.J. Control. Release201726430633210.1016/j.jconrel.2017.08.03328844756
    [Google Scholar]
  55. OthmanA.K. El KurdiR. BadranA. MesmarJ. BaydounE. PatraD. Liposome-based nanocapsules for the controlled release of dietary curcumin: PDDA and silica nanoparticle-coated DMPC liposomes enhance the fluorescence efficiency and anticancer activity of curcumin.RSC Advances20221218112821129210.1039/D2RA00071G35425076
    [Google Scholar]
  56. KurdiR.E. MesmarJ. EstephanM. BadranA. BaydounE. PatraD. Anticancer activity of diarachidonyl phosphatidyl choline liposomal curcumin coated with chitosan against breast and pancreatic cancer cells.Bionanoscience20221241158116510.1007/s12668‑022‑01019‑4
    [Google Scholar]
  57. SatapathyB.S. BiswalB. PattnaikS. ParidaR. SahooR.N. A mucoadhesive nanolipo gel containing Aegle marmelos gum to enhance transdermal effectiveness of linezolid for vaginal infection: In vitro evaluation, in vitro-ex vivo correlation, pharmacokinetic studies.Int. J. Pharm.202364812354210.1016/j.ijpharm.2023.12354237925044
    [Google Scholar]
  58. ZhangJ. GuL. JiangY. MaY. ZhangZ. ShenS. ShenS. PengQ. XiaoW. Artesunate-nanoliposome-TPP, a novel drug delivery system that targets the mitochondria, attenuates cisplatin-induced acute kidney injury by suppressing oxidative stress and inflammatory effects.Int. J. Nanomedicine2024191385140810.2147/IJN.S44407638371457
    [Google Scholar]
  59. Ordóñez-GutiérrezL. ReF. BereczkiE. IojaE. GregoriM. AndersenA.J. AntónM. MoghimiS.M. PeiJ.J. MasseriniM. WandosellF. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice.Nanomedicine201511242143010.1016/j.nano.2014.09.01525461285
    [Google Scholar]
  60. BalducciC. ManciniS. MinnitiS. La VitolaP. ZottiM. SanciniG. MauriM. CagnottoA. ColomboL. FiordalisoF. GrigoliE. SalmonaM. SnellmanA. Haaparanta-SolinM. ForloniG. MasseriniM. ReF. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models.J. Neurosci.20143442140221403110.1523/JNEUROSCI.0284‑14.201425319699
    [Google Scholar]
  61. KongL. LiX. NiY. XiaoH. YaoY. WangY. JuR. LiH. LiuJ. FuM. WuY. YangJ. ChengL. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice.Int. J. Nanomedicine2020152841285810.2147/IJN.S23960832425521
    [Google Scholar]
  62. KuoY.C. TsaoC.W. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin.Int. J. Nanomedicine2017122857286910.2147/IJN.S13247228435263
    [Google Scholar]
  63. HüttemannM. HellingS. SandersonT.H. SinklerC. SamavatiL. MahapatraG. VarugheseA. LuG. LiuJ. RamzanR. VogtS. GrossmanL.I. DoanJ.W. MarcusK. LeeI. Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation.Biochim. Biophys. Acta Bioenerg.20121817459860910.1016/j.bbabio.2011.07.00121771582
    [Google Scholar]
  64. LiuB. XueQ. TangY. CaoJ. GuengerichF.P. ZhangH. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.Mutat. Res. Rev. Mutat. Res.2016768536710.1016/j.mrrev.2016.03.00627234563
    [Google Scholar]
  65. WebersA. HenekaM.T. GleesonP.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease.Immunol. Cell Biol.2020981284110.1111/imcb.1230131654430
    [Google Scholar]
  66. PrestaI. VismaraM.F.M. NovellinoF. DonatoA. ZaffinoP. ScaliE. PirroneK.C. SpadeaM.F. MalaraN. DonatoG. Innate immunity cells and the neurovascular unit.Int. J. Mol. Sci.20181912385610.3390/ijms1912385630513991
    [Google Scholar]
  67. PariharM.S. HemnaniT. Alzheimer’s disease pathogenesis and therapeutic interventions.J. Clin. Neurosci.200411545646710.1016/j.jocn.2003.12.00715177383
    [Google Scholar]
  68. KheiriG. DolatshahiM. RahmaniF. RezaeiN. Role of p38/MAPKs in Alzheimer’s disease: Implications for amyloid beta toxicity targeted therapy.Rev. Neurosci.201830193010.1515/revneuro‑2018‑000829804103
    [Google Scholar]
  69. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  70. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  71. WangJ. NiQ. WangY. ZhangY. HeH. GaoD. MaX. LiangX.J. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration.J. Control. Release202133128229510.1016/j.jconrel.2020.08.04532866590
    [Google Scholar]
  72. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  73. JavedS. ManglaB. AlmoshariY. SultanM.H. AhsanW. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery.Nanotechnol. Rev.20221111744177710.1515/ntrev‑2022‑0109
    [Google Scholar]
  74. Nava-ArzaluzMG. Piñón-SegundoE. Ganem-RonderoA. Lipid nanocarriers as skin drug delivery systems.Nanoparticles in Pharmacotherapy201931139010.1016/B978‑0‑12‑816504‑1.00007‑7
    [Google Scholar]
  75. TiwariA. GulbakeAS. KumarP. Lipid nanoparticles and nanoemulsions exploited in the diagnosis and treatment of infectious diseases.Nanotheranostics for Treatment and Diagnosis of Infectious Diseases202222927310.1016/B978‑0‑323‑91201‑3.00010‑4
    [Google Scholar]
  76. LingayatV.J. ZarekarN.S. ShendgeR.S. Solid lipid nanoparticles: A review.Nanosci. Nanotechnol. Res.201742677210.12691/nnr‑4‑2‑5
    [Google Scholar]
  77. ThirupathiG. Kumara SwamyS. RameshA. Solid lipid nanocarriers as alternative drug delivery system for improved oral delivery of drugs.J. Drug Deliv. Ther.2020106-s16817210.22270/jddt.v10i6‑s.4410
    [Google Scholar]
  78. PooviG. VijayakumarT.M. DamodharanN. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the effect of physicochemical formulation factors in the optimization process, different preparation technique, characterization, and toxicity.Curr. Nanosci.201915543645310.2174/1573413714666180809120435
    [Google Scholar]
  79. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  80. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. PatelR.J. Ajazuddin RavichandiranV. MurtyU.S. AlexanderA. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.02032061621
    [Google Scholar]
  81. PattaniA.S. MandawgadeS.D. PatravaleV.B. Development and comparative anti-microbial evaluation of lipid nanoparticles and nanoemulsion of Polymyxin B.J. Nanosci. Nanotechnol.2006692986299010.1166/jnn.2006.45917048508
    [Google Scholar]
  82. AlbanoJ.M.R. RibeiroL.N.M. CoutoV.M. Barbosa MessiasM. Rodrigues da SilvaG.H. BreitkreitzM.C. de PaulaE. PickholzM. Rational design of polymer-lipid nanoparticles for docetaxel delivery.Colloids Surf. B Biointerfaces2019175566410.1016/j.colsurfb.2018.11.07730517905
    [Google Scholar]
  83. AhmedT.A. AlzahraniM.M. SirwiA. AlhakamyN.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles.Pharmaceutics202113215110.3390/pharmaceutics1302015133498849
    [Google Scholar]
  84. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals (Basel)2023167102010.3390/ph1607102037513932
    [Google Scholar]
  85. PinheiroR.G.R. GranjaA. LoureiroJ.A. PereiraM.C. PinheiroM. NevesA.R. ReisS. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease.Eur. J. Pharm. Sci.202014810531410.1016/j.ejps.2020.10531432200044
    [Google Scholar]
  86. VedagiriA. ThangarajanS. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease.Neuropeptides20165811112510.1016/j.npep.2016.03.00227021394
    [Google Scholar]
  87. SantonocitoD. RacitiG. CampisiA. SpositoG. PanicoA. SicilianoE. SarpietroM. DamianiE. PugliaC. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization.Nanomaterials (Basel)202111239110.3390/nano1102039133546352
    [Google Scholar]
  88. AhmadS. HafeezA. Formulation and development of curcumin–piperine-loaded S-SNEDDS for the treatment of Alzheimer’s disease.Mol. Neurobiol.20236021067108210.1007/s12035‑022‑03089‑736414909
    [Google Scholar]
  89. SinghN. VishwasS. KaurA. KaurH. KakotyV. KhursheedR. ChaitanyaM.V.N.L. BabuM.R. AwasthiA. corrieL. HarishV. YanadaiahP. GuptaS. SayedA.A. El-SayedA. AliI. KensaraO.A. GhabouraN. GuptaG. DouA.M. AlgahtaniM. El-kottA.F. DuaK. SinghS.K. Abdel-DaimM.M. Harnessing role of sesamol and its nanoformulations against neurodegenerative diseases.Biomed. Pharmacother.202316711551210.1016/j.biopha.2023.11551237725878
    [Google Scholar]
  90. MengQ. WangA. HuaH. JiangY. WangY. MuH. WuZ. SunK. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease.Int. J. Nanomedicine20181370571810.2147/IJN.S15147429440896
    [Google Scholar]
  91. KumarR. GargR. KhuranaN. A comparative in vivo evaluation of anti-alzheimer activity of bacopa extract and its solid lipid nanoparticles.Curr. Bioact. Compd.2021177e01062118798210.2174/1573407216999201113121756
    [Google Scholar]
  92. El-HawwaryS.S. Abd AlmaksoudH.M. SaberF.R. ElimamH. SayedA.M. El RaeyM.A. AbdelmohsenU.R. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling.RSC Advances20211129180091802510.1039/D1RA01725J35480186
    [Google Scholar]
  93. YusufM. KhanM. AlrobaianM.M. AlghamdiS.A. WarsiM.H. SultanaS. KhanR.A. Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights.J. Drug Deliv. Sci. Technol.20216110221410.1016/j.jddst.2020.102214
    [Google Scholar]
  94. DashputreN.L. LaddhaU.D. DarekarP.P. KadamJ.D. PatilS.B. SableR.R. UdavantP.B. TajanpureA.B. KakadS.P. KshirsagarS.J. Potential therapeutic effects of naringin loaded PLGA nanoparticles for the management of Alzheimer’s disease: In vitro, ex vivo and in vivo investigation.Heliyon202399e1937410.1016/j.heliyon.2023.e1937437662728
    [Google Scholar]
  95. JainD. HasanN. ZafarS. ThakurJ. HaiderK. ParvezS. AhmadF.J. Transferrin functionalized nanostructured lipid carriers for targeting Rivastigmine and Resveratrol to Alzheimer’s disease: Synthesis, in vitro characterization and brain uptake analysis.J. Drug Deliv. Sci. Technol.20238610455510.1016/j.jddst.2023.104555
    [Google Scholar]
  96. OmidfarF. GheybiF. DavoodiJ. AmirinejadM. BadieeA. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation.Biotechnol. Appl. Biochem.202370284685610.1002/bab.240436112716
    [Google Scholar]
  97. DarwishA.B. MohsenA.M. ElShebineyS. ElgoharyR. YounisM.M. Development of chitosan lipid nanoparticles to alleviate the pharmacological activity of piperine in the management of cognitive deficit in diabetic rats.Sci. Rep.2024141824710.1038/s41598‑024‑58601‑x38589438
    [Google Scholar]
  98. SainiS. SharmaT. JainA. KaurH. KatareO.P. SinghB. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence.Colloids Surf. B Biointerfaces202120511183810.1016/j.colsurfb.2021.11183834022704
    [Google Scholar]
  99. GhoshA. KhanamN. NathD. Solid lipid nanoparticle: A potent vehicle of the kaempferol for brain delivery through the blood-brain barrier in the focal cerebral ischemic rat.Chem. Biol. Interact.202439711108410.1016/j.cbi.2024.11108438823537
    [Google Scholar]
  100. AndradeS. LoureiroJ.A. PereiraM.C. Transferrin-functionalized liposomes for the delivery of gallic acid: A therapeutic approach for Alzheimer’s disease.Pharmaceutics20221410216310.3390/pharmaceutics1410216336297599
    [Google Scholar]
  101. FirdausZ. SinghT.D. An insight in pathophysiological mechanism of Alzheimer’s disease and its management using plant natural products.Mini Rev. Med. Chem.2021211355710.2174/18755607MTA4bNzEgz32744972
    [Google Scholar]
  102. OzkanG. KostkaT. EsatbeyogluT. CapanogluE. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds.Molecules20202523554510.3390/molecules2523554533256012
    [Google Scholar]
  103. SzebeniJ. StormG. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.Biochem. Biophys. Res. Commun.2015468349049710.1016/j.bbrc.2015.06.17726182876
    [Google Scholar]
  104. GbianD.L. OmriA. Lipid-based drug delivery systems for diseases managements.Biomedicines2022109213710.3390/biomedicines1009213736140237
    [Google Scholar]
  105. Kamil HussainM. SaquibM. Faheem KhanM. Techniques for extraction, isolation, and standardization of bioactive compounds from medicinal plants.Natural Bio-active Compounds Sub Title: Volume 2: Chemistry, Pharmacology and Health Care PracticesSpringer201910.1007/978‑981‑13‑7205‑6
    [Google Scholar]
  106. AalinkeelR. KutscherH.L. SinghA. CwiklinskiK. KhechenN. SchwartzS.A. PrasadP.N. MahajanS.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease?J. Drug Target.201826218219310.1080/1061186X.2017.135400228697660
    [Google Scholar]
  107. SachdevaA.K. MisraS. Pal KaurI. ChopraK. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence.Eur. J. Pharmacol.201574713214010.1016/j.ejphar.2014.11.01425449035
    [Google Scholar]
  108. TrapaniA. CastellaniS. GuerraL. De GiglioE. FracchiollaG. CorboF. CioffiN. PassantinoG. PoetaM.L. MontemurroP. MallamaciR. CardoneR.A. ConeseM. Combined dopamine and grape seed extract-loaded solid lipid nanoparticles: Nasal mucosa permeation, and uptake by olfactory ensheathing cells and neuronal SH-SY5Y cells.Pharmaceutics202315388110.3390/pharmaceutics1503088136986742
    [Google Scholar]
  109. KuoY.C. TsaiH.C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons.Mater. Sci. Eng. C20189144545710.1016/j.msec.2018.05.06230033276
    [Google Scholar]
  110. ChenZ.L. HuangM. WangX.R. FuJ. HanM. ShenY.Q. XiaZ. GaoJ.Q. Transferrin-modified liposome promotes α-mangostin to penetrate the blood–brain barrier.Nanomedicine201612242143010.1016/j.nano.2015.10.02126711963
    [Google Scholar]
  111. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  112. RajuM. KundeS.S. AutiS.T. KulkarniY.A. WairkarS. Berberine loaded nanostructured lipid carrier for Alzheimer’s disease: Design, statistical optimization and enhanced in vivo performance.Life Sci.202128511999010.1016/j.lfs.2021.11999034592234
    [Google Scholar]
  113. HanafyA.S. FaridR.M. HelmyM.W. ElGamalS.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management.Drug Deliv.20162383111312210.3109/10717544.2016.115374826942549
    [Google Scholar]
  114. MehtaP. ShendeP. Collation of fullerenes and carbon nanotubes with genistein for synergistic anti-Alzheimer’s activity by amyloid-β deaggregation.J. Drug Deliv. Sci. Technol.20249110520510.1016/j.jddst.2023.105205
    [Google Scholar]
  115. NasrM. WahdanS.A. Neuroprotective effects of novel nanosystems simultaneously loaded with vinpocetine and piracetam after intranasal administration.Life Sci.201922611712910.1016/j.lfs.2019.04.01430981765
    [Google Scholar]
  116. El-NasharH.A.S. AbbasH. ZewailM. NoureldinM.H. AliM.M. ShamaaM.M. KhattabM.A. IbrahimN. Neuroprotective effect of artichoke-based nanoformulation in sporadic Alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways.Pharmaceuticals (Basel)20221510120210.3390/ph1510120236297313
    [Google Scholar]
  117. GadS.R. El-GogaryR.I. GeorgeM.Y. HathoutR.M. Nose-to-brain delivery of 18β-glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer’s disease.Int. J. Pharm.202364512338710.1016/j.ijpharm.2023.12338737678474
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615322050240817172547
Loading
/content/journals/cnm/10.2174/0124054615322050240817172547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test