Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Introduction

Stainless steel 17-4 PH is said to be a challenging material to cut due to its limited thermal conductivity. Early tool failure and inadequate surface finishing were observed because excessive cutting temperatures have a negative impact on productivity when machining 17-4 PH steel.

Methods

Therefore, the present study explored the viability of alumina-reinforced ricebran oil (AlO (80 nm)) nanoparticles with ricebran oil and divyol oil as lubricants. A diverse volume fraction of alumina was mixed with 5 vol. % rice bran oil ordivyol oil. Subsequently, twenty-seven turning operations were performed on the 17-4PH material in the optimal lubricating medium. When AlO nanoparticles are added to rice bran oil, there is an 18.22% improvement in surface roughness.

 Results

The particle volumetric range that the authors chose was 0.25 vol.% to 1.25 vol.% to achieve equilibrium between the benefits of higher heat conductivity and the reduced pumping power resulting from high viscosity. The machining values were statistically analyzed analysis of variance. In addition, response surface methodology (RSM) was employed to develop a mathematical equation linking the input and machining responses.

Conclusion

A comparison of the two analyzed fluid systems revealed that the cutting force (Fz), feed force (Fx), thrust force (Fy), and surface roughness (Ra) of the AlO mixed Rice Bran Oil cutting fluid were considerably lower than those of the other methods (8.89%, 4.659%, 9.1416%, and 18.22%, respectively).

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615333986241004114240
2024-12-02
2025-11-17
Loading full text...

Full text loading...

References

  1. WuJ.H. LinC.K. Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.20023361715172410.1007/s11661‑002‑0180‑8
    [Google Scholar]
  2. SharmaV.S. DograM. SuriN.M. Cooling techniques for improved productivity in turning.Int. J. Mach. Tools Manuf.200949643545310.1016/j.ijmachtools.2008.12.010
    [Google Scholar]
  3. HongS.Y. BroomerM. Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel.Clean Technol. Environ. Policy2000230157016610.1007/s100980000073
    [Google Scholar]
  4. AoyamaT. KakinumaY. YamashitaM. AokiM. Development of a new lean lubrication system for near dry machining process.CIRP Ann.200857112512810.1016/j.cirp.2008.03.094
    [Google Scholar]
  5. PrasadM.S.G. DrakshayaniD.N. Studies on passive cooling techniques in dry machining.Mater. Manuf. Process.201025636036910.1080/10426910903365703
    [Google Scholar]
  6. KhanaferK. VafaiK. LightstoneM. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids.Int. J. Heat Mass Transf.200346193639365310.1016/S0017‑9310(03)00156‑X
    [Google Scholar]
  7. WangX. XuX. ChoiS.U.S. Thermal conductivity of nanoparticle-fluid mixture.J. Thermophys. Heat Trans.199913447448010.2514/2.6486
    [Google Scholar]
  8. DasS. Nano-fluids for heat transfer: An analysis of thermophysical properties.IOSR J. Appl. Phys.2015753440
    [Google Scholar]
  9. JohnV. AggarwalS. AroraR. K. OzaA. VermaR. Forecasting the output using ANN models and effect of input factors on machinability of Duplex Steel 2205 in dry-turning operation for high strength and anti-corrosive applications.Adv. Mater. Process. Technol.202210210671078
    [Google Scholar]
  10. SivaiahP. ChakradharD. The effectiveness of a novel cryogenic cooling approach on turning performance characteristics during machining of 17-4 PH stainless steel material.Silicon2019111253810.1007/s12633‑018‑9875‑3
    [Google Scholar]
  11. SivaiahP. ChakradharD. Performance improvement of cryogenic turning process during machining of 17-4 PH stainless steel using multi objective optimization techniques.Measurement201913632633610.1016/j.measurement.2018.12.094
    [Google Scholar]
  12. JohnV. AggarwalS. OzaA.D. KumarM. JoshiA. PatelB. GuptaM. Process parameters and TiAlN coating impact on microwire-EDM of Ti6Al4V using PVD technique in biomedical application.Innovation and Emerging Technologies202310234001210.1142/S2737599423400121
    [Google Scholar]
  13. DubeyV. Kumar SharmaA. Kumar SinghR. Study of various cooling methodology used in machining processes.Mater. Today Proc.2020211572157610.1016/j.matpr.2019.11.092
    [Google Scholar]
  14. PuZ. OuteiroJ.C. BatistaA.C. DillonO.W.Jr PuleoD.A. JawahirI.S. Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components.Int. J. Mach. Tools Manuf.201256172710.1016/j.ijmachtools.2011.12.006
    [Google Scholar]
  15. CarouD. RubioE.M. LauroC.H. DavimJ.P. Experimental investigation on finish intermittent turning of UNS M11917 magnesium alloy under dry machining.Int. J. Adv. Manuf. Technol.2014759-121417142910.1007/s00170‑014‑6215‑7
    [Google Scholar]
  16. SelvamM.D. SivaramN.M. A comparative study on the surface finish achieved during turning operation of AISI 4340 steel in flooded, near-dry and dry conditions.Aust. J. Mech. Eng.2018
    [Google Scholar]
  17. SenB. KothapalliS.K. KumarR. CM. AbdullahI. SinghG. SanthoshA.J. Minimum quantity blended bio-lubricants for sustainable machining of superalloy: An MCDM model-based study.AIP Adv.202414707522410.1063/5.0222561
    [Google Scholar]
  18. AhmedL.S. GovindarajuN. Pradeep KumarM. Experimental investigations on cryogenic cooling in the drilling of titanium alloy.Mater. Manuf. Process.201631560360710.1080/10426914.2015.1019127
    [Google Scholar]
  19. BerminghamM.J. PalanisamyS. KentD. DarguschM.S. A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting.J. Mater. Process. Technol.2012212475276510.1016/j.jmatprotec.2011.10.027
    [Google Scholar]
  20. YangB. ShiC. TengJ. LeiQ. NieY. LiY. Influence of Co addition on the deformation behavior and mechanical properties of Ni–16Cr–11Mo–2Cu alloy.Mater. Sci. Eng. A201976713844210.1016/j.msea.2019.138442
    [Google Scholar]
  21. Es'haghiM. Accurate approach implementation in vibration analysis of thick sector plates.Int. J. Mech. Sci.201479114
    [Google Scholar]
  22. SongK. XingJ. DongQ. LiuP. TianB. CaoX. Internal oxidation of dilute Cu–Al alloy powers with oxidant of Cu2O.Mater. Sci. Eng. A20043801-211712210.1016/j.msea.2004.03.042
    [Google Scholar]
  23. GuoX.L. WangL. GreenM.A. Coupled transient thermal and electromagnetic finite element analysis of quench in MICE coupling magnet.Cryogenics2012527-942042710.1016/j.cryogenics.2012.04.003
    [Google Scholar]
  24. TanttulaK. HaikonenK. VuolaJ. Hospitalized burns in Finland: 36 305 cases from 1980–2010.Burns201844365165710.1016/j.burns.2017.09.00129029854
    [Google Scholar]
  25. LatinovićL. MarjanovićM. A systematic review of human health risks associated with metalworking fluids exposure.Serb. J. Eng. Manag.20216211010.5937/SJEM2102001L
    [Google Scholar]
  26. HaiderJ. HashmiM. S. J. 8.02-Health and environmental impacts in metal machining processes.Compreh. Mater. Process.20148733
    [Google Scholar]
  27. KaynakY. GharibiA. YılmazU. KöklüU. AslantaşK. A comparison of flood cooling, minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy.J. Manuf. Process.20183450351210.1016/j.jmapro.2018.06.003
    [Google Scholar]
  28. Naresh BabuM. AnandanV. MuthukrishnanN. ArivalagarA.A. Dinesh BabuM. Evaluation of graphene based nano fluids with minimum quantity lubrication in turning of AISI D3 steel.SN Appl. Sci.2019110120210.1007/s42452‑019‑1182‑0
    [Google Scholar]
  29. ChakuleR.R. ChaudhariS.S. ChandratreK.V. PatoleP.B. TalmaleP.S. Nanofluids, micro-lubrications and machining process optimisations − A review.Manuf. Rev.202310110.1051/mfreview/2022034
    [Google Scholar]
  30. ÖndinO. KıvakT. SarıkayaM. YıldırımÇ.V. Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel.Tribol. Int.202014810632310.1016/j.triboint.2020.106323
    [Google Scholar]
  31. SharmaA.K. SinghR.K. DixitA.R. TiwariA.K. Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel.J. Manuf. Process.20173046748210.1016/j.jmapro.2017.10.016
    [Google Scholar]
  32. KhanM.A.A. HussainM. LodhiS.K. ZazoumB. AsadM. AfzalA. Green metalworking fluids for sustainable machining operations and other sustainable systems: A review.Metals2022129146610.3390/met12091466
    [Google Scholar]
  33. SenB. DebnathS. BhowmikA. Sustainable machining of superalloy in minimum quantity lubrication environment: Leveraging GEP-PSO hybrid optimization algorithm.Int. J. Adv. Manuf. Technol.20241309-104575460110.1007/s00170‑024‑12962‑9
    [Google Scholar]
  34. GürbüzH. GönülaçarY.E. Experimental and statistical investigation of the effects of MQL, dry and wet machining on 396 machinability and sustainability in turning of AISI 4140 steel. Proceedings of the Institution of Mechanical Engineers, 397 Part E.J. Process Mech. Eng.202223651808182310.1177/09544089221076243
    [Google Scholar]
  35. YurtkuranH. BoyM. GünayM. Investigation of machinability indicators during sustainable milling of 17-399 4PH stainless steel under dry and MQL environments.Proc. Inst. Mech. Eng., Part E20232050
    [Google Scholar]
  36. SenB. BhowmikA. Application of minimum quantity GnP nanofluid and cryogenic LN2 in the machining of Hastelloy C276.Tribol. Int.202419410950910.1016/j.triboint.2024.109509
    [Google Scholar]
  37. KhataiS. SahooA.K. KumarR. PandaA. Recent research progress on various cooling and lubrication techniques used in sustainable hard machining: A comprehensive review.Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.202310.1177/09544089231169655
    [Google Scholar]
  38. MoghadasiA. HadadM. Towards sustainable machining of 17-4 PH stainless steel using hybrid MQL-hot 394 turning process.Energy Equipment and Systems201974339352
    [Google Scholar]
  39. Venu GopalA. Venkateswara RaoP. Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding.Int. J. Mach. Tools Manuf.200343131327133610.1016/S0890‑6955(03)00165‑2
    [Google Scholar]
  40. SenB. DasguptaA. BhowmikA. Optimizing wire-cut EDM parameters through evolutionary algorithm: A study for improving cost efficiency in turbo-machinery manufacturing.Int. J. Interact. Des. Manuf.2024112
    [Google Scholar]
  41. YaoW. ChuQ. LyuB. WangC. ShaoQ. FengM. WuZ. Modeling of material removal based on multi-scale contact in cylindrical polishing.Int. J. Mech. Sci.202222310728710.1016/j.ijmecsci.2022.107287
    [Google Scholar]
  42. YaoW. LyuB. ZhangT. GuoL. SongY. Effect of elastohydrodynamic characteristics on surface roughness in cylindrical shear thickening polishing process.Wear2023530-53120502610.1016/j.wear.2023.205026
    [Google Scholar]
  43. BishtY.S. JohnV. AggarwalS. AnandaramH. RastogiN. JoshiK. Application of AI and RSM to optimize WEDM process parameters on D4 steel.2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), Ibb, Yemen, 25-26 October 2022, pp. 1-5.10.1109/eSmarTA56775.2022.9935378
    [Google Scholar]
  44. SarıkayaM. YılmazV. GüllüA. Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy.J. Clean. Prod.201613317218110.1016/j.jclepro.2016.05.122
    [Google Scholar]
  45. EndrinoJ.L. Fox-RabinovichG.S. GeyC. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel.Surf. Coat. Tech.2006200246840684510.1016/j.surfcoat.2005.10.030
    [Google Scholar]
  46. RahmatiB. SarhanA.A.D. SayutiM. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining.J. Clean. Prod.20146668569110.1016/j.jclepro.2013.10.048
    [Google Scholar]
  47. SenB. HussainS.A.I. GuptaM.K. MiaM. MandalU.K. Swarm intelligence based selection of optimal end-milling parameters under minimum quantity nano-green lubricating environment.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2021235236969698310.1177/09544062211012723
    [Google Scholar]
  48. HussainS.A.I. SenB. Das GuptaA. MandalU.K. Novel multiobjective decision-making and trade-off approach for selecting optimal machining parameters of inconel-800 superalloy.Arab. J. Sci. Eng.20204575833584710.1007/s13369‑020‑04583‑7
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615333986241004114240
Loading
/content/journals/cnm/10.2174/0124054615333986241004114240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test