Skip to content
2000
Volume 10, Issue 2
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Marine pollution monitoring is important for food bio-safety as well as the conservation of the environment. The green mussel, has previously been used as an eco-sentinel organism in marine pollution monitoring. In this study the byssogenesis of was used as a biomarker during an study. Fifteen were exposed for 14 days in filtered seawater to metal mixtures of lead (Pb) and cadmium (Cd) containing 0.008, 0.04, 0.2, 1, 5 mg/l of each metal for 14 days. The results showed that Pb and Cd residues in the mussel tissue were proportional to the metal concentration in water. Kruskal-Wallis and Dunn’s Multiple Comparison tests were used to assess the effects of metal exposure on the production of byssus. The test results showed that the byssus production in 0.2 and 1 mg/l treatments was significantly different from controls (p < 0.05). Backward elimination regression was used to discern the role of Pb and Cd in the byssus productions. The regression demonstrated that Pb played a more important role than Cd in terms of byssogenesis. The study suggested that the byssogenesis production of has potential to be used in biomarker studies.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/1573401310666140306225434
2014-05-01
2025-09-27
Loading full text...

Full text loading...

References

  1. HawkinsA.J.S. BayneB.L. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel Mytilus edulis: budgets, conversion efficiencies and maintenance requirements.Mar. Ecol. Prog. Ser.198525181188
    [Google Scholar]
  2. GriffithsC.L. KingJ.A. Energy expended on growth and gonad output in the ribbed mussel Aulacomya ater.Marine Biology197953217222
    [Google Scholar]
  3. AldredN. IstaL.K. CallowM.E. Mussel (Mytilus edulis) byssus deposition in response to variations in surface wettability.J. R. Soc. Interface20113743
    [Google Scholar]
  4. BellE.C. GoslineJ.M. Mechanical design of mussel byssus: material yield enhances attachment strength.J. Exp. Biol.199619910051017
    [Google Scholar]
  5. BruceP.L. MessersmithP.B. IsraelachviliJ.N. WaiteJ.H. Mussel-Inspired adhesives and coatings.Annual Rev Material Res.20114199132
    [Google Scholar]
  6. SzeferP. FrelekK. SzeferK. Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from southern Baltic.Environ. Poll.2002120423444
    [Google Scholar]
  7. SzeferP. IkutaK. KushiyamaS. SzeferK. FrelekK. GeldonJ. Distribution and association of trace metals in soft tissues and byssus of Mytilus edulis from the east coast of Kyushu Island, Japan.Arch. Environ. Contam. Toxicol.199732184190
    [Google Scholar]
  8. UnluM.Y. FowlerS.W. Factor affecting the flux of arsenic through the mussel Mytilus galloprovincialis.Marine Biol.197951209219
    [Google Scholar]
  9. YapC.K. IsamilA. TanS.G. Concentrations of Cd, Cu, Pb and Zn in different parts of byssus of green-lipped Mussel Perna viridis (Linnaeus).Pak. J. Biol. Sci.20036789792
    [Google Scholar]
  10. EdwardF.B. YapC.K. IsmailA. TanS.G. Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves.Water, Air Soil Poll.2009196297309
    [Google Scholar]
  11. YapC.K. IsmailA. TanS.G. OmarH. Can the byssus of green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia be a biomonitoring for Cd, Pb and Zn? Field and laboratory studies.Environ. Intl.200329521528
    [Google Scholar]
  12. YapC.K. IsmailA. TanS.G. Byssus of the green-lipped mussel Perna viridis as a biomonitoring material for Zn.Russian J Marine Biol.200531102108
    [Google Scholar]
  13. YapC.K. EdwardF.B. TanS.G. Determination of heavy metal distribution in the green-lipped mussel Perna viridis as bioindicators of heavy metal contamination in the Johore Straits and Senggarang, Peninsular Malaysia.Trends Applied Sci. Res.20072284294
    [Google Scholar]
  14. YaqinK. The case of Shell deformity and detection DNA damage in blue mussel gill cell using comet assay.Torani2002123237
    [Google Scholar]
  15. YaqinK. Ecotoxicological assessment of aquatic genotoxicity using comet assay.Hayati200613124130
    [Google Scholar]
  16. PruskiA.M. DixonD.R. Effect of cadmium on nuclear integrity and DNA repair efficiency in the gill of Mytilus edulis L.Aquat. Toxicol.200257127137
    [Google Scholar]
  17. FrenzilliG. NigroM. ScarcelliV. GorbiS. RegoliF. DNA integrity and total oxyradical scavenging capacity in the Mediterranean mussel, Mytilus galloprovincialis: a field study in a highly eutrophicated coastal lagoon.Aquat. Toxicol.2001531932
    [Google Scholar]
  18. ChingE.W.K. ShiuW.H.L. LamP.K.S. DNA adduct formation and DNA strandbreaks in green-lipped mussels (Perna viridis) exposed tobenzo[a]pyrene:dose-and time-dependent relathionships.Mar. Pollut. Bull.200142603610
    [Google Scholar]
  19. SiuW.H.L. CaoJ. JackR.W. Application of the comet and micronucleus assay to the detection of B[a]P genotoxicity in haemocytes of green-lipped mussel (Perna viridis).Aquat. Toxicol.200466381392
    [Google Scholar]
  20. YaqinK. LayB.W. RianiE. MasudZ.A. HansenP.D. Hot spot biomonitoring of marine pollution effects using cholinergic and immunity biomarkers of tropical green mussel (Perna viridis) of the Indonesian waters.J. Toxicol. Environ. Health;20113356366
    [Google Scholar]
  21. AbessaD.M.S. ZaroniL.P. SousaE.C.P.M. Physiological and Cellular Responses in Two Populations of the Mussel Perna perna Collected at Different Sites from the Coast of São Paulo, Brazil.Braz. Arch. Biol. Technol.200548217255
    [Google Scholar]
  22. DomouhtsidouG.P. DimitriadisK. Lysosomal, tissue and cellular alterations in the gills, palps and intestine of the mussels Mytilus galloprovincialis, in relation to pollution.Marine Biol.2004145109120
    [Google Scholar]
  23. BrownM. DaviesI.M. MoffatC.F. RedshawJ. CraftJ.A. Characteristic of choline esterases and their tissue and subcellular distribution in mussel (Mytilus edulis).Marine Environ. Res.200457155169
    [Google Scholar]
  24. SheffrinN.M.H. FiellerN.R.J. WilliamsE.E. A behavioural bioassay for impaired sea-water quality using the plantigrades of the common mussel Mytilus edulis L.: the response to copper.Aquat. Toxicol.198857791
    [Google Scholar]
  25. AnandrajA. MarshallD.J. GregoryM.A. McClurgT.P. Metal accumulation, filtration and O2 uptake rates in the mussel Perna perna (Mollusca:Bivalvia) exposed to H2+, Cu2+ and Zn2+.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2002132355363
    [Google Scholar]
  26. HolmesN. Marine fouling in power stations.Mar. Pollut. Bull.19707105106
    [Google Scholar]
  27. RobertsD. Effect of pesticides on byssus formation in the common mussel, Mytilus edulis.Environ. Pollut.19758241254
    [Google Scholar]
  28. WangZ. YanC. KongH. WuD. Mechanism of cadmium toxicity to various trophic saltwater organisms.Nova Science Publisher, Inc, New York2010
    [Google Scholar]
  29. RoesijadiG. RobinsonW.E. Metal regulation in aquatic animals; Mechanisms of uptake, accumulation, and release. In: Malin DC, Ostrander G (Eds) Molecular mechanisms in aquatic toxicology.Lewis Publishers, New York1993
    [Google Scholar]
  30. RainbowP.S. Trace metal concentration in aquatic invertebrates; why and so what?Environ. Pollut.2002120497507
    [Google Scholar]
  31. Di ToroD.M. AllenH.E. BergmanH.L. MeyerJ.S. PaquinP.R. SantoreR.C. Biotic ligand model of the acute toxicity of metals; Technical basis.Environ. Toxicol. Chem.20012023832396
    [Google Scholar]
  32. NiyogiS. WoodC.M. Biotic Ligand Model, a flexible tool for developing itespecific water quality guidelines for metals.Environ. Sci. Technol.20043861776192
    [Google Scholar]
  33. LuomaS.N. RainbowP.S. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Environ. Sci. Technol.20053919211931
    [Google Scholar]
  34. VijverM.G. van GestelC.A.M. LannoR.P. van StraalenN.M. PeijnenbergW.J.G.M. Internal metal sequestration and its ecotoxicological relevance: A review.Environ. Sci. Technol.20043847054712
    [Google Scholar]
  35. YapC.K. IsmailA. TanS.G. Cadmium, copper, lead and zinc levels in the green-lepped mussel Perna viridis (L) from the West Coast of Peninsular Malaysia: safe as food?Pertanika J. Trop. Agri. Sci.2005284147
    [Google Scholar]
  36. KamaruzzamanB.Y. ZahirM.S.M. JohnB.A. Bioaccumulation of some metals by green mussel Perna viridis (Linnaeus 1958) from Pekan, Pahang, Malaysia.Intl J Biol Chem201155460
    [Google Scholar]
  37. FangJ.K.H. WuR.S.S. ChanA.K.Y. ShinP.K.S. Metal concentrations in green-lipped mussels (Perna viridis) and rabbitfish (Siganus oramin) from Victoria Harbour, Hong Kong after pollution abatement.Marine Pollut. Bull.20085614861491
    [Google Scholar]
  38. SasikumarG. KrishnamoorthyM. KrishnakumarP.K. BhatG.S. Accumulation of trace metals in green mussel Perna viridis in the shellfish harvesting environment along Southern Karnataka Coast.Indian J. Fish.2011585358
    [Google Scholar]
  39. YapC.K. IsmailA. TanS.G. OmarH. Accumulation, depuration and distribution of cadmium and zinc in the green-lipped mussel Perna viridis (Linnaeus) under laboratory conditions.Hydrobiologia2003498151160
    [Google Scholar]
  40. YapC.K. IsmailA. TanS.G. IsmailA.R. Assessment of different soft tissues of the green-lipped mussel Perna viridis (linnaeus) as biomonitoring agents of Pb: field and laboratory studies.Water, Air, Soil Poll.2004153253268
    [Google Scholar]
  41. NeffJM Bioaccumulation in marine organisms: Effect of contaminants from oil well produced water.Elsevier Ltd, The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB UK2002
    [Google Scholar]
  42. BayneB.L. ThompsonR.J. WiddowsJ. BayneB.L. (Ed) Physiology: I. In: Marine mussels: their ecology and physiology.Cambridge University Press, London1976121206
    [Google Scholar]
  43. AmiardJ.C. Amiard-TriquetC. BerthetB. MayerC. Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel Mytilus edulis.Marine Biology198692713
    [Google Scholar]
  44. AdamsW.J. BlustR. BorgmannU. Utility of tissue residues for predicting effects of metals on aquatic organisms.Integr. Environ. Assess. Manag.201077598
    [Google Scholar]
  45. TaniaY-TNg WangW.X. Modeling of cadmium bioaccumulation in two population of the green mussel Perna viridis.Environ. Toxicol. Chemis20052422992305
    [Google Scholar]
  46. YoungG.A. Byssus-thread formation by the mussel Mytilus edulis: effects of environmental factors.Marine Ecology-Progress Series198524261271
    [Google Scholar]
  47. CheungS.G. LukK.C. ShinP.K.S. Predator-Labeling Effect on Byssus Production in Marine Mussels Perna viridis (L.) and Brachidontes variabilis (Krauss).J. Chem. Ecol.20063215011512
    [Google Scholar]
  48. AyadM.A. FdilM.A. MouabadA. Effects of Cypermethrin (Pyrethroid Insecticide) on the Valve Activity Behavior, Byssal Thread Formation, and Survival in Air of the Marine Mussel Mytilus galloprovincialis.Arch. Environ. Contam. Toxicol.201160462470
    [Google Scholar]
  49. TangQ. ZhangJ. FangJ. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems.Mar. Ecol. Prog. Ser.201142497104
    [Google Scholar]
  50. YaqinK. RappeR.A. TresnatiJ. Membangun pendekatan alternatif dalam monitoring perairan dengan menggunakan biomarker dalam berbagai tingkat organisasi biologis kerang hijau, Perna viridis. Laporan penelitian fundamental.Universitas Hasanauddin2011
    [Google Scholar]
/content/journals/cnf/10.2174/1573401310666140306225434
Loading
/content/journals/cnf/10.2174/1573401310666140306225434
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; Byssogenesis; green mussel; metals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test