Skip to content
2000
image of Investigation of Polyphenol Composition and the Bioactivities of Shoots, Seeds, and Skins of Georgian Grape (Vitis vinifera L.) Varieties

Abstract

Introduction

Grape-derived products constitute a significant and affordable source of natural bioactive compounds, particularly polyphenols. Regular consumption of these substances is associated with reduced cases of various degenerative and long-term illnesses, largely due to their potent antioxidant properties that combat oxidative stress. This study aimed to explore the phenolic composition of grape-derived products from three Georgian grape varieties and evaluate their antioxidant and anti-inflammatory activities.

Methods

Phenolic compounds were assessed qualitatively and quantitatively using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The ORAC (oxygen radical absorbance capacity) and the DCFH-DA assay on WS1 human fibroblasts were used to evaluate antioxidant activity. Anti-inflammatory activity was assessed via nitrite quantification in RAW 264.7 macrophages treated with extracts.

Results

Saperavi seeds demonstrated highest value for phenolic composition, as well as antioxidant activity with an IC value of 18 µg/mL and ORAC of 0.9 µmol TE/mg. Anti-inflam-matory properties were most prominent in seed extracts of Kisi (53% inhibition), Rkatsiteli (41.7%), and Saperavi (39.5%).

Discussion

Polyphenol profiles varied by grape tissue; Saperavi seeds were rich in flavanols, while skins contained anthocyanins, such as delphinidin-3-O-glucoside. Antioxidant and anti-inflammatory activities also differed by variety; notably, Kisi seeds showed highest NO inhibition. These results highlighted tissue- and variety-dependent polyphenol distribution and bioactivity.

Conclusion

Grape-derived products, particularly seeds and skins, are rich in polyphenols with strong antioxidant and anti-inflammatory activities. This evidence valorizes grape by-products as sustainable sources of natural bioactives suitable for functional food and pharmaceutical applications.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013400039250904104409
2025-09-12
2025-12-09
Loading full text...

Full text loading...

References

  1. Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 2012 17 11 12771 12791 10.3390/molecules171112771 23114614
    [Google Scholar]
  2. Parham S. Kharazi A.Z. Bakhsheshi-Rad H.R. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020 9 12 1309 10.3390/antiox9121309 33371338
    [Google Scholar]
  3. Salmerón-Manzano E. Garrido-Cardenas J.A. Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int. J. Environ. Res. Public Health 2020 17 10 3376 10.3390/ijerph17103376 32408690
    [Google Scholar]
  4. Fraga C.G. Croft K.D. Kennedy D.O. Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019 10 2 514 528 10.1039/C8FO01997E 30746536
    [Google Scholar]
  5. Rudrapal M. Khairnar S.J. Khan J. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol. 2022 13 806470 10.3389/fphar.2022.806470 35237163
    [Google Scholar]
  6. Lattanzio V. Kroon P.A. Quideau S. Treutter D. Plant phenolics – secondary metabolites with diverse functions. Recent Advances in Polyphenol Research 2009 1 1 35
    [Google Scholar]
  7. de la Rosa L.A. Moreno-Escamilla J.O. Rodrigo-García J. Alvarez-Parrilla E. Phenolic compounds. In: Postharvest Physiology and Biochemistry of Fruits and Vegetables 2019 pp. 253 71 10.1016/B978‑0‑12‑813278‑4.00012‑9
    [Google Scholar]
  8. Shahidi F. Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int. J. Mol. Sci. 2018 19 6 1573 10.3390/ijms19061573 29799460
    [Google Scholar]
  9. Fraga C.G. Galleano M. Verstraeten S.V. Oteiza P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 2010 31 6 435 445 10.1016/j.mam.2010.09.006 20854840
    [Google Scholar]
  10. Grabska-Kobyłecka I. Szpakowski P. Król A. Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 2023 15 15 3454 10.3390/nu15153454 37571391
    [Google Scholar]
  11. Dangles O. Antioxidant activity of plant phenols: Chemical mechanisms and biological significance. Curr. Org. Chem. 2012 16 6 692 714 10.2174/138527212799957995
    [Google Scholar]
  12. Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019 144 135 143 10.1016/j.plaphy.2019.09.039 31563754
    [Google Scholar]
  13. Vuolo M.M. Lima V.S. Junior M.R. Phenolic compounds structure, classification, and antioxidant power. In: Bioactive Compounds 2019 pp. 33 50 10.1016/b978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  14. Chen J. Yang J. Ma L. Li J. Shahzad N. Kim C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020 10 1 2611 10.1038/s41598‑020‑59451‑z 32054964
    [Google Scholar]
  15. Al Shukor N. Van Camp J. Gonzales G.B. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. J. Agric. Food Chem. 2013 61 48 11832 11839 10.1021/jf404641v 24219111
    [Google Scholar]
  16. Yousefian M. Shakour N. Hosseinzadeh H. Hayes A.W. Hadizadeh F. Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 2019 55 200 213 10.1016/j.phymed.2018.08.002 30668430
    [Google Scholar]
  17. Yu M. Kim H.J. Heo H. Comparison of the antihypertensive activity of phenolic acids. Molecules 2022 27 19 6185 10.3390/molecules27196185 36234721
    [Google Scholar]
  18. Chen L Wang L Shu G Enhanced antihypertensive potential of fermented pomegranate juice: The contribution of phenolic compounds biotransformation and the resultant angiotensin-Iconverting enzyme inhibition mechanism Food Chem 2023 404 (Pt B) 134745 10.1016/j.foodchem.2022.134745 36444086
    [Google Scholar]
  19. Qamar F. Sana A. Naveed S. Faizi S. Phytochemical characterization, antioxidant activity and antihypertensive evaluation of Ocimum basilicum L. in l-NAME induced hypertensive rats and its correlation analysis. Heliyon 2023 9 4 e14644 10.1016/j.heliyon.2023.e14644 37064472
    [Google Scholar]
  20. Grigore A. Plant phenolic compounds as immunomodulatory agents. In: Phenolic Compounds - Biological Activity. 2017 8 75 98 10.5772/66112
    [Google Scholar]
  21. Kilani-Jaziri S. Mokdad-Bzeouich I. Krifa M. Nasr N. Ghedira K. Chekir-Ghedira L. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p -coumaric phenolic acids: A structure–activity relationship study. Drug Chem. Toxicol. 2017 40 4 416 424 10.1080/01480545.2016.1252919 27855523
    [Google Scholar]
  22. Yahfoufi N. Alsadi N. Jambi M. Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018 10 11 1618 10.3390/nu10111618 30400131
    [Google Scholar]
  23. Shakoor H. Feehan J. Apostolopoulos V. Immunomodulatory effects of dietary polyphenols. Nutrients 2021 13 3 728 10.3390/nu13030728 33668814
    [Google Scholar]
  24. Simões R. Ribeiro A.C. Dias R. Freitas V. Soares S. Pérez-Gregorio R. Unveiling the immunomodulatory potential of phenolic compounds in food allergies. Nutrients 2024 16 4 551 10.3390/nu16040551 38398875
    [Google Scholar]
  25. Shakya T. Stogios P.J. Waglechner N. A small molecule discrimination map of the antibiotic resistance kinome. Chem. Biol. 2011 18 12 1591 1601 10.1016/j.chembiol.2011.10.018 22195561
    [Google Scholar]
  26. Xie Y. Yang W. Tang F. Chen X. Ren L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2014 22 1 132 149 10.2174/0929867321666140916113443 25245513
    [Google Scholar]
  27. Lima M.C. Paiva de Sousa C. Fernandez-Prada C. Harel J. Dubreuil J.D. de Souza E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019 130 259 270 10.1016/j.micpath.2019.03.025 30917922
    [Google Scholar]
  28. Manso T. Lores M. de Miguel T. Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics 2021 11 1 46 10.3390/antibiotics11010046 35052923
    [Google Scholar]
  29. Zhang G. Yang Y. Memon F.U. A natural antimicrobial agent: Analysis of antibacterial effect and mechanism of compound phenolic acid on Escherichia coli based on Tandem Mass Tag Proteomics. Front. Microbiol. 2021 12 738896 10.3389/fmicb.2021.738896 34912304
    [Google Scholar]
  30. El-Halim S.M.A. Mamdouh M.A. El-Haddad A.E. Soliman S.M. Fabrication of anti-HSV-1 curcumin stabilized nanostructured proniosomal gel: molecular docking studies on thymidine kinase proteins. Sci. Pharm. 2020 88 1 9 10.3390/scipharm88010009
    [Google Scholar]
  31. Horne J.R. Vohl M.C. Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. Am. J. Physiol. Endocrinol. Metab. 2020 318 5 E830 E833 10.1152/ajpendo.00150.2020 32310688
    [Google Scholar]
  32. Adem Ş. Eyupoglu V. Sarfraz I. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 2021 85 153310 10.1016/j.phymed.2020.153310 32948420
    [Google Scholar]
  33. Chojnacka K. Skrzypczak D. Izydorczyk G. Mikula K. Szopa D. Witek-Krowiak A. Antiviral properties of polyphenols from plants. Foods 2021 10 10 2277 10.3390/foods10102277 34681326
    [Google Scholar]
  34. Xiao T. Cui M. Zheng C. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front. Pharmacol. 2021 12 669642 10.3389/fphar.2021.669642 34220507
    [Google Scholar]
  35. Howells L.M. Berry D.P. Elliott P.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetifcs, and pharmacodynamics. Cancer Prev. Res. 2011 4 9 1419 1425 10.1158/1940‑6207.CAPR‑11‑0148 21680702
    [Google Scholar]
  36. Basli A. Belkacem N. Amrani I. Health benefits of phenolic compounds against cancers. In: Phenolic Compounds - Biological Activity. 2017 193 210 10.5772/67232
    [Google Scholar]
  37. Chang C.H. Lee C.Y. Lu C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int. J. Oncol. 2017 50 3 873 882 10.3892/ijo.2017.3866 28197628
    [Google Scholar]
  38. Alam M.N. Almoyad M. Huq F. Polyphenols in colorectal cancer: Current state of knowledge including clinical trials and molecular mechanism of action. BioMed Res. Int. 2018 2018 1 1 29 10.1155/2018/4154185 29568751
    [Google Scholar]
  39. Kang D.Y. Sp N. Jo E.S. The inhibitory mechanisms of tumor PD-L1 expression by natural bioactive gallic acid in non-small-cell lung cancer (NSCLC) cells. Cancers 2020 12 3 727 10.3390/cancers12030727 32204508
    [Google Scholar]
  40. Imani A. Maleki N. Bohlouli S. Kouhsoltani M. Sharifi S. Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother. Res. 2021 35 5 2500 2513 10.1002/ptr.6977 33295678
    [Google Scholar]
  41. Ramírez-Espinosa J. Saldaña-Ríos J. García-Jiménez S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules 2017 23 1 67 10.3390/molecules23010067 29283418
    [Google Scholar]
  42. Li K. Yao F. Xue Q. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method. Chem. Cent. J. 2018 12 1 82 10.1186/s13065‑018‑0445‑y 30003449
    [Google Scholar]
  43. Yin P. Yang L. Xue Q. Identification and inhibitory activities of ellagic acid- and kaempferol-derivatives from Mongolian oak cups against α-glucosidase, α-amylase and protein glycation linked to type II diabetes and its complications and their influence on HepG2 cells’ viability. Arab. J. Chem. 2018 11 8 1247 1259 10.1016/j.arabjc.2017.10.002
    [Google Scholar]
  44. Boonphang O. Ontawong A. Pasachan T. Antidiabetic and renoprotective effects of Coffea arabica pulp aqueous extract through preserving organic cation transport system mediated oxidative stress pathway in experimental type 2 diabetic rats. Molecules 2021 26 7 1907 10.3390/molecules26071907 33800673
    [Google Scholar]
  45. Sergent T. Vanderstraeten J. Winand J. Beguin P. Schneider Y.J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem. 2012 135 1 68 73 10.1016/j.foodchem.2012.04.074
    [Google Scholar]
  46. Luna-Vital D. Luzardo-Ocampo I. Cuellar-Nuñez M.L. Loarca-Piña G. Gonzalez de Mejia E. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. J. Nutr. Biochem. 2020 79 108343 10.1016/j.jnutbio.2020.108343 32007662
    [Google Scholar]
  47. Li J. Deng Q. Zhang Y. Three novel dietary phenolic compounds from pickled Raphanus sativus L. inhibit lipid accumulation in obese mice by modulating the gut microbiota composition. Mol. Nutr. Food Res. 2021 65 6 2000780 10.1002/mnfr.202000780 33560577
    [Google Scholar]
  48. Lee J.H. Park J.H. Kim Y.S. Han Y. Chlorogenic acid, a polyphenolic compound, treats mice with septic arthritis caused by Candida albicans. Int. Immunopharmacol. 2008 8 12 1681 1685 10.1016/j.intimp.2008.08.002 18760384
    [Google Scholar]
  49. Leong D.J. Choudhury M. Hanstein R. Correction to: Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model. Arthritis Res. Ther. 2019 21 1 1 1 10.1186/s13075‑018‑1791‑9 30606217
    [Google Scholar]
  50. Min H.K. Kim S.M. Baek S.Y. Anthocyanin extracted from black soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB. PLoS One 2015 10 11 e0138201 10.1371/journal.pone.0138201 26544846
    [Google Scholar]
  51. Vauzour D. Corona G. Spencer J.P.E. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 2010 501 1 106 111 10.1016/j.abb.2010.03.016 20361927
    [Google Scholar]
  52. Anusha C. Sumathi T. Joseph L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact. 2017 269 67 79 10.1016/j.cbi.2017.03.016 28389404
    [Google Scholar]
  53. Chiang M.C. Nicol C.J. Cheng Y.C. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem. Int. 2018 115 1 10 10.1016/j.neuint.2017.10.002 28989083
    [Google Scholar]
  54. Pérez-Arancibia R. Ordoñez J.L. Rivas A. A phenolic-rich extract from Ugni molinae berries reduces abnormal protein aggregation in a cellular model of Huntington’s disease. PLoS One 2021 16 7 e0254834 10.1371/journal.pone.0254834 34324551
    [Google Scholar]
  55. Qu D. Han J. Ren H. Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart. Oxid. Med. Cell. Longev. 2016 2016 1 8194690 10.1155/2016/8194690 26788251
    [Google Scholar]
  56. Bondonno N.P. Bondonno C.P. Blekkenhorst L.C. Flavonoid‐rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol. Nutr. Food Res. 2018 62 3 1700674 10.1002/mnfr.201700674 29086478
    [Google Scholar]
  57. Sathyapalan T. Aye M. Rigby A.S. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis. 2018 28 7 691 697 10.1016/j.numecd.2018.03.007 29739677
    [Google Scholar]
  58. Agunloye O.M. Oboh G. Ademiluyi A.O. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019 109 450 458 10.1016/j.biopha.2018.10.044 30399581
    [Google Scholar]
  59. Waterhouse A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002 957 1 21 36 10.1111/j.1749‑6632.2002.tb02903.x 12074959
    [Google Scholar]
  60. Makris D.P. Kallithraka S. Kefalas P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal. 2006 19 5 396 404 10.1016/j.jfca.2005.10.003
    [Google Scholar]
  61. Fernandes I. Pérez-Gregorio R. Soares S. Mateus N. De Freitas V. Wine flavonoids in health and disease prevention. Molecules 2017 22 2 292 10.3390/molecules22020292 28216567
    [Google Scholar]
  62. Li L. Sun B. Grape and wine polymeric polyphenols: Their importance in enology. Crit. Rev. Food Sci. Nutr. 2019 59 4 563 579 10.1080/10408398.2017.1381071 28933917
    [Google Scholar]
  63. Kighuradze T. Georgia, the cradle of viticulture and winemaking. J. Vazi da Ghvino 2000 27 29
    [Google Scholar]
  64. Chilashvili L. The vine, wine and the Georgians Authors of the Idea L Gachechiladze, T. Tbilisi Kandelaki 2004
    [Google Scholar]
  65. McGovern P. Jalabadze M. Batiuk S. Early neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017 114 48 E10309 E10318 10.1073/pnas.1714728114 29133421
    [Google Scholar]
  66. Ketskhoveli N. Ramishvili M. Tabidze D. Ampelography of Georgia. Tbilisi, Georgia Georgian Academy of Science 1960
    [Google Scholar]
  67. Troilo M. Difonzo G. Paradiso V.M. Summo C. Caponio F. Bioactive compounds from vine shoots, grape stalks, and wine lees: Their potential use in agro-food chains. Foods 2021 10 2 342 10.3390/foods10020342 33562826
    [Google Scholar]
  68. Baroi A.M. Popitiu M. Fierascu I. Sărdărescu I.D. Fierascu R.C. Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants 2022 11 2 393 10.3390/antiox11020393 35204275
    [Google Scholar]
  69. Santos-Buelga C. Gonzalez-Manzano S. Dueñas M. Gonzalez-Paramas A.M. Extraction and isolation of phenolic compounds. Methods Mol. Biol. 2012 864 427 464 10.1007/978‑1‑61779‑624‑1_17
    [Google Scholar]
  70. Chemat F. Rombaut N. Sicaire A.G. Meullemiestre A. Fabiano-Tixier A.S. Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017 34 540 560 10.1016/j.ultsonch.2016.06.035 27773280
    [Google Scholar]
  71. Singleton V.L. Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. Am. J. Enol. Vitic. 1965 16 3 144 158 10.5344/ajev.1965.16.3.144
    [Google Scholar]
  72. Ou B. Hampsch-Woodill M. Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001 49 10 4619 4626 10.1021/jf010586o 11599998
    [Google Scholar]
  73. Dufour D. Pichette A. Mshvildadze V. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius. J. Ethnopharmacol. 2007 111 1 22 28 10.1016/j.jep.2006.10.021 17156957
    [Google Scholar]
  74. Grenier A. Legault J. Pichette A. Jean L. Bélanger A. Pouliot R. Antioxidant, anti-inflammatory, and anti-aging potential of a Kalmia angustifolia extract and identification of some major compounds. Antioxidants 2021 10 9 1373 10.3390/antiox10091373 34573004
    [Google Scholar]
  75. Legault J. Girard-Lalancette K. Grenon C. Dussault C. Pichette A. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food 2010 13 2 460 468 10.1089/jmf.2009.0029 20132041
    [Google Scholar]
  76. Oueslati S. Ksouri R. Falleh H. Pichette A. Abdelly C. Legault J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012 132 2 943 947 10.1016/j.foodchem.2011.11.072
    [Google Scholar]
  77. St-Gelais A. Roger B. Alsarraf J. Legault J. Massé D. Pichette A. Aromas from Quebec. VI. Morella pensylvanica from the Magdalen Islands: A (-)-α-bisabolol-rich oil featuring a new bisabolane ether. J. Essent. Oil Res. 2018 30 5 319 329 10.1080/10412905.2018.1470039
    [Google Scholar]
  78. Kallithraka S. Aliaj L. Makris D.P. Kefalas P. Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. Int. J. Food Sci. Technol. 2009 44 12 2385 2393 10.1111/j.1365‑2621.2008.01869.x
    [Google Scholar]
  79. He F. Liang N.N. Mu L. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 2012 17 2 1571 1601 10.3390/molecules17021571 22314380
    [Google Scholar]
  80. Tan W. Xu M. Xie S. Anthocyanin profiles in grape berry skins of different species of wine grapes in Shanxi, China. Phyton 2021 90 2 553 570 10.32604/phyton.2021.014082
    [Google Scholar]
  81. Popov M. Hejtmánková A. Kotíková Z. Střalková R. Lachman J. Content of flavan-3-ol monomers and gallic acid in grape seeds by variety and year. Vitis 2017 56 2
    [Google Scholar]
  82. Sochorova L. Prusova B. Jurikova T. The study of antioxidant components in grape seeds. Molecules 2020 25 16 3736 10.3390/molecules25163736 32824270
    [Google Scholar]
  83. Weseler A.R. Bast A. Masquelier’s grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr. J. 2017 16 1 5 10.1186/s12937‑016‑0218‑1 28103873
    [Google Scholar]
  84. Umesalma S. Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol. 2010 107 2 650 655 10.1111/j.1742‑7843.2010.00565.x 20406206
    [Google Scholar]
  85. Ding Y. Wang L. Song J. Zhou S. Protective effects of ellagic acid against tetrachloride-induced cirrhosis in mice through the inhibition of reactive oxygen species formation and angiogenesis. Exp. Ther. Med. 2017 14 4 3375 3380 10.3892/etm.2017.4966 29042921
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013400039250904104409
Loading
/content/journals/cnf/10.2174/0115734013400039250904104409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test