Skip to content
2000
image of Bioactive Caffeoylquinic Acid Derivatives from Sweet Potato (Ipomoea batatas L.) Leaves: A Comprehensive Review

Abstract

Bioactive compounds from natural sources are gaining significant attention due to their potential health benefits. Caffeoylquinic Acids (CQAs), isolated from the leaves of sweetpotato ( L.), represent a promising class of polyphenolic compounds. This review offers a comprehensive analysis of CQAs and their derivatives, focusing on their extraction, characterization, and therapeutic applications. Sweet potato leaves, an abundant agricultural byproduct, are particularly rich in these compounds, which exhibit potent antioxidant, anti-inflammatory, anticancer, and antimicrobial properties. The review explores the structural diversity of CQAs, including mono-, di-, and tri-caffeoyl derivatives, and examines their bioactivity and stability. Extraction techniques, mainly green synthesis methods, have enhanced the efficiency and sustainability of isolating these bioactives, paving the way for their broader application in nutraceuticals, pharmaceuticals, and functional foods. Furthermore, the review delves into the mechanisms underlying the health-promoting effects of CQAs, emphasizing their roles in free radical scavenging, modulation of inflammatory pathways, and inhibition of cancer cell proliferation. Emerging studies suggest that CQAs may regulate metabolic disorders, such as diabetes and hyperlipidemia, by influencing glucose and lipid metabolism. Despite promising findings, challenges remain, such as limited bioavailability and a lack of clinical studies confirming efficacy in human populations. CQAs from sweet potato leaves present a natural and sustainable source of bioactive compounds with considerable therapeutic potential.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013375846250905073018
2025-09-18
2026-02-02
Loading full text...

Full text loading...

References

  1. Islam S. Sweetpotatoes [ Ipomoea batatas (L.) lam]: The super food of the Next Century? An intensive review on their potential as a sustainable and versatile food source for future generations. CYTA J. Food 2024 22 1 2397553 [a 10.1080/19476337.2024.2397553
    [Google Scholar]
  2. Islam S. Adam Z. Akanda J.H. Quinic and caffeic acids derivatives: Affecting antioxidant capacities and phenolics contents of certain therapeutic and specialty crops employing water and ethanolic extracts. Food Chem Adv 2024 4 100693 [b 10.1016/j.focha.2024.100693
    [Google Scholar]
  3. Islam S. Antimutagenicity of the water extracts, radical scavenging activity, and phenolic acids in the tops of diverse Ipomoea batatas (L.) Lam. Adv. Med. Sci. 2019 4 46 51
    [Google Scholar]
  4. Islam S. Polyphenolic contents and caffeic acid derivatives in leaves of Ipomoea batatas L. genotypes. II international symposium on human health effects of fruits and vegetables: FAVHEALTH 2007 841 2007 529 532
    [Google Scholar]
  5. Islam S. Sweetpotato (Ipomoea batatas L.) leaf: its potential effect on human health and nutrition. J. Food Sci. 2006 71 2 R13 R121 10.1111/j.1365‑2621.2006.tb08912.x
    [Google Scholar]
  6. Islam S. Antimicrobial activities of ipomoea batatas L. Leaf. J. Food Agric. Environ. 2008 6 1 16 21
    [Google Scholar]
  7. Sultana T. Islam S. Azad M.A.K. Akanda M.J.H. Rahman A. Rahman M.S. Phytochemical profiling and antimicrobial properties of various sweet potato (Ipomoea batatas L.) leaves assessed by RP-HPLC-DAD. Foods 2024 13 17 2787 10.3390/foods13172787 39272552
    [Google Scholar]
  8. Islam M.S. Yoshimoto M. Yahara S. Okuno S. Ishiguro K. Yamakawa O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem. 2002 50 13 3718 3722 10.1021/jf020120l 12059149
    [Google Scholar]
  9. Markkinen N. Laaksonen O. Nahku R. Kuldjärv R. Yang B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem. 2019 286 204 215 10.1016/j.foodchem.2019.01.189 30827597
    [Google Scholar]
  10. Wu T.Y. Chen C.C. Lin J.Y. Anti-inflammatory in vitro activities of eleven selected caffeic acid derivatives based on a combination of pro−/anti-inflammatory cytokine secretions and principal component analysis: A comprehensive evaluation. Food Chem. 2024 458 140201 10.1016/j.foodchem.2024.140201 38943957
    [Google Scholar]
  11. Rodríguez-Pérez C. Gilbert-López B. Mendiola J.A. Quirantes-Piné R. Segura-Carretero A. Ibáñez E. Optimization of microwave‐assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 2016 37 13 1938 1946 10.1002/elps.201600071 27122439
    [Google Scholar]
  12. Andrade K.S. Gonçalvez R.T. Maraschin M. Ribeiro-do-Valle R.M. Martínez J. Ferreira S.R.S. Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta 2012 88 544 552 10.1016/j.talanta.2011.11.031 22265539
    [Google Scholar]
  13. Leal P.F. Maia N.B. Carmello Q.A.C. Catharino R.R. Eberlin M.N. Meireles M.A.A. Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): Global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food Bioprocess Technol. 2008 1 4 326 338 10.1007/s11947‑007‑0030‑1
    [Google Scholar]
  14. Islam S. Some bioactive constituents, antioxidant, and antimutagenic activities in the leaves of Ipomoea batatas Lam. genotypes. Adv. J. Food Sci. Technol. 2016 4 70 80 [a]
    [Google Scholar]
  15. Alcázar Magaña A. Kamimura N. Soumyanath A. Stevens J.F. Maier C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021 107 5 1299 1319 10.1111/tpj.15390 34171156
    [Google Scholar]
  16. Benali T. Bakrim S. Ghchime R. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2024 40 4 3408 3437 10.1080/02648725.2022.2122303 36123811
    [Google Scholar]
  17. Liu M. Fei L. Huang Y. Zhou T. Chen S. Phenethyl ester ameliorates calcification by inhibiting activation of the AKT/NF-κB/NLRP3 inflammasome pathway in human aortic valve interstitial cells. Front. Pharmacol. 2020 ••• 11 10.3389/fphar.2020.00826 32733235
    [Google Scholar]
  18. Jung J.K. Lee S.U. Kozukue N. Levin C.E. Friedman M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food Compos. Anal. 2011 24 1 29 37 10.1016/j.jfca.2010.03.025
    [Google Scholar]
  19. Liu W. Li J. Zhang X. Current advances in naturally occurring caffeoylquinic acids: Structure, bioactivity, and synthesis. J. Agric. Food Chem. 2020 68 39 10489 10516 10.1021/acs.jafc.0c03804 32846084
    [Google Scholar]
  20. Bejaoui M. Villareal M.O. Isoda H. 3,4,5-Tri-O-Caffeoylquinic acid promoted hair pigmentation through β-catenin and its target genes. Front. Cell Dev. Biol. 2020 8 8 175 10.3389/fcell.2020.00175 32269993
    [Google Scholar]
  21. Boulebd H. Carmena-Bargueño M. Pérez-Sánchez H. Exploring the antioxidant properties of caffeoylquinic and feruloylquinic acids: A computational study on hydroperoxyl radical scavenging and xanthine oxidase inhibition. Antioxidants 2023 12 9 1669 10.3390/antiox12091669 37759973
    [Google Scholar]
  22. Jeng T.L. Lai C.C. Liao T.C. Lin S.Y. Sung J.M. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves. J Food Drug Anal 2015 23 4 701 708 [a 10.1016/j.jfda.2014.07.002 28911486
    [Google Scholar]
  23. Jeng T.L. Chiang Y.C. Lai C.C. Sweet potato leaf extract inhibits the simulated in vitro gastrointestinal digestion of native starch. J Food Drug Anal 2015 23 3 399 406 [b 10.1016/j.jfda.2015.01.002 28911696
    [Google Scholar]
  24. Kurata R. Adachi M. Yamakawa O. Yoshimoto M. Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J. Agric. Food Chem. 2007 55 1 185 190 10.1021/jf0620259 17199331
    [Google Scholar]
  25. Islam M.S. Yoshimoto M. Yamakawa O. Distribution and physiological function of caffeoylquinic acid derivatives in sweetpotato genotypes. J. Food Sci. 2003 68 1 111 116 10.1111/j.1365‑2621.2003.tb14124.x
    [Google Scholar]
  26. Megumi K. Makoto Y. Kozue S. Koji W. De-Xing H. Effects of cooking methods on caffeoylquinic acids and radical scavenging activity of sweet potato. Foods 2024 13 7 1101 10.3390/foods13071101 38611405
    [Google Scholar]
  27. Li M. Jang G.Y. Lee S.H. Comparison of functional components in various sweet potato leaves and stalks. Food Sci. Biotechnol. 2017 26 1 97 103 10.1007/s10068‑017‑0013‑6 30263515
    [Google Scholar]
  28. Nguyen H.C. Chen C.C. Lin K.H. Chao P.Y. Lin H.H. Huang M.Y. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules 2021 26 7 1820 10.3390/molecules26071820 33804903
    [Google Scholar]
  29. Okuno S. Islam M.D.S. Kurata R.A. Yamakawa O. Yoshimoto M. Polyphenolic content and antimutagenicity of sweetpotato leaves in relation to commercial vegetables. XXVI international horticultural congress: Issues and advances in postharvest horticulture. 2002 677 685
    [Google Scholar]
  30. Sun H. Mu T. Xi L. Song Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. J. Agric. Food Chem. 2014 62 36 8982 8989 10.1021/jf502328d 25152015
    [Google Scholar]
  31. Truong V.D. McFeeters R.F. Thompson R.T. Dean L.L. Shofran B. Phenolic acid content and composition in leaves and roots of common commercial sweet potato (Ipomea batatas L.) cultivars in the United States. J. Food Sci. 2007 72 6 C343 C349 10.1111/j.1750‑3841.2007.00415.x 17995676
    [Google Scholar]
  32. Chiu C.H. Lin K.H. Lin H.H. Chu W.X. Lai Y.C. Chao P.Y. Analysis of chlorogenic acid in sweet potato leaf extracts. Plants 2022 11 15 2063 10.3390/plants11152063 35956541
    [Google Scholar]
  33. Cho H.D. Brownmiller C. Sorker H. Islam S. Lee S.O. Sweet potato leaves inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages via suppression of NF-κB signaling pathway. Foods 2021 10 9 2051 10.3390/foods10092051 34574161
    [Google Scholar]
  34. Islam I. Shaikh A.U. Shahidul I.M. Antioxidative and antimutagenic potentials of phytochemicals from ipomoea batatas (L.) Lam. Int. J. Cancer Res. 2009 5 3 83 94 10.3923/ijcr.2009.83.94
    [Google Scholar]
  35. Luo D. Mu T. Sun H. Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities. Food Biosci. 2021 39 100801 10.1016/j.fbio.2020.100801
    [Google Scholar]
  36. Padda M.S. Picha D.H. Quantification of phenolic acids and antioxidant activity in sweet potato genotypes. Sci. Hortic. (Amsterdam) 2008 119 1 17 20 10.1016/j.scienta.2008.07.008
    [Google Scholar]
  37. Sasaki K. Oki T. Kai Y. Nishiba Y. Okuno S. Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves. Biosci. Biotechnol. Biochem. 2015 79 8 1308 1314 10.1080/09168451.2015.1025032 25971339
    [Google Scholar]
  38. Torres A. Noriega L.G. Delgadillo-Puga C. Tovar A.R. Navarro-Ocaña A. Caffeoylquinic acid derivatives of purple sweet potato as modulators of mitochondrial function in mouse primary hepatocytes. Molecules 2021 26 2 319 10.3390/molecules26020319 33435516
    [Google Scholar]
  39. Phahlane C.J. Laurie S.M. Shoko T. Manhivi V.E. Sivakumar D. Comparison of caffeoylquinic acids and functional properties of domestic sweet potato (Ipomoea batatas (L.) Lam.) storage roots with established overseas varieties. Foods 2022 11 9 1329 10.3390/foods11091329 35564053
    [Google Scholar]
  40. Krochmal-Marczak B. Cebulak T. Kapusta I. Oszmiański J. Kaszuba J. Żurek N. The content of phenolic acids and flavonols in the leaves of nine varieties of sweet potatoes (Ipomoea batatas L.) depending on their development, grown in Central Europe. Molecules 2020 25 15 3473 10.3390/molecules25153473 32751600
    [Google Scholar]
  41. Zheng W. Clifford M.N. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. Food Chem. 2008 106 1 147 152 10.1016/j.foodchem.2007.05.053
    [Google Scholar]
  42. Kang H.G. Jeong S.H. Cho J.H. Antimutagenic and anticarcinogenic effect of methanol extracts of sweetpotato (Ipomea batatas) leaves. Toxicol. Res. 2010 26 1 29 35 10.5487/TR.2010.26.1.029 24278503
    [Google Scholar]
  43. Kim H.J. Jin C.B. Lee Y.S. Isolation and antioxidative activities of caffeoylquinic acid derivatives and flavonoid glycosides from leaves of sweet potato (Ipomoea batatas L.). Biomol. Ther. (Seoul) 2007 15 1 46 51 10.4062/biomolther.2007.15.1.046
    [Google Scholar]
  44. Wan H. Ge L. Xiao L. 3,4,5-Tri-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. Flower buds facilitates hepatitis B virus replication in HepG2.2.15 cells. Food Chem. Toxicol. 2020 138 111250 10.1016/j.fct.2020.111250 32156566
    [Google Scholar]
  45. Suárez S. Mu T. Sun H. Añón M.C. Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period. Int. J. Food Prop. 2020 23 1 178 188 10.1080/10942912.2020.1716796
    [Google Scholar]
  46. Yoshimoto M. Yahara S. Okuno S. Islam M.S. Ishiguro K. Yamakawa O. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweet potato (Ipomoea batatas L.) leaf. Biosci. Biotechnol. Biochem. 2002 66 11 2336 2341 10.1271/bbb.66.2336 12506969
    [Google Scholar]
  47. Hemingway R.W. Laks P.E. Plant Polyphenols. Cham Springer 2013 10.1007/978‑1‑4615‑3476‑1
    [Google Scholar]
  48. Quideau S. Deffieux D. Douat-Casassus C. Pouységu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011 50 3 586 621 10.1002/anie.201000044 21226137
    [Google Scholar]
  49. Hassan R. Hosein F.M. Reza K. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017 20 3 1 9 10.1080/10942912.2017.1354017
    [Google Scholar]
  50. Galanakis C.M. Polyphenols: Properties, recovery, and applications. Sawston. Cambridge Woodhead Publishing 2018
    [Google Scholar]
  51. Zagoskina N.V. Zubova M.Y. Nechaeva T.L. Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci. 2023 24 18 13874 10.3390/ijms241813874 37762177
    [Google Scholar]
  52. Chamorro S. Cueva-Mestanza R. de Pascual-Teresa S. Effect of spray drying on the polyphenolic compounds present in purple sweet potato roots: Identification of new cinnamoylquinic acids. Food Chem. 2021 345 128679 10.1016/j.foodchem.2020.128679 33310256
    [Google Scholar]
  53. Lund M.N. Reactions of plant polyphenols in foods: Impact of molecular structure. Trends Food Sci. Technol. 2021 112 241 251 10.1016/j.tifs.2021.03.056
    [Google Scholar]
  54. Tarahovsky Y.S. Plant polyphenols in cell-cell interaction and communication. Plant Signal. Behav. 2008 3 8 609 611 10.4161/psb.3.8.6359 19704814
    [Google Scholar]
  55. Alam M.K. Rana Z.H. Islam S.N. Akhtaruzzaman M. Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem. 2020 320 126646 10.1016/j.foodchem.2020.126646 32229398
    [Google Scholar]
  56. Alam M.K. A comprehensive review of sweet potato (Ipomoea batatas [L. Lam): Revisiting the associated health benefits. Trends Food Sci. Technol. 2021 115 512 529 10.1016/j.tifs.2021.07.001
    [Google Scholar]
  57. Wang S. Nie S. Zhu F. Chemical constituents and health effects of sweet potato. Food Res. Int. 2016 89 Pt 1 90 116 10.1016/j.foodres.2016.08.032 28460992
    [Google Scholar]
  58. Sun H. Zhang P. Zhu Y. Lou Q. He S. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018 8 1 5018 10.1038/s41598‑018‑23397‑0 29568082
    [Google Scholar]
  59. Halim M.A. Alharbi S.A. Alarfaj A.A. Improvement and quality evaluation of gluten-free cake supplemented with sweet potato flour and carrot powder. Applied Food Research 2024 4 2 100543 10.1016/j.afres.2024.100543
    [Google Scholar]
  60. Liu B. Zhang Z. Hu W. Sensory qualities and digestibility of traditional Chinese dried sweet potato prepared with different cultivars and the relationship with starch characteristics. Applied Food Research 2025 5 1 100656 10.1016/j.afres.2024.100656
    [Google Scholar]
  61. Li W.L. Yu H.Y. Zhang X.J. Ke M. Hong T. Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol. Rep. 2018 40 1 73 82 10.3892/or.2018.6421 29749527
    [Google Scholar]
  62. Sui W. Mu T. Sun H. Yang H. Effects of different drying methods on nutritional composition, physicochemical and functional properties of sweet potato leaves. J. Food Process. Preserv. 2019 43 3 e13884 10.1111/jfpp.13884
    [Google Scholar]
  63. Sugata M. Lin C.Y. Shih Y.C. Anti-inflammatory and anticancer activities of taiwanese purple-fleshed sweet potatoes (Ipomoea batatas L. Lam) extracts. BioMed Res. Int. 2015 2015 1 10 10.1155/2015/768093 26509161
    [Google Scholar]
  64. Hsu H.Y. Chen B.H. A Comparative study on inhibition of breast cancer cells and tumors in mice by carotenoid extract and nanoemulsion prepread from sweet Potato (Ipomoea batatas L.). Peel. Pharmaceutics 2022 14 5 980 10.3390/pharmaceutics14050980 35631566
    [Google Scholar]
  65. Li J. Shi Z. Mi Y. Purple sweet potato color attenuates high fat-induced neuroinflammation in mouse brain by inhibiting MAPK and NF-κB activation. Mol. Med. Rep. 2018 17 3 4823 4831 10.3892/mmr.2018.8440 29344660
    [Google Scholar]
  66. Kato K. Nagane M. Aihara N. Lipid-soluble polyphenols from sweet potato exert antitumor activity and enhance chemosensitivity in breast cancer. J. Clin. Biochem. Nutr. 2021 68 3 193 200 10.3164/jcbn.20‑73 34025021
    [Google Scholar]
  67. Jiang P. Han B. Jiang L. Simultaneous separation and quantitation of three phytosterols from the sweet potato, and determination of their anti-breast cancer activity. J. Pharm. Biomed. Anal. 2019 174 718 727 10.1016/j.jpba.2019.06.048 31295647
    [Google Scholar]
  68. Asadi K. Ferguson L.R. Philpott M. Karunasinghe N. Cancer-preventive properties of an anthocyanin-enriched sweet potato in the APC MIN Mouse Model. J. Cancer Prev. 2017 22 3 135 146 10.15430/JCP.2017.22.3.135 29018778
    [Google Scholar]
  69. Chen C.M. Lin Y.L. Chen C.Y. Hsu C.Y. Shieh M.J. Liu J.F. Consumption of purple sweet potato leaves decreases lipid peroxidation and DNA damage in humans. Asia Pac. J. Clin. Nutr. 2008 17 3 408 414 18818160
    [Google Scholar]
  70. Setiawan M. Nadhil F. Effect of purple sweet potato (Ipomoea batatas L) extract on malondialdehyde levels of male white rat (Rattus norvegicus Wistar strain) model of atherosclerosis. J. Public Health Africa 2019 10 s1 1187 10.4081/jphia.2019.1187
    [Google Scholar]
  71. Matsui T. Ebuchi S. Kobayashi M. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the α-glucosidase inhibitory action. J. Agric. Food Chem. 2002 50 25 7244 7248 10.1021/jf025913m 12452639
    [Google Scholar]
  72. Matsui T. Ueda T. Oki T. Sugita K. Terahara N. Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 2001 49 4 1948 1951 [a 10.1021/jf001251u 11308351
    [Google Scholar]
  73. Matsui T. Ueda T. Oki T. Sugita K. Terahara N. Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 2. α-Glucosidase inhibition by isolated acylated anthocyanins. J. Agric. Food Chem. 2001 49 4 1952 1956 [b 10.1021/jf0012502 11308352
    [Google Scholar]
  74. Toeller M. α‐Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur. J. Clin. Invest. 1994 24 S3 31 35 10.1111/j.1365‑2362.1994.tb02253.x 8001625
    [Google Scholar]
  75. Quan W. Jiao Y. Xue C. Processed potatoes intake and risk of type 2 diabetes: a systematic review and meta-analysis of nine prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2022 62 5 1417 1425 10.1080/10408398.2020.1843395 33153277
    [Google Scholar]
  76. Dutta S. Sweet potatoes for diabetes mellitus: A systematic review. Pharmacophore 2015 6 60 72
    [Google Scholar]
  77. Jenkins D.J. Wolever T.M. Taylor R.H. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981 34 3 362 366 10.1093/ajcn/34.3.362 6259925
    [Google Scholar]
  78. Naomi R. Bahari H. Yazid M.D. Othman F. Zakaria Z.A. Hussain M.K. Potential effects of sweet potato (Ipomoea batatas) in hyperglycemia and dyslipidemia: A systematic review in diabetic retinopathy context. Int. J. Mol. Sci. 2021 22 19 10816 10.3390/ijms221910816 34639164
    [Google Scholar]
  79. Hisamuddin A.S.B. Naomi R. Manan K.A.B. The role of lutein-rich purple sweet potato leaf extract on the amelioration of diabetic retinopathy in streptozotocin-induced Sprague–Dawley rats. Front. Pharmacol. 2023 14 1175907 10.3389/fphar.2023.1175907 37274105
    [Google Scholar]
  80. Peluso G. De Feo V. De Simone F. Bresciano E. Vuotto M.L. Studies on the inhibitory effects of caffeoylquinic acids on monocyte migration and superoxide ion production. J. Nat. Prod. 1995 58 5 639 646 10.1021/np50119a001 7623043
    [Google Scholar]
  81. Shimozono H. Kobori M. Shinmoto H. Tsushida T. Suppression of the melanogenesis of mouse melanoma B 16 cells by sweetpotato extract. Nippon Shokuhin Kagaku Kogaku Kaishi 1996 43 3 313 317 10.3136/nskkk.43.313
    [Google Scholar]
  82. Jung S.B. Shin J.H. Kim J.Y. Kwon O. Shinzami Korean purple‐fleshed sweet potato extract prevents ischaemia–reperfusion‐induced liver damage in rats. J. Sci. Food Agric. 2015 95 14 2818 2823 10.1002/jsfa.7021 25428031
    [Google Scholar]
  83. Zhu F. Cai Y.Z. Yang X. Ke J. Corke H. Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different chinese purple-fleshed sweetpotato genotypes. J. Agric. Food Chem. 2010 58 13 7588 7596 10.1021/jf101867t 20524661
    [Google Scholar]
  84. Hu Y. Deng L. Chen J. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chem. 2016 194 46 54 10.1016/j.foodchem.2015.07.133 26471525
    [Google Scholar]
  85. Kleekayai T. Khalesi M. Amigo-Benavent M. Cermeño M. Harnedy-Rothwell P. FitzGerald R.J. Enzyme-assisted extraction of plant proteins. Green protein processing technologies from plants: Novel extraction and purification methods for product development. Cham Springer International Publishing 2023 131 178 10.1007/978‑3‑031‑16968‑7_6
    [Google Scholar]
  86. Im Y.R. Kim I. Lee J. Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea batatas (L.) Lam.): Varietal comparisons and physical distribution. Antioxidants 2021 10 3 462 10.3390/antiox10030462 33809444
    [Google Scholar]
  87. Hong J. Mu T. Sun H. Richel A. Blecker C. Valorization of the green waste parts from sweet potato (Impoea batatas L.): Nutritional, phytochemical composition, and bioactivity evaluation. Food Sci. Nutr. 2020 8 8 4086 4097 10.1002/fsn3.1675 32884690
    [Google Scholar]
  88. Johnson M. Pace R.D. Sweet potato leaves: Properties and synergistic interactions that promote health and prevent disease. Nutr. Rev. 2010 68 10 604 615 10.1111/j.1753‑4887.2010.00320.x 20883418
    [Google Scholar]
  89. Shih C.K. Chen C.M. Varga V. White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food Nutr. Res. 2020 64 0 64 10.29219/fnr.v64.3609 32425738
    [Google Scholar]
  90. Suda I. Yamakawa O. Matsugano K. Changes of serum γ–GTP, GOT and GPT levels in hepatic function-weak in subjects by ingestion of high anthocyanin sweetpotato juice. Nippon Shokuhin Kagaku Kogaku Kaishi 1998 45 10 611 617 10.3136/nskkk.45.611
    [Google Scholar]
  91. Ray D. Alpini G. Glaser S. Probiotic Bifidobacterium species: Potential beneficial effects in diarrheal disorders. Focus on “Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells”. Am. J. Physiol. Cell Physiol. 2014 307 12 C1081 C1083 10.1152/ajpcell.00300.2014 25209264
    [Google Scholar]
  92. Groppo F.C. Pochapski M.T. Fosquiera E.C. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves′ extract from Ipomoea batatas (L.) Lam. Pharmacogn. Mag. 2011 7 26 165 170 10.4103/0973‑1296.80682 21716926
    [Google Scholar]
  93. Locher C.P. Burch M.T. Mower H.F. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. J. Ethnopharmacol. 1995 49 1 23 32 10.1016/0378‑8741(95)01299‑0 8786654
    [Google Scholar]
  94. Dian M. Phytochemical, antioxidant and antibacterial evaluations of Ipomoea batatas L. from Riau, Sumatera Island, Indonesia. Trop. Sci. 2023 7 1 2157 2162
    [Google Scholar]
  95. Mardiyanto M. Apriani E.F. Alfarizi H.M. Formulation and in-vitro antibacterial activity of gel containing ethanolic extract of purple sweet potato leaves (Ipomoea batatas (L.) Loaded poly lactic co-glycolic acid submicroparticles against staphylococcus aureus. Research J Pharm Technology 2022 15 8 3599 3605 10.52711/0974‑360X.2022.00603
    [Google Scholar]
  96. Kusuma S.A.F. Wahyuni U.T. Zuhrotun A. Evaluation of the antibacterial activity of Indonesian varieties sweetpotato leaves extract from cilembu against Shigella days. Asian J. Pharm. Clin. Res. 2017 10 2 377 380 10.22159/ajpcr.2017.v10i2.15773
    [Google Scholar]
  97. Ciccone M.M. Cortese F. Gesualdo M. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators Inflamm. 2013 2013 1 11 10.1155/2013/782137 24489447
    [Google Scholar]
  98. Majid M. Nasir B. Zahra S.S. Khan M.R. Mirza B. Haq I. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement. Altern. Med. 2018 18 1 216 10.1186/s12906‑018‑2279‑5 30005651
    [Google Scholar]
  99. Zhang H. Liu R. Mats L. Anthocyanins-rich purple potato extract prevents low-grade chronic inflammation-associated metabolic disorders. J. Food Bioact. 2023 23 19 34 10.31665/JFB.2023.18351
    [Google Scholar]
  100. Mahmood N. Moore P.S. De Tommasi N. Inhibition of HIV infection by caffeoylquinic acid derivatives. Antivir. Chem. Chemother. 1993 4 4 235 240 10.1177/095632029300400406
    [Google Scholar]
  101. Qin Y Naumovski N Senaka C R D'Cunha MN Nutrition-related health outcomes of sweet potato (Ipomoea batatas) consumption: A systematic review. Food Biosci 2022 50 Part B 102208 10.1016/j.fbio.2022.102208
    [Google Scholar]
  102. Peng Z. Li J. Guan Y. Zhao G. Effect of carriers on physicochemical properties, antioxidant activities and biological components of spray-dried purple sweet potato flours. Lebensm. Wiss. Technol. 2013 51 1 348 355 10.1016/j.lwt.2012.09.022
    [Google Scholar]
  103. Cordeiro N. Freitas N. Faria M. Gouveia M. Ipomoea batatas (L.) Lam.: A rich source of lipophilic phytochemicals. J. Agric. Food Chem. 2013 61 50 12380 12384 10.1021/jf404230z 24345069
    [Google Scholar]
  104. Liu T. Wu F. Chen K. Sweet potato extract alleviates high-fat-diet-induced obesity in C57BL/6J mice, but not by inhibiting pancreatic lipases. Front. Nutr. 2022 9 1016020 [a 10.3389/fnut.2022.1016020 36505243
    [Google Scholar]
  105. Liu D. Ji Y. Wang K. Purple sweet potato anthocyanin extract regulates redox state related to gut microbiota homeostasis in obese mice. J. Food Sci. 2022 87 5 2133 2146 [b 10.1111/1750‑3841.16130 35338483
    [Google Scholar]
  106. Khoo H.E. Ng H.S. Yap W.S. Goh H.J.H. Yim H.S. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants 2019 8 4 85 10.3390/antiox8040085 30986936
    [Google Scholar]
  107. Johra F.T. Bepari A.K. Bristy A.T. Reza H.M. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants 2020 9 11 1046 10.3390/antiox9111046 33114699
    [Google Scholar]
  108. Sun M. Lu X. Hao L. Wu T. Zhao H. Wang C. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells. Food Nutr. Res. 2015 59 1 27830 10.3402/fnr.v59.27830 26070791
    [Google Scholar]
  109. Kusano S. Abe H. Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zucker fatty rats. Biol. Pharm. Bull. 2000 23 1 23 26 10.1248/bpb.23.23 10706405
    [Google Scholar]
  110. Mei X. Mu T.H. Han J.J. Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. J. Agric. Food Chem. 2010 58 12 7305 7310 10.1021/jf101021s 20509611
    [Google Scholar]
  111. Kim H.J. Koo K.A. Park W.S. Anti‐obesity activity of anthocyanin and carotenoid extracts from color‐fleshed sweet potatoes. J. Food Biochem. 2020 44 10 e13438 10.1111/jfbc.13438 32812262
    [Google Scholar]
  112. McNabney S. Henagan T. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 2017 9 12 1348 10.3390/nu9121348 29231905
    [Google Scholar]
  113. Amagloh F.C. Yada B. Tumuhimbise G.A. Amagloh F.K. Kaaya A.N. The potential of sweetpotato as a functional food in sub-saharan africa and its implications for health: A review. Molecules 2021 26 10 2971 10.3390/molecules26102971 34067782
    [Google Scholar]
  114. Miyazaki K. Makino K. Iwadate E. Deguchi Y. Ishikawa F. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2008 56 23 11485 11492 10.1021/jf801876n 18986148
    [Google Scholar]
  115. Zhao L.G. Zhang Q.L. Zheng J.L. Dietary, circulating beta-carotene and risk of all-cause mortality: a meta-analysis from prospective studies. Sci. Rep. 2016 6 1 26983 10.1038/srep26983 27243945
    [Google Scholar]
  116. De Medeiros P.H.Q.S. Pinto D.V. De Almeida J.Z. Modulation of intestinal immune and barrier functions by vitamin a: Implications for current understanding of malnutrition and enteric infections in children. Nutrients 2018 10 9 1128 10.3390/nu10091128 30134532
    [Google Scholar]
  117. Huang Z. Liu Y. Qi G. Brand D. Zheng S. Role of vitamin A in the immune system. J. Clin. Med. 2018 7 9 258 10.3390/jcm7090258 30200565
    [Google Scholar]
  118. Alves Filho E.G. Sousa V.M. Rodrigues S. de Brito E.S. Fernandes F.A.N. Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrason. Sonochem. 2020 63 104911 10.1016/j.ultsonch.2019.104911 31952000
    [Google Scholar]
  119. Heon-Woong Kim. Lee Sang Hoon. Yoo Seon Mi. Identification and quantification of hydroxybenzoyl and hydroxycinnamoyl derivatives from Korean sweet potato cultivars by UPLC-DAD-QToF/MS. J. Food Compos. Anal. 2021 100 103905 10.1016/j.jfca.2021.103905
    [Google Scholar]
  120. Rie K. Shoji Y. Osamu Y. Makoto Y. Yamakawa O. Makoto Y. simple high-yield purification of 3, 4, 5-tri-o-caffeoylquinic acid from sweetpotato (Ipomoea Batatas L.) leaf and its inhibitory effects on aldose reductase. Food Sci. Technol. Res. 2011 17 2 87 92 10.3136/fstr.17.87
    [Google Scholar]
  121. Li J.Y. Dong G.P. Li M.L. Liu Z.H. Lu Y. Efficient counter-current chromatographic isolation and structural identification of phenolic compounds from sweet potato leaves. J. Liq. Chromatogr. Relat. Technol. 2012 35 11 1517 1527 10.1080/10826076.2011.619040
    [Google Scholar]
  122. Mori N. Syahmina A. Mizuno-Nakamura H. Teboul L. Yoneuchi M. Usuki T. Extraction of caffeoylquinic acids (CQAs) from sweet potato leaves and stems. Eur. Food Res. Technol. 2024 250 12 3005 3010 10.1007/s00217‑024‑04606‑9
    [Google Scholar]
  123. Zhang C. Liu D. Wu L. Zhang J. Li X. Wu W. Chemical characterization and antioxidant properties of ethanolic extract and its fractions from sweet potato (Ipomoea batatas L.) leaves. Foods 2019 9 1 15 10.3390/foods9010015 31877941
    [Google Scholar]
  124. Mu T-H. Sun H-N. Sweet potato leaf polyphenols: preparation, individual phenolic compound composition and antioxidant activity. Polyphenols in Plants. Academic Press 2019 365 380 10.1016/B978‑0‑12‑813768‑0.00022‑0
    [Google Scholar]
  125. Fu Z. Tu Z. Zhang L. Wang H. Wen Q. Huang T. Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities. Food Biosci. 2016 15 11 18 10.1016/j.fbio.2016.04.004
    [Google Scholar]
  126. Ying Z. Dezhi K. Han H. YongJun C, HongXuan Z, Guozhen C. Caffeic acid phenethyl ester protects against doxorubicin-induced cardiotoxicity and increases chemotherapeutic efficacy by regulating the unfolded protein response. Food Chem. Toxicol. 2022 159 112770 10.1016/j.fct.2021.112770 34915066
    [Google Scholar]
  127. López-Martínez L.X. López-Pérez A.A. González-Córdova A.F. Technologies for the use and consumption of sweet potato leaves and their bioactive compounds. ACS Food Sci Technol 2023 3 3 379 393 10.1021/acsfoodscitech.2c00405
    [Google Scholar]
  128. Ayouaz S. Oliveira-Alves S.C. Lefsih K. Phenolic compounds from Nerium oleander leaves: microwave assisted extraction, characterization, antiproliferative and cytotoxic activities. Food Funct. 2020 11 7 6319 6331 10.1039/D0FO01180K 32608462
    [Google Scholar]
  129. Ferreres F. Grosso C. Gil-Izquierdo A. Valentão P. Mota A.T. Andrade P.B. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem. 2017 230 463 474 10.1016/j.foodchem.2017.03.061 28407936
    [Google Scholar]
  130. Kheiry M. Dianat M. Badavi M. Mard S.A. Bayati V. p-Coumaric acid attenuates lipopolysaccharide-induced lung inflammation in rats by scavenging ROS production: An In vivo and in vitro study. Inflammation 2019 42 6 1939 1950 10.1007/s10753‑019‑01054‑6 31267276
    [Google Scholar]
  131. Barajas-Álvarez P. Castillo-Herrera G.A. Guatemala-Morales G.M. Corona-González R.I. Arriola-Guevara E. Espinosa-Andrews H. Supercritical CO2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. J. Food Sci. Technol. 2021 58 12 4514 4523 10.1007/s13197‑020‑04933‑1
    [Google Scholar]
  132. Srivastava N. Singh A. Kumari P. Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials.Natural bioactive compounds. Academic Press 2021 409 433 10.1016/B978‑0‑12‑820655‑3.00021‑5
    [Google Scholar]
  133. Valanciene E. Malys N. Advances in production of hydroxycinnamoyl-quinic acids: From natural sources to biotechnology. Antioxidants 2022 11 12 2427 10.3390/antiox11122427 36552635
    [Google Scholar]
  134. Barajas-Álvarez P. Castillo-Herrera G.A. Guatemala-Morales G.M. Corona-González R.I. Arriola-Guevara E. Espinosa-Andrews H. Supercritical CO2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. J. Food Sci. Technol. 2021 58 12 4514 4523 10.1007/s13197‑020‑04933‑1 34629515
    [Google Scholar]
  135. Leal P.F. Global yields, chemical composiitttions aand antioxidant activitttioes of clove basil (Ocimum gratissimun L.) extracts obtained by supercritical fluid extraction. Food Process Engineering 2006 29 5 547 559 10.1111/j.1745‑4530.2006.00082.x
    [Google Scholar]
  136. Perez-Vega S. Salmeron I. Perez-Reyes I. Influence of the supercritical fluid extraction (SFE) on food bioactives. Retention of bioactives in food processing. Cham Springer International Publishing 2022 309 340 10.1007/978‑3‑030‑96885‑4_10
    [Google Scholar]
  137. Wang M. Xiong Y. Zeng M. Li H. Zhang T. Liang Y. GC–MS combined with chemometrics for analysis of the components of the essential oils of sweet potato leaves. Chromatographia 2010 71 9-10 891 897 10.1365/s10337‑010‑1561‑6
    [Google Scholar]
  138. Richter J. Schellenberg I. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. Anal. Bioanal. Chem. 2007 387 6 2207 2217 10.1007/s00216‑006‑1045‑6 17221240
    [Google Scholar]
  139. Tongnuanchan P. Benjakul S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014 79 7 R1231 R1249 10.1111/1750‑3841.12492 24888440
    [Google Scholar]
  140. Reyes-Jurado F. Franco-Vega A. Ramírez-Corona N. Palou E. López-Malo A. Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015 7 3 275 297 10.1007/s12393‑014‑9099‑2
    [Google Scholar]
  141. Basavegowda N. Baek K.H. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 2021 11 9 1267 10.3390/biom11091267 34572479
    [Google Scholar]
  142. Mehdizadeh L. Moghaddam M. Essential oils: Biological activity and therapeutic potential. therapeutic, probiotic, and unconventional foods. United States: Academic Press 2018 167 79 10.1016/B978‑0‑12‑814625‑5.00010‑8
    [Google Scholar]
  143. Marques T.S. Moreira R.F.A. Ayres E.M.M. Characterization of the essential oils from leaves of different sweet potato cultivars grown in Brazil. S. Afr. J. Bot. 2022 144 18 22 10.1016/j.sajb.2021.09.005
    [Google Scholar]
  144. Reyes-Jurado F. Navarro-Cruz A.R. Ochoa-Velasco C.E. Palou E. López-Malo A. Ávila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020 60 10 1641 1650 10.1080/10408398.2019.1586641 30880425
    [Google Scholar]
  145. Doost S.A. Nasrabadi N.M. Kassozi V. Nakisozi H. Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci. Technol. 2020 99 474 486 10.1016/j.tifs.2020.03.037
    [Google Scholar]
  146. Alsherbiny MA Abd-Elsalam WH El badawy SA Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem. Toxicol. 2019 123 72 97 10.1016/j.fct.2018.10.048 30352300
    [Google Scholar]
  147. Klejdus B. Kopecký J. Benešová L. Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A 2009 1216 5 763 771 10.1016/j.chroma.2008.11.096 19111311
    [Google Scholar]
  148. Khandrika L. Kumar B. Koul S. Maroni P. Koul H.K. Oxidative stress in prostate cancer. Cancer Lett. 2009 282 2 125 136 10.1016/j.canlet.2008.12.011 19185987
    [Google Scholar]
  149. Kaya D.A. Ghica M.V. Dănilă E. Selection of optimal operating conditions for extraction of Myrtus communis L. essential oil by the steam distillation method. Molecules 2020 25 10 2399 10.3390/molecules25102399 32455788
    [Google Scholar]
  150. El Khetabi A. Lahlali R. Ezrari S. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci. Technol. 2022 120 402 417 10.1016/j.tifs.2022.01.009
    [Google Scholar]
  151. Kusuma S.A.F. Wahyuni U.T. Zuhrotun A. Evaluation of antibacterial activity of indonesian varieties sweet potato leaves extract from cilembu against Shigella dysenteriae ATCC 13313. Asian J. Pharm. Clin. Res. 2017 10 2 377 380 10.22159/ajpcr.2017.v10i2.15773
    [Google Scholar]
  152. Aleksic V. Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014 169 4 240 254 10.1016/j.micres.2013.10.003 24291016
    [Google Scholar]
  153. Ding P. Lee Y.L. Use of essential oils for prolonging postharvest life of fresh fruits and vegetables. Int. Food Res. J. 2019 26 2 363 366
    [Google Scholar]
  154. Roberto R.S. Youssef K. Hashim A.F. Ippolito A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials 2019 9 12 1752 10.3390/nano9121752 31835458
    [Google Scholar]
  155. Banani H. Marcet-Houben M. Ballester A.R. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics 2016 17 1 19 10.1186/s12864‑015‑2347‑x 26729047
    [Google Scholar]
  156. Soppelsa S. Van Hemelrijck W. Bylemans D. Andreotti C. Essential oils and chitosan applications to protect apples against postharvest diseases and to extend shelf life. Agronomy 2023 13 3 822 10.3390/agronomy13030822
    [Google Scholar]
  157. Ibrahium S.M. Aboelhadid S.M. Wahba A.A. Preparation of geranium oil formulations effective for control of phenotypic resistant cattle tick Rhipicephalus annulatus. Sci. Rep. 2022 12 1 11693 10.1038/s41598‑022‑14661‑5 35803943
    [Google Scholar]
  158. Janisiewicz W.J. Korsten L. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 2002 40 1 411 441 10.1146/annurev.phyto.40.120401.130158 12147766
    [Google Scholar]
  159. Senthil-Nathan S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 2020 10 1591 10.3389/fphys.2019.01591 32158396
    [Google Scholar]
  160. Abd-ElGawad A.M. El Gendy A.E.N.G. Assaeed A.M. Essential oil enriched with oxygenated constituents from invasive plant Argemone ochroleuca exhibited potent phytotoxic effects. Plants 2020 9 8 998 10.3390/plants9080998 32764481
    [Google Scholar]
  161. Walia S. Kumar R. Wild marigold (Tagetes minuta L.) biomass and essential oil composition modulated by weed management techniques. Ind. Crops Prod. 2021 161 113183 10.1016/j.indcrop.2020.113183
    [Google Scholar]
  162. Rehman A. Jafari S.M. Aadil R.M. Assadpour E. Randhawa M.A. Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci. Technol. 2020 101 106 121 10.1016/j.tifs.2020.05.001
    [Google Scholar]
  163. Isman M.B. Miresmailli S. Machial C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011 10 2 197 204 10.1007/s11101‑010‑9170‑4
    [Google Scholar]
  164. Jung J.K. Lee S.U. Kozukue N. Levin C.E. Friedman M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food Compos. Anal. 2011 24 1 29 37 10.1016/j.jfca.2010.03.025
    [Google Scholar]
  165. Tu X.F. Hu F. Thakur K. Li X.L. Zhang Y.S. Wei Z.J. Comparison of antibacterial effects and fumigant toxicity of essential oils extracted from different plants. Ind. Crops Prod. 2018 124 192 200 10.1016/j.indcrop.2018.07.065
    [Google Scholar]
  166. Alikhani-Koupaei M. Liposome-entrapped essential oils on in vitro and in vivo antioxidant activity in leafy vegetables. Qual. Assur. Saf. Crops Foods 2015 7 3 369 373 10.3920/QAS2013.0298
    [Google Scholar]
  167. Bai C. Chen R. Zhang Y. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int. J. Biol. Macromol. 2023 247 125730 10.1016/j.ijbiomac.2023.125730 37422248
    [Google Scholar]
  168. Muriel-Galet V. Cran M.J. Bigger S.W. Hernández-Muñoz P. Gavara R. Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. J. Food Eng. 2015 149 9 16 10.1016/j.jfoodeng.2014.10.007
    [Google Scholar]
  169. Usuki T. Onda S. Yoshizawa-Fujita M. Rikukawa M. Use of [C4mim]Cl for efficient extraction of caffeoylquinic acids from sweet potato leaves. Sci. Rep. 2017 7 1 6890 10.1038/s41598‑017‑07291‑9 28761111
    [Google Scholar]
  170. Konczak I. Okuno S. Yoshimoto M. Yamakawa O. Caffeoylquinic acids generated in vitro in a high‐anthocyanin‐accumulating sweet potato cell line. BioMed Res. Int. 2004 2004 5 287 292 10.1155/S1110724304404069 15577191
    [Google Scholar]
  171. Woźniak D. Nawrot-Hadzik I. Kozłowska W. Ślusarczyk S. Matkowski A. Caffeoylquinic Acids. Eds. Handbook of Dietary Phytochemicals. Singapore: Springer 2021 1065 1104 10.1007/978‑981‑15‑4148‑3_23
    [Google Scholar]
  172. Zhao J-G. Yan Q-Q. Xue R-Y. Zhang J. Zhang Y-Q. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD–ESI/MS and their antioxidant activities. Food Chem. 2014 161 22 26 10.1016/j.foodchem.2014.03.079 24837917
    [Google Scholar]
  173. Perez-Vega S. Salmeron I. Perez-Reyes I. Influence of the supercritical fluid extraction (SFE) on food bioactives. Retention of bioactives in food processing. Cham Springer International Publishing 2022 309 340 10.1007/978‑3‑030‑96885‑4_10
    [Google Scholar]
  174. Castillo-Fraire C.M. Pottier S. Bondon A. NMR structural elucidation of dehydrodimers resulting from oxidation of 5-O-caffeoylquinic acid in an apple juice model solution. Food Chem. 2022 372 131117 10.1016/j.foodchem.2021.131117 34600198
    [Google Scholar]
  175. Asmat-Campos D. Abreu A.C. Romero-Cano M.S. Unraveling the active biomolecules responsible for the sustainable synthesis of nanoscale silver particles through nuclear magnetic resonance metabolomics. ACS Sustain. Chem.& Eng. 2020 8 48 17816 17827 10.1021/acssuschemeng.0c06903
    [Google Scholar]
  176. Liang N. Lu X. Hu Y. Kitts D.D. Application of attenuated total reflectance–Fourier transformed infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. J. Agric. Food Chem. 2016 64 3 681 689 10.1021/acs.jafc.5b05682 26725502
    [Google Scholar]
  177. Himshweta M.S. Singh M. Verma N. Trehan N. Identification of chlorogenic acid from Morus alba Leaves by UV-Vis spectroscopy, FTIR, UPLC-QTOF-MS and quantification by HPTLC. Commun. Soil Sci. Plant Anal. 2023 54 6 706 722 10.1080/00103624.2022.2118313
    [Google Scholar]
  178. Li Y. Kong D. Wu H. Comprehensive chemical analysis of the flower buds of five Lonicera species by ATR-FTIR, HPLC-DAD, and chemometric methods. Rev. Bras. Farmacogn. 2018 28 5 533 541 10.1016/j.bjp.2018.06.007
    [Google Scholar]
  179. Makori SI Mu TH Sun HN Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Nat Prod Commun 2020 15 7 1934578X20936931 10.1177/1934578X20936931
    [Google Scholar]
  180. Cui R. Zhu F. Physicochemical properties and bioactive compounds of different varieties of sweetpotato flour treated with high hydrostatic pressure. Food Chem. 2019 299 125129 10.1016/j.foodchem.2019.125129 31299518
    [Google Scholar]
  181. Kojima M. Uritani I. Studies on chlorogenic Acid biosynthesis in sweet potato root tissue in special reference to the isolation of a chlorogenic Acid intermediate. Plant Physiol. 1973 51 4 768 771 10.1104/pp.51.4.768 16658406
    [Google Scholar]
  182. Chiou S.Y. Sung J.M. Huang P.W. Lin S.D. Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. J. Med. Food 2017 20 2 171 179 10.1089/jmf.2016.3790 28061036
    [Google Scholar]
  183. Ismail A. Marjan Z. Foong C. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004 87 4 581 586 10.1016/j.foodchem.2004.01.010
    [Google Scholar]
  184. Fraisse D. Felgines C. Texier O. Lamaison J.L. Caffeoyl derivatives: Major antioxidant compounds of some wild herbs of the Asteraceae family. Food Nutr. Sci. 2011 2 3 181 192 10.4236/fns.2011.230025
    [Google Scholar]
  185. Lin L.Z. Harnly J.M. Phenolic component profiles of sweetpotato leaves. J. Agric. Food Chem. 2010 58 12 7256 7265 10.1021/jf1004786 20465307
    [Google Scholar]
  186. Sharma S. Barkauskaite S. Jaiswal A.K. Jaiswal S. Essential oils as additives in active food packaging. Food Chem. 2021 343 128403 10.1016/j.foodchem.2020.128403 33268167
    [Google Scholar]
  187. Groppo F.C. Pochapski M.T. Fosquiera E.C. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves′ extract from Ipomoea batatas (L.) Lam. Pharmacogn. Mag. 2011 7 26 165 170 10.4103/0973‑1296.80682 21716926
    [Google Scholar]
  188. Kim T.Y. Park N.J. Jo B.G. Anti-Wrinkling effect of 3,4,5-tri-O-caffeoylquinic acid from the roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 signaling in UVB-irradiated HaCaT cells. Antioxidants 2023 12 10 1899 10.3390/antiox12101899 37891978
    [Google Scholar]
  189. Wang S.J. Zeng J. Yang B.K. Zhong Y.M. Bioavailability of caffeic acid in rats and its absorption properties in the Caco-2 cell model. Pharm. Biol. 2014 52 9 1150 1157 10.3109/13880209.2013.879906 24635458
    [Google Scholar]
  190. Sasaki K. Davies J. Doldán N.G. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging 2019 11 2 401 422 10.18632/aging.101748
    [Google Scholar]
  191. Kim M.Y. Lee B.W. Lee H.U. Phenolic compounds and antioxidant activity in sweet potato after heat treatment. J. Sci. Food Agric. 2019 99 15 6833 6840 10.1002/jsfa.9968 31385299
    [Google Scholar]
  192. Shih M.C. Kuo C.C. Chiang W. Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 2009 117 1 114 121 10.1016/j.foodchem.2009.03.084
    [Google Scholar]
  193. Kim I. Yan B. Park J. Neuroprotection of a novel synthetic caffeic acid-syringic acid hybrid compound against experimentally induced transient cerebral ischemic damage. Planta Med. 2013 79 5 313 321 10.1055/s‑0032‑1328211 23412993
    [Google Scholar]
  194. Matsuda R. Sakagami H. Amano S. Inhibition of neurotoxicity/anticancer activity of bortezomib by caffeic acid and chlorogenic acid. Anticancer Res. 2022 42 2 781 790 10.21873/anticanres.15536 35093876
    [Google Scholar]
  195. Liberato J.L. Rosa M.N. Miranda M.C.R. Neuroprotective properties of chlorogenic acid and 4, 5-caffeoylquinic acid from Brazilian arnica (Lychnophora ericoides) after acute retinal ischemia. Planta Med. 2023 89 2 183 193 10.1055/a‑1903‑2387 36220097
    [Google Scholar]
  196. da Silva A.P.G. Sganzerla W.G. John O.D. Marchiosi R. A comprehensive review of the classification, sources, biosynthesis, and biological properties of hydroxybenzoic and hydroxycinnamic acids. Phytochemistry. Reviews 2023 2023 1 30 10.1007/s11101‑023‑09891‑y
    [Google Scholar]
  197. Islam S. Potential antidiabetic & anticancer activities in the leaves of sweetpotatoes. Int. J. Adv. Sci. Eng. Inf. Technol. 2016 1 135 138
    [Google Scholar]
  198. Olaniyan M.F. Olaniyi O.D. Odegbemi F. Olaniyan T.B. Odegbemi O.B. Isolation and purification techniques for bioactive compounds from Nigerian medicinal plants and their therapeutic applications. Discover Chemistry 2025 2 1 13 10.1007/s44371‑025‑00098‑y
    [Google Scholar]
  199. Makori S.I. Mu T.H. Sun H.N. Physicochemical properties, antioxidant activities, and binding behavior of 3,5-di-O-caffeoylquinic acid with beta-lactoglobulin colloidal particles. Food Chem. 2021 347 129084 10.1016/j.foodchem.2021.129084 33486366
    [Google Scholar]
  200. Espíndola K.M.M. Ferreira R.G. Luis E.M.N. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019 9 541 10.3389/fonc.2019.00541
    [Google Scholar]
  201. Sharma M. Hashmi M.A. Mahmood R. Investigating the binding of caffeic acid to human hemoglobin using multispectroscopic and molecular docking approaches. J. Mol. Struct. 2024 1302 137519 10.1016/j.molstruc.2024.137519
    [Google Scholar]
  202. Sharifi-Rad J. Rodrigues C.F. Sharopov F. Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health 2020 17 7 2326 10.3390/ijerph17072326 32235611
    [Google Scholar]
  203. Murthy H.N. Kim Y.S. Park S.Y. Paek K.Y. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Appl. Microbiol. Biotechnol. 2014 98 18 7707 7717 10.1007/s00253‑014‑5962‑6 25077780
    [Google Scholar]
  204. Tang H. Yao X. Yao C. Zhao X. Zuo H. Li Z. Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Sci. Rep. 2017 7 1 7599 10.1038/s41598‑017‑07953‑8 28790461
    [Google Scholar]
  205. Cao S. Zhang Z. Ye Y. Metabolic transformation evidence of caffeic acid derivatives in male rats after the oral administration of functional food by UPLC coupled with a hybrid quadrupole-orbitrap mass spectrometer. RSC Advances 2015 5 22 16960 16967 10.1039/C4RA15393F
    [Google Scholar]
  206. Zhao Z. Moghadasian M.H. Bioavailability of hydroxycinnamates: A brief review of in vivo and in vitro studies. Phytochem. Rev. 2010 9 1 133 145 10.1007/s11101‑009‑9145‑5
    [Google Scholar]
  207. Lafay S. Gil-Izquierdo A. Bioavailability of phenolic acids. Phytochem. Rev. 2008 7 2 301 311 10.1007/s11101‑007‑9077‑x
    [Google Scholar]
  208. Jung J.K. Lee S.U. Kozukue N. Levin C.E. Friedman M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food Compos. Anal. 2011 24 1 29 37 10.1016/j.jfca.2010.03.025
    [Google Scholar]
  209. Takenaka M. Nanayama K. Isobe S. Murata M. Changes in caffeic acid derivatives in sweet potato (Ipomoea batatas L.) during cooking and processing. Biosci. Biotechnol. Biochem. 2006 70 1 172 177 10.1271/bbb.70.172 16428835
    [Google Scholar]
  210. Meng F. Du W. Zhu Y. Composition and bioactivity of chlorogenic acids in vegetable and conventional sweet potato vine tips. Foods 2023 12 21 3910 10.3390/foods12213910 37959029
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013375846250905073018
Loading
/content/journals/cnf/10.2174/0115734013375846250905073018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test