Skip to content
2000
image of The Effect of Cinnamon-Based Cookies on Blood Glucose and Antioxidant Levels of ST-Induced Diabetic Rats

Abstract

Introduction

Diabetes mellitus is a significant public health concern as its global prevalence continues to rise. Non-pharmacological treatments may offer promising results for diabetic patients. This study aimed to evaluate the effects of cinnamon-based cookies on blood glucose and antioxidant levels in diabetic rats.

Methods

A randomized block design was used, involving five groups: a non-diabetic group, a positive control group receiving 0.6 mg/kg/day of glibenclamide, a negative control group receiving aqua dest, a group receiving cinnamon extract cookies (0.2 g/kg), and a group receiving powdered cinnamon cookies (0.6 g/kg). A total of 40 Sprague-Dawley rats were randomly divided into these groups (n = 8 per group). Diabetes was induced using streptozotocin (50 mg/kg). The intervention lasted for 21 days, during which body weight and blood glucose levels were monitored on days 0, 3, 7, 14, and 21. At the end of the intervention, the rats were sacrificed, and blood serum was collected intracardiac puncture. Body weight was measured using a digital scale, while blood glucose levels were determined using a glucometer. The serum was then analyzed for SOD, MDA, and insulin levels using the ELISA method.

Results

The study demonstrated that both types of cinnamon cookies significantly decreased blood glucose levels by day 3, with the cinnamon powder cookies achieving levels comparable to those of non-diabetic rats by day 7. Additionally, both types of cookies significantly improved SOD and insulin levels and reduced MDA levels in the rats. However, the body weight of the diabetic rats was not fully restored.

Conclusion

These findings suggest that cinnamon could be utilized in food product development for blood glucose control, with cinnamon powder potentially offering more favorable results.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013359743250116114122
2025-01-27
2025-09-29
Loading full text...

Full text loading...

References

  1. WHO. Diabetes. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes (Accessed on September 23, 2024).
  2. Alam U. Asghar O. Azmi S. Malik R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol. 2014 126 211 222 10.1016/B978‑0‑444‑53480‑4.00015‑1 25410224
    [Google Scholar]
  3. Kaul K Tarr JM Ahmad SI Kohner EM Chibber R Introduction to diabetes mellitus. Advances in Experimental Medicine and Biology New York Springer 2013 771 1 11 10.1007/978‑1‑4614‑5441‑0_1
    [Google Scholar]
  4. Magliano DJ Boyko EJ IDF diabetes atlas 10th Ed. Brussels, Belgium International Diabetes Federation 2022 141
    [Google Scholar]
  5. Hu F.B. Globalization of Diabetes. Diabetes Care 2011 34 6 1249 1257 10.2337/dc11‑0442 21617109
    [Google Scholar]
  6. Kolb H. Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017 15 1 131 10.1186/s12916‑017‑0901‑x 28720102
    [Google Scholar]
  7. Wu Y. Ding Y. Tanaka Y. Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014 11 11 1185 1200 10.7150/ijms.10001 25249787
    [Google Scholar]
  8. Furukawa S. Fujita T. Shimabukuro M. Iwaki M. Yamada Y. Nakajima Y. Nakayama O. Makishima M. Matsuda M. Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004 114 12 1752 1761 10.1172/JCI21625 15599400
    [Google Scholar]
  9. Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Prakash Mishra A. Nigam M. El Rayess Y. Beyrouthy M.E. Polito L. Iriti M. Martins N. Martorell M. Docea A.O. Setzer W.N. Calina D. Cho W.C. Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 694 10.3389/fphys.2020.00694 32714204
    [Google Scholar]
  10. Jiang S. Liu H. Li C. Dietary regulation of oxidative stress in chronic metabolic diseases. Foods 2021 10 8 1854 10.3390/foods10081854 34441631
    [Google Scholar]
  11. Ayeleso A. Brooks N. Oguntibeju O. Mukwevho E. Natural antioxidant vitamins: A review of their beneficial roles in management of diabetes mellitus and its complications. Trop. J. Pharm. Res. 2016 15 6 1341 1348 10.4314/tjpr.v15i6.30
    [Google Scholar]
  12. Rahimi R. Nikfar S. Larijani B. Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother. 2005 59 7 365 373 10.1016/j.biopha.2005.07.002 16081237
    [Google Scholar]
  13. Oyenihi A.B. Ayeleso A.O. Mukwevho E. Masola B. Antioxidant strategies in the management of diabetic neuropathy. BioMed Res. Int. 2015 2015 1 15 10.1155/2015/515042 25821809
    [Google Scholar]
  14. Sangal A. Role of Cinnamon as beneficial antidiabetic food adjunct: A review. Adv. Appl. Sci. Res. 2011 2 4 440 450 10.4236/jacen.2015.44011.
    [Google Scholar]
  15. Al-Samydai A. Al-Mamoori F. Shehadeh M. Hudaib M. Anti–diabetic activity of Cinnamon: A review. Int. Res. J. Pharm. Medi. Sci. 2018 1 43 45
    [Google Scholar]
  16. Subash Babu P. Prabuseenivasan S. Ignacimuthu S. Cinnamaldehyde: A potential antidiabetic agent. Phytomedicine 2007 14 1 15 22 10.1016/j.phymed.2006.11.005 17140783
    [Google Scholar]
  17. Shen Y. Honma N. Kobayashi K. Jia L.N. Hosono T. Shindo K. Ariga T. Seki T. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling. PLoS One 2014 9 2 e87894 10.1371/journal.pone.0087894 24551069
    [Google Scholar]
  18. Medagama A.B. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr. J. 2015 14 1 108 10.1186/s12937‑015‑0098‑9 26475130
    [Google Scholar]
  19. Muhammad D.R.A. Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food: A review. Int. J. Food Prop. 2017 20 1 27 10.1080/10942912.2017.1369102
    [Google Scholar]
  20. Gulcin I. Kaya R. Goren A.C. Akincioglu H. Topal M. Bingol Z. Cetin Çakmak K. Ozturk Sarikaya S.B. Durmaz L. Alwasel S. Anticholinergic, antidiabetic and antioxidant activities of Cinnamon ( cinnamomum verum ) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019 22 1 1511 1526 10.1080/10942912.2019.1656232
    [Google Scholar]
  21. Prasad K.N. Yang B. Dong X. Jiang G. Zhang H. Xie H. Jiang Y. Flavonoid contents and antioxidant activities from Cinnamomum species. Innov. Food Sci. Emerg. Technol. 2009 10 4 627 632 10.1016/j.ifset.2009.05.009
    [Google Scholar]
  22. Pasupuleti V.R. Bioactive compounds of Cinnamon (Cinnamomum species). Bioactive Compounds in Underutilized Vegetables and Legumes Cham Springer 2020 443 452 10.1007/978‑3‑030‑57415‑4_25
    [Google Scholar]
  23. Tuzcu Z. Orhan C. Sahin N. Juturu V. Sahin K. Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high‐fat diet‐fed rats. Oxid. Med. Cell. Longev. 2017 2017 1 1583098 10.1155/2017/1583098 28396714
    [Google Scholar]
  24. Ashfaq M.H. Siddique A. Shahid S. Antioxidant activity of Cinnamon zeylanicum:(A review). Asian J. Pharma. Res. 2021 11 106 116 10.52711/2231‑5691.2021.00021
    [Google Scholar]
  25. Souza V.B. Holkem A.T. Thomazini M. Petta T. Tulini F.L. Oliveira C.A.F. Genovese M.I. Rodrigues C.E. Fávaro Trindade C.S. Study of extraction kinetics and characterization of proanthocyanidin‐rich extract from Ceylon Cinnamon ( Cinnamomum zeylanicum ). J. Food Process. Preserv. 2021 45 5 e15429 10.1111/jfpp.15429
    [Google Scholar]
  26. Suryanti V. Wibowo F.R. Khotijah S. Andalucki N. Antioxidant activities of cinnamaldehyde derivatives. IOP Conf Ser Mater Sci Eng Surakarta, Indonesia IOP Publishing 2018 333 012077 10.1088/1757‑899X/333/1/012077
    [Google Scholar]
  27. Pagliari S. Forcella M. Lonati E. Sacco G. Romaniello F. Rovellini P. Fusi P. Palestini P. Campone L. Labra M. Bulbarelli A. Bruni I. Antioxidant and anti-inflammatory effect of Cinnamon (Cinnamomum verum J. Presl) bark extract after in vitro digestion simulation. Foods 2023 12 3 452 10.3390/foods12030452 36765979
    [Google Scholar]
  28. Vincent H.K. Bourguignon C.M. Weltman A.L. Vincent K.R. Barrett E. Innes K.E. Taylor A.G. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults. Metabolism 2009 58 2 254 262 10.1016/j.metabol.2008.09.022 19154960
    [Google Scholar]
  29. Fatima M.T. Bhat A.A. Nisar S. Fakhro K.A. Al-Shabeeb Akil A.S. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2023 9 1 e12698 10.1016/j.heliyon.2022.e12698 36632095
    [Google Scholar]
  30. van der Schaft N. Schoufour J.D. Nano J. Kiefte-de Jong J.C. Muka T. Sijbrands E.J.G. Ikram M.A. Franco O.H. Voortman T. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam Study. Eur. J. Epidemiol. 2019 34 9 853 861 10.1007/s10654‑019‑00548‑9 31399939
    [Google Scholar]
  31. Khan A. Safdar M. Ali Khan M.M. Khattak K.N. Anderson R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003 26 12 3215 3218 10.2337/diacare.26.12.3215 14633804
    [Google Scholar]
  32. Allen R.W. Schwartzman E. Baker W.L. Coleman C.I. Phung O.J. Cinnamon use in type 2 diabetes: An updated systematic review and meta-analysis. Ann. Fam. Med. 2013 11 5 452 459 10.1370/afm.1517 24019277
    [Google Scholar]
  33. Sahib A. Anti-diabetic and antioxidant effect of Cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J. Intercult. Ethnopharmacol. 2016 5 2 108 113 10.5455/jice.20160217044511 27104030
    [Google Scholar]
  34. Shahzadi M. Rizwan B. Tufail T. Basharat S. Shehzadi S. Functional and nutraceutical characterization of Cinnamon. Pakistan BioMedical Journal 2021 4 2 187 192 10.54393/pbmj.v4i2.225
    [Google Scholar]
  35. Banu A.T. Lunghar J. Chapter 16 - Cinnamon as a potential nutraceutical and functional food ingredient. Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods. Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods Amsterdam, Netherlands Elsevier 2023 257 278 10.1016/B978‑0‑323‑90794‑1.00021‑1
    [Google Scholar]
  36. Ju J. de Oliveira M.S. Qiao Y. Cinnamon: A Medicinal Plant and A Functional Food Systems. Cham Springer 2023 31 505 10.1007/978‑3‑031‑33505‑1
    [Google Scholar]
  37. Marques C. Cardone G. Estrella D.P.S. Polenghi O. Current Facts about Gluten-Free Biscuits, Cookies, Cakes, and Pasta. Food Intolerances. Boca Raton CRC Press 55 97 10.1201/9781003402800‑3
    [Google Scholar]
  38. Chelladurai C. Pandey A.A. Panmand S.A. Nikam S. Development of innovative bakery product chia seed enriched cookies. Development 2019 1 4
    [Google Scholar]
  39. Pérez-Ramírez I.F. Becerril-Ocampo L.J. Reynoso-Camacho R. Herrera M.D. Guzmán-Maldonado S.H. Cruz-Bravo R.K. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats. J. Sci. Food Agric. 2018 98 3 998 1007 10.1002/jsfa.8548 28718519
    [Google Scholar]
  40. Zucco F. Borsuk Y. Arntfield S.D. Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. Lebensm. Wiss. Technol. 2011 44 10 2070 2076 10.1016/j.lwt.2011.06.007
    [Google Scholar]
  41. Egea B. Campos A. De Carvalho-Eliane J.C.M. Danesi D.G. Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fibre. J. Food Nutr. Res. 2014 53 171 179
    [Google Scholar]
  42. Uchoa A.M.A. Correia da Costa J.M. Maia G.A. Meira T.R. Sousa P.H.M. Montenegro Brasil I. Formulation and physicochemical and sensorial evaluation of biscuit-type cookies supplemented with fruit powders. Plant Foods Hum. Nutr. 2009 64 2 153 159 10.1007/s11130‑009‑0118‑z 19455423
    [Google Scholar]
  43. Wilkinson C.M. Brar P.S. Balay C.J. Colbourne F. Glibenclamide, a Sur1-Trpm4 antagonist, does not improve outcome after collagenase-induced intracerebral hemorrhage. PLoS One 2019 14 5 e0215952 10.1371/journal.pone.0215952 31042750
    [Google Scholar]
  44. Zhang Y. Peng Y. Zhou G. Li X. The pharmacokinetic profiles of mogrosides in T2DM rats. J. Ethnopharmacol. 2022 282 114639 10.1016/j.jep.2021.114639 34530093
    [Google Scholar]
  45. Jang H.S. Jung J.Y. Jang K.H. Lee M.G. Effects of isoflurane anesthesia on post-anesthetic sleep-wake architectures in rats. Korean J. Physiol. Pharmacol. 2010 14 5 291 297 10.4196/kjpp.2010.14.5.291 21165327
    [Google Scholar]
  46. Benmoussa H. Béchohra I. He S. Elfalleh W. Chawech R. Optimization of sonohydrodistillation and microwave assisted hydrodistillation by response surface methodology for extraction of essential oils from Cinnamomum cassia barks. Ind. Crops Prod. 2023 192 115995 10.1016/j.indcrop.2022.115995
    [Google Scholar]
  47. Li F. Muhmood A. Tavakoli S. Park S. Kong L. Zhu H. Subcritical low temperature extraction of bioactive ingredients from foods and food by-products and its applications in the agro-food industry. Crit. Rev. Food Sci. Nutr. 2023 1 1 13 37039080
    [Google Scholar]
  48. Wulandari Y.W. Darmadji P. Rahardjo B. Optimization of cinnamaldehyde production from Cinnamon Leaf (Cinamomum burmanii Nees ex BI. Indon. Food. Nutrit. Progr. 2003 10 113 119
    [Google Scholar]
  49. Goubgou M. Songré-Ouattara L.T. Bationo F. Banhoro O. Traoré Y. Savadogo A. Effect of three types of oils and their level of incorporation on sensory quality of sorghum cookies. Food Res. 2021 5 3 190 202 10.26656/fr.2017.5(3).572
    [Google Scholar]
  50. Beam H.A. Russell Parsons J. Lin S.S. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J. Orthop. Res. 2002 20 6 1210 1216 10.1016/S0736‑0266(02)00066‑9 12472231
    [Google Scholar]
  51. Crowther J.R. ELISA: Theory and practice. Methods Mol. Biol. Springer Science & Business Media 2008 42 1 218 10.1385/0‑89603‑279‑5:1 7655571
    [Google Scholar]
  52. Mang B. Wolters M. Schmitt B. Kelb K. Lichtinghagen R. Stichtenoth D.O. Hahn A. Effects of a Cinnamon extract on plasma glucose, HbA 1c, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Invest. 2006 36 5 340 344 10.1111/j.1365‑2362.2006.01629.x 16634838
    [Google Scholar]
  53. Banaszak M. Górna I. Woźniak D. Przysławski J. Drzymała-Czyż S. The impact of curcumin, resveratrol, and Cinnamon on modulating oxidative stress and antioxidant activity in type 2 diabetes: Moving beyond an anti-hyperglycaemic evaluation. Antioxidants 2024 13 5 510 10.3390/antiox13050510 38790615
    [Google Scholar]
  54. Zarezadeh M. Musazadeh V. Foroumandi E. Keramati M. Ostadrahimi A. Mekary R.A. The effect of Cinnamon supplementation on glycemic control in patients with type 2 diabetes or with polycystic ovary syndrome: An umbrella meta-analysis on interventional meta-analyses. Diabetol. Metab. Syndr. 2023 15 1 127 10.1186/s13098‑023‑01057‑2 37316893
    [Google Scholar]
  55. Couturier K. Batandier C. Awada M. Hininger-Favier I. Canini F. Anderson R.A. Leverve X. Roussel A.M. Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Arch. Biochem. Biophys. 2010 501 1 158 161 10.1016/j.abb.2010.05.032 20515642
    [Google Scholar]
  56. Solomon T.P.J. Blannin A.K. Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily Cinnamon ingestion in healthy humans. Eur. J. Appl. Physiol. 2009 105 6 969 976 10.1007/s00421‑009‑0986‑9 19159947
    [Google Scholar]
  57. Kostrzewa T. Przychodzen P. Gorska-Ponikowska M. Kuban-Jankowska A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res. 2019 39 2 745 749 10.21873/anticanres.13171 30711953
    [Google Scholar]
  58. Zhu R. Liu H. Liu C. Wang L. Ma R. Chen B. Li L. Niu J. Fu M. Zhang D. Gao S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017 122 78 89 10.1016/j.phrs.2017.05.019 28559210
    [Google Scholar]
  59. Nikzamir A. Palangi A. Kheirollaha A. Tabar H. Malakaskar A. Shahbazian H. Fathi M. Expression of glucose transporter 4 (GLUT4) is increased by cinnamaldehyde in C2C12 mouse muscle cells. Iran. Red Crescent Med. J. 2014 16 2 e13426 10.5812/ircmj.13426 24719730
    [Google Scholar]
  60. Mohamed Sham Shihabudeen H. Hansi Priscilla D. Thirumurugan K. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab. 2011 8 1 46 10.1186/1743‑7075‑8‑46 21711570
    [Google Scholar]
  61. Yang C.H. Li R.X. Chuang L.Y. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012 17 6 7294 7304 10.3390/molecules17067294 22695234
    [Google Scholar]
  62. Ju J. Santana de Oliveira M. Qiao Y. Adjuvant Therapeutic Effect of Cinnamon on Diabetes Mellitus. Cinnamon: A Medicinal Plant and A Functional Food Systems. Cham Springer 2023 179 196 10.1007/978‑3‑031‑33505‑1_13
    [Google Scholar]
  63. Kaneto H. Kajimoto Y. Miyagawa J. Matsuoka T. Fujitani Y. Umayahara Y. Hanafusa T. Matsuzawa Y. Yamasaki Y. Hori M. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 1999 48 12 2398 2406 10.2337/diabetes.48.12.2398 10580429
    [Google Scholar]
  64. Lacraz G. Figeac F. Movassat J. Kassis N. Coulaud J. Galinier A. Leloup C. Bailbé D. Homo-Delarche F. Portha B. Diabetic β-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. PLoS One 2009 4 8 e6500 10.1371/journal.pone.0006500 19654863
    [Google Scholar]
  65. Qin B. Dawson H. Polansky M. Anderson R. Cinnamon extract attenuates TNF-α-induced intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes. Horm. Metab. Res. 2009 41 7 516 522 10.1055/s‑0029‑1202813 19593846
    [Google Scholar]
  66. Nurinda E. Kusumawardani N. Wulandari A.S. Fatmawati A. Emelda E. Nisa H. Hasan N.A. Iriyanti W.F. Rohmah M. Lestari P. Aprilia V. Pharmacological study: Synergistic antidiabetic activity of cinnamon bark and Zingiber extract in streptozotocin-induced diabetic rats. Open Access Maced. J. Med. Sci. 2022 10 T8 1 6 10.3889/oamjms.2022.9462
    [Google Scholar]
  67. Jones M. Effects of soybean pectin on blood glucose and insulin responses in healthy men. Experi. Biol. University of Arkansas 2015 29 S1 596 10.1096/fasebj.29.1_supplement.596.16
    [Google Scholar]
  68. Yang J. Wu L. Yang H. Pan Y. Using the major components (cellulose, hemicellulose, and lignin) of Phyllostachys praecox bamboo shoot as dietary fiber. Front. Bioeng. Biotechnol. 2021 9 669136 10.3389/fbioe.2021.669136 33869163
    [Google Scholar]
  69. Bozbulut R. Sanlier N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci. Technol. 2019 83 159 166 10.1016/j.tifs.2018.11.018
    [Google Scholar]
  70. Gul S. Safdar M. Proximate composition and mineral analysis of Cinnamon. Pak. J. Nutr. 2009 8 9 1456 1460 10.3923/pjn.2009.1456.1460
    [Google Scholar]
  71. Stevens N. Allred K. Antidiabetic potential of volatile Cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations. Molecules 2022 27 3 853 10.3390/molecules27030853 35164117
    [Google Scholar]
  72. Chai J. Jiang P. Wang P. Jiang Y. Li D. Bao W. Liu B. Liu B. Zhao L. Norde W. Yuan Q. Ren F. Li Y. The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends Food Sci. Technol. 2018 78 144 154 10.1016/j.tifs.2018.06.003
    [Google Scholar]
  73. Zhao Y. Gong X.J. Zhou X. Kang Z.J. Relative bioavailability of gastrodin and parishin from extract and powder of Gastrodiae rhizoma in rat. J. Pharm. Biomed. Anal. 2014 100 309 315 10.1016/j.jpba.2014.08.017 25194344
    [Google Scholar]
  74. Harris M.I. Flegal K.M. Cowie C.C. Eberhardt M.S. Goldstein D.E. Little R.R. Wiedmeyer H.M. Byrd-Holt D.D. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care 1998 21 4 518 524 10.2337/diacare.21.4.518 9571335
    [Google Scholar]
  75. Hu J. Klein J.D. Du J. Wang X.H. Cardiac muscle protein catabolism in diabetes mellitus: Activation of the ubiquitin-proteasome system by insulin deficiency. Endocrinology 2008 149 11 5384 5390 10.1210/en.2008‑0132 18653708
    [Google Scholar]
  76. Kong D.X. Xiao Y. Zhang Z.X. Liu Y.B. Study on the Correlation between Metabolism, Insulin Sensitivity and progressive weight loss change in Type-2 Diabetes. Pak. J. Med. Sci. 2020 36 7 1523 1528 10.12669/pjms.36.7.3027 33235568
    [Google Scholar]
  77. Towler M.C. Hardie D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 2007 100 3 328 341 10.1161/01.RES.0000256090.42690.05 17307971
    [Google Scholar]
  78. Hatting M. Tavares C.D.J. Sharabi K. Rines A.K. Puigserver P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018 1411 1 21 35 10.1111/nyas.13435 28868790
    [Google Scholar]
  79. Tichonenko E.V. Tsoi U.A. Vasilieva E.Y. Babenko A.Y. Characteristics of eating behavior and the level of hormones regulating the appetite in patients with type 2 diabetes mellitus and body mass index more than 35 kg /m2. Obes. Metab. 2018 15 1 30 38 10.14341/omet2018130‑38
    [Google Scholar]
  80. Ronveaux C.C. Tomé D. Raybould H.E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J. Nutr. 2015 145 4 672 680 10.3945/jn.114.206029 25833771
    [Google Scholar]
  81. Mathebula S.D. Polyol pathway: A possible mechanism of diabetes complications in the eye. Afr. Vision Eye Health 2015 74 1 5 10.4102/aveh.v74i1.13
    [Google Scholar]
  82. Katta A.V. Suryakar A.N. Katkam R.V. Shaikh K. Ghodake S.R. Glycation of lens crystalline protein in the pathogenesis of various forms of cataract. Biomed. Res. 2009 20 119 121
    [Google Scholar]
  83. Seyed Ahmadi S.G. Farahpour M.R. Hamishehkar H. Topical application of Cinnamon verum essential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J. Med. Sci. 2019 35 11 686 694 10.1002/kjm2.12120 31448873
    [Google Scholar]
  84. Farahpour M.R. Habibi M. Evaluation of the wound healing activity of an ethanolic extract of Ceylon Cinnamon in mice. Vet. Med. 2012 57 1 53 57 10.17221/4972‑VETMED
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013359743250116114122
Loading
/content/journals/cnf/10.2174/0115734013359743250116114122
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cinnamon ; cookies ; diabetes ; Antioxidants ; STZ ; blood glucose
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test