Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

In all fields of life sciences, the trends toward sustainability, enhanced product safety, and high standards of quality are significant. The food industry uses intelligent packaging to meet these needs. These systems can continuously monitor a product's quality status and notify the customer of any changes. Conventional methods can only satisfy the needs of regular laboratory food analysis. Thus, in the cases of major food safety concerns, quick, economical, and time-saving analysis techniques, including portable, on-site, and home testing kits, are desperately needed. Nonetheless, there is a chance that nanoparticles could be harmful to people's health. Nanotechnology, for instance, can be applied to food processing to improve food's overall quality, including taste, flavor, and bioavailability. It can also help products last longer on the shelf. Moreover, nanotechnology is often applied to food packaging to deliver innovative packaging and serve as an antimicrobial agent. It can offer fresh approaches to thwart fraud and serve as a valuable weapon in our toolbox to prevent bioterrorism. As a result, it is advised to set up a sufficient regulatory framework to control any dangers related to applications of nanotechnology. This review addresses the classification and safety issues involved in the application of nanotechnology in food safety and packaging.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013313064240904074531
2024-09-19
2025-09-11
Loading full text...

Full text loading...

References

  1. Food Safety2024Available from: https://www.who.int/health-topics/food-safety#tab=tab_1
  2. PakbinB. BrückW.M. BrückT.B. AllahyariS. Ashrafi TamaiI. A quantitative prevalence of Escherichia coli O157 in different food samples using real-time qPCR method.Food Sci. Nutr.202311122823510.1002/fsn3.3055
    [Google Scholar]
  3. LeggiadroR.J. The threat of biological terrorism: a public health and infection control reality.Infect. Control Hosp. Epidemiol.2000211535610.1086/50170010656359
    [Google Scholar]
  4. ZhuS. DuC. FuY. Localized surface plasmon resonance-based hybrid Au–Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B.Opt. Mater.200931111608161310.1016/j.optmat.2009.03.009
    [Google Scholar]
  5. LimS.A. AntonyJ. AlbliwiS. Statistical Process Control (SPC) in the food industry – A systematic review and future research agenda.Trends Food Sci. Technol.201437213715110.1016/j.tifs.2014.03.010
    [Google Scholar]
  6. EhgartnerJ. StroblM. BolivarJ.M. RablD. RothbauerM. ErtlP. BorisovS.M. MayrT. Simultaneous determination of oxygen and ph inside microfluidic devices using core–shell nanosensors.Anal. Chem.201688199796980410.1021/acs.analchem.6b0284927610829
    [Google Scholar]
  7. GuptaS.P. PawbakeA.S. SatheB.R. LateD.J. WalkeP.S. Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature.Sens. Actuators B Chem.2019293839210.1016/j.snb.2019.04.086
    [Google Scholar]
  8. BorisovS.M. MayrT. KlimantI. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors.Anal. Chem.200880357358210.1021/ac071374e18173247
    [Google Scholar]
  9. VermeirenL. DevlieghereF. van BeestM. de KruijfN. DebevereJ. Developments in the active packaging of foods.Trends Food Sci. Technol.1999103778610.1016/S0924‑2244(99)00032‑1
    [Google Scholar]
  10. BanuS. BirtwellS. ChenY. GalitonovG. MorganH. ZheludevN. High capacity nano-optical diffraction barcode tagging for biological and chemical applications.Opt Express.20061413827
    [Google Scholar]
  11. BirtwellS.W. GalitonovG.S. MorganH. ZheludevN.I. Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications.Opt. Commun.200828171789179510.1016/j.optcom.2007.04.066
    [Google Scholar]
  12. IslamF. Saeed. AfzaalM. AhmadA. HussainM. KhalidM.A. Applications of green technologies-based approaches for food safety enhancement: A comprehensive review.Food Sci. Nutr.2022109285510.1002/fsn3.2915
    [Google Scholar]
  13. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Biol. Earth. Sci.20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  14. KuswandiB. FutraD. HengL.Y. Nanosensors for the detection of food contaminants.Nanotechnology Applications in FoodAcadmic Press201730733310.1016/B978‑0‑12‑811942‑6.00015‑7
    [Google Scholar]
  15. BhuniaA.K. Foodborne Microbial Pathogens Mechanisms and PathogenesisSpringer201810.1007/978‑1‑4939‑7349‑1
    [Google Scholar]
  16. ByrneB. StackE. GilmartinN. O’KennedyR. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins.Sensors200996440745
    [Google Scholar]
  17. BănicăF-G. Chemical Sensors and Biosensors Fundamentals and Applications.Wiley2024
    [Google Scholar]
  18. YangH. QuL. WimbrowA.N. JiangX. SunY. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR.Int. J. Food Microbiol.2007118213213810.1016/j.ijfoodmicro.2007.06.01917716768
    [Google Scholar]
  19. CallD.R. BoruckiM.K. LogeF.J. Detection of bacterial pathogens in environmental samples using DNA microarrays.J. Microbiol. Methods200353223524310.1016/S0167‑7012(03)00027‑712654494
    [Google Scholar]
  20. JoungH.A. LeeN.R. LeeS.K. AhnJ. ShinY.B. ChoiH.S. LeeC.S. KimS. KimM.G. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor.Anal. Chim. Acta2008630216817310.1016/j.aca.2008.10.00119012828
    [Google Scholar]
  21. SadeghiP. SohrabiH. MajidiM.R. EftekhariA. ZargariF. de la GuardiaM. MokhtarzadehA.A. Mycotoxins detection in food samples through lateral flow assays (LFAs)–An update for status and prospect.Trends Analyt. Chem.202417611772210.1016/j.trac.2024.117722
    [Google Scholar]
  22. ChiaoD.J. ShyuR.H. HuC.S. ChiangH.Y. TangS.S. Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B.J. Chromatogr. B Anal. Technol. Biomed. Life Sci.200480913741
    [Google Scholar]
  23. ZhouY. PanF.G. LiY.S. ZhangY.Y. ZhangJ.H. LuS.Y. RenH.L. LiuZ.S. Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples.Biosens. Bioelectron.20092482744274710.1016/j.bios.2009.01.03419237277
    [Google Scholar]
  24. MakA.C. OsterfeldS.J. YuH. WangS.X. DavisR.W. JejelowoO.A. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection.Biosens Bioelectron20102571635
    [Google Scholar]
  25. ActisP. JejelowoO. PourmandN. UltraSensitive mycotoxin detection by STING sensors.Biosens Bioelectron2010262333710.1016/j.bios.2010.08.016
    [Google Scholar]
  26. XiulanS. XiaolianZ. JianT. ZhouJ. ChuF.S. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1.Int. J. Food Microbiol.200599218519410.1016/j.ijfoodmicro.2004.07.02115734566
    [Google Scholar]
  27. RadoiA. TargaM. Prieto-SimonB. MartyJ.L. Enzyme-Linked Immunosorbent Assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection.Talanta200877113814310.1016/j.talanta.2008.05.04818804611
    [Google Scholar]
  28. KaushikA. SolankiP.R. AnsariA.A. AhmadS. MalhotraB.D. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection.Nanotechnology200920505510510.1088/0957‑4484/20/5/05510519417336
    [Google Scholar]
  29. AnsariA.A. KaushikA. SolankiP.R. MalhotraB.D. Nanostructured zinc oxide platform for mycotoxin detection.Bioelectrochemistry2010772758110.1016/j.bioelechem.2009.06.01419648064
    [Google Scholar]
  30. WangL. ChenW. XuD. ShimB.S. ZhuY. SunF. LiuL. PengC. JinZ. XuC. KotovN.A. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA.Nano Lett.20099124147415210.1021/nl902368r19928776
    [Google Scholar]
  31. ZamoloV.A. ValentiG. VenturelliE. ChaloinO. MarcaccioM. BoscoloS. CastagnolaV. SosaS. BertiF. FontaniveG. PoliM. TubaroA. BiancoA. PaolucciF. PratoM. Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin.ACS Nano2012697989799710.1021/nn302573c22913785
    [Google Scholar]
  32. GanT. LiK. WuK. Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I.Sens. Actuators B Chem.2008132113413910.1016/j.snb.2008.01.013
    [Google Scholar]
  33. YangL. LiY. Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels.Analyst2006131339440110.1039/B510888H16496048
    [Google Scholar]
  34. ConstantineC.A. Gattás-AsfuraK.M. MelloS.V. CrespoG. RastogiV. ChengT.C. DeFrankJ.J. LeblancR.M. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped cdse quantum dots for the detection of paraoxon.J. Phys. Chem. B200310750137621376410.1021/jp036381v
    [Google Scholar]
  35. LiuD. ChenW. WeiJ. LiX. WangZ. JiangX. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides.Anal. Chem.20128494185419110.1021/ac300545p22475016
    [Google Scholar]
  36. HanC. LiH. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles.Analyst2010135358358810.1039/b923424a20174714
    [Google Scholar]
  37. SuH. FanH. AiS. WuN. FanH. BianP. LiuJ. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe.Talanta20118531338134310.1016/j.talanta.2011.06.01721807192
    [Google Scholar]
  38. PingH. ZhangM. LiH. LiS. ChenQ. SunC. ZhangT. Visual detection of melamine in raw milk by label-free silver nanoparticles.Food Control201223119119710.1016/j.foodcont.2011.07.009
    [Google Scholar]
  39. XuS. LuH. One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples.Biosens. Bioelectron.20157316016610.1016/j.bios.2015.05.06426057736
    [Google Scholar]
  40. DevaramaniS. MalingappaP. Synthesis and characterization of cobalt nitroprusside nano particles: Application to sulfite sensing in food and water samples.Electrochim. Acta20128557958710.1016/j.electacta.2012.08.105
    [Google Scholar]
  41. Sánchez-AcevedoZ.C. RiuJ. RiusF.X. Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-α.Biosens. Bioelectron.20092492842284610.1016/j.bios.2009.02.01919303279
    [Google Scholar]
  42. BagheriH. AfkhamiA. ShirzadmehrA. KhoshsafarH. KhoshsafarH. GhaediH. Novel potentiometric sensor for the determination of Cd2+ based on a new nano-composite.Int. J. Environ. Anal. Chem.201393557859110.1080/03067319.2011.649741
    [Google Scholar]
  43. MajidiM.R. Fadakar Bajeh BajR. NaseriA. Carbon nanotube–ionic liquid (cnt–il) nanocamposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of sunset yellow and tartrazine in food samples.Food Anal. Methods2013651388139710.1007/s12161‑012‑9556‑6
    [Google Scholar]
  44. NajafiM. KhalilzadehM.A. Karimi-MalehH. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples.Food Chem.201415812513110.1016/j.foodchem.2014.02.08224731323
    [Google Scholar]
  45. KaraM. UzunL. KolayliS. DenizliA. Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey.J. Appl. Polym. Sci.201312942273227910.1002/app.38936
    [Google Scholar]
  46. WangJ.J. LiuB.H. HsuY.T. YuF.Y. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk.Food Control201122696496910.1016/j.foodcont.2010.12.003
    [Google Scholar]
  47. VamvakakiV. ChaniotakisN.A. Pesticide detection with a liposome-based nano-biosensor.Biosens. Bioelectron.200722122848285310.1016/j.bios.2006.11.02417223333
    [Google Scholar]
  48. JiX. ZhengJ. XuJ. RastogiV.K. ChengT.C. DeFrankJ.J. LeblancR.M. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon.J. Phys. Chem. B200510993793379910.1021/jp044928f16851427
    [Google Scholar]
  49. WangM. LiZ. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion.Sens. Actuators B Chem.2008133260761210.1016/j.snb.2008.03.023
    [Google Scholar]
  50. YangD. ZhuL. JiangX. Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode.J. Electroanal. Chem.20106401-2172210.1016/j.jelechem.2009.12.022
    [Google Scholar]
  51. RealiniC.E. MarcosB. Active and intelligent packaging systems for a modern society.Meat Sci.201498340441910.1016/j.meatsci.2014.06.03125034453
    [Google Scholar]
  52. Gutiérrez-TausteD. DomènechX. Casañ-PastorN. AyllónJ.A. Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: Application for fabrication of light-activated colorimetric oxygen indicators.J. Photochem. Photobiol. Chem.20071871455210.1016/j.jphotochem.2006.09.011
    [Google Scholar]
  53. BorisovS.M. KlimantI. Luminescent nanobeads for optical sensing and imaging of dissolved oxygen.Microchim Acta20091641–271510.1007/s00604‑008‑0047‑9
    [Google Scholar]
  54. ZhangW.H. ZhangW-D. Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes.Sens. Actuators B Chem.2008134240340810.1016/j.snb.2008.05.015
    [Google Scholar]
  55. CubukçuM. TimurS. AnikU. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection.Talanta200774343443910.1016/j.talanta.2007.07.03918371660
    [Google Scholar]
  56. WeiS. ZhaoF. XuZ. ZengB. Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode.Microchim Acta20061523-42859010.1007/s00604‑005‑0437‑1
    [Google Scholar]
  57. XiaoF. RuanC. LiuL. YanR. ZhaoF. ZengB. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid.Sens. Actuators B Chem.2008134289590110.1016/j.snb.2008.06.037
    [Google Scholar]
  58. Karimi-MalehH. MoazampourM. YoosefianM. SanatiA.L. Tahernejad-JavazmiF. MahaniM. An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and sudan I in food samples.Food Anal. Methods20147102169217610.1007/s12161‑014‑9867‑x
    [Google Scholar]
  59. EnsafiA.A. Karimi-MalehH. MallakpourS. Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide-modified carbon nanotubes paste electrode.Electroanalysis201224366667510.1002/elan.201100465
    [Google Scholar]
  60. LiuS. YuJ. JuH. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode.J. Electroanal. Chem.2003540616710.1016/S0022‑0728(02)01276‑7
    [Google Scholar]
  61. WangY.C. LuL. GunasekaranS. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage.Microchim Acta20151827–813051110.1007/s00604‑015‑1451‑6
    [Google Scholar]
  62. QinL. BanholzerM.J. MillstoneJ.E. MirkinC.A. Nanodisk codes.Nano Lett.20077123849385310.1021/nl072606s18041858
    [Google Scholar]
  63. LiX. WangT. ZhangJ. ZhuD. ZhangX. NingY. ZhangH. YangB. Controlled fabrication of fluorescent barcode nanorods.ACS Nano2010484350436010.1021/nn901713720731421
    [Google Scholar]
  64. LiY. CuY.T. LuoD. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes.Nat. Biotechnol20052378859
    [Google Scholar]
  65. LinC. JungmannR. LeiferA.M. LiC. LevnerD. ChurchG.M. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA.Nat. Chem.2012410832910.1038/nchem.1451
    [Google Scholar]
  66. RanjanS. DasguptaN. ChakrabortyA.R. Melvin SamuelS. RamalingamC. ShankerR. KumarA. Nanoscience and nanotechnologies in food industries: Opportunities and research trends.J. Nanopart. Res.2014166246410.1007/s11051‑014‑2464‑5
    [Google Scholar]
  67. DasguptaN. RanjanS. MundekkadD. RamalingamC. ShankerR. KumarA. Nanotechnology in agro-food: From field to plate.Food Res. Int.20156938140010.1016/j.foodres.2015.01.005
    [Google Scholar]
  68. WilsonA.D. BaiettoM. Applications and advances in electronic-nose technologies.Sensors200997509910.3390/s90705099
    [Google Scholar]
  69. Pimtong-NgamY. JiemsirilersS. SupothinaS. Preparation of tungsten oxide–tin oxide nanocomposites and their ethylene sensing characteristics.Sens. Actuators A Phys.20071391-271110.1016/j.sna.2006.10.032
    [Google Scholar]
  70. KimT.H. LeeS.H. LeeJ. SongH.S. OhE.H. ParkT.H. HongS. Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose.Adv. Mater.2009211919410.1002/adma.200801435
    [Google Scholar]
  71. JinH.J. LeeS.H. KimT.H. ParkJ. SongH.S. ParkT.H. HongS. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction.Biosens. Bioelectron.201235133534110.1016/j.bios.2012.03.01222475887
    [Google Scholar]
  72. ParkJ. LimJ.H. JinH.J. NamgungS. LeeS.H. ParkT.H. HongS. A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality.Analyst2012137143249325410.1039/c2an16274a22497005
    [Google Scholar]
  73. LimJ.H. ParkJ. AhnJ.H. JinH.J. HongS. ParkT.H. A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality.Biosens. Bioelectron.201339124424910.1016/j.bios.2012.07.05422901715
    [Google Scholar]
  74. LeeS.H. KwonO.S. SongH.S. ParkS.J. SungJ.H. JangJ. ParkT.H. Mimicking the human smell sensing mechanism with an artificial nose platform.Biomaterials20123361722172910.1016/j.biomaterials.2011.11.04422153868
    [Google Scholar]
  75. SongH.S. KwonO.S. LeeS.H. ParkS.J. KimU.K. JangJ. ParkT.H. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue.Nano Lett.201313117217810.1021/nl303814723176205
    [Google Scholar]
  76. SongH.S. JinH.J. AhnS.R. KimD. LeeS.H. KimU.K. SimonsC.T. HongS. ParkT.H. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.ACS Nano20148109781978910.1021/nn502926x25126667
    [Google Scholar]
  77. LeeM. JungJ.W. KimD. AhnY.J. HongS. KwonH.W. Discrimination of umami tastants using floating electrode-based bioelectronic tongue mimicking insect taste systems.ACS Nano2015912117281173610.1021/acsnano.5b0303126563753
    [Google Scholar]
  78. TiradoM.C. ClarkeR. JaykusL.A. McQuatters-GollopA. FrankJ.M. Climate change and food safety: A review.Food Res. Int.20104371745176510.1016/j.foodres.2010.07.003
    [Google Scholar]
  79. WangY. AlociljaE.C. Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens.J. Biol. Eng.2015911610.1186/s13036‑015‑0014‑z26435738
    [Google Scholar]
  80. KuswandiB. WicaksonoY. Jayus AbdullahA. HengL.Y. AhmadM. Smart packaging: sensors for monitoring of food quality and safety.Sens. Instrum. Food Qual. Saf.201153-413714610.1007/s11694‑011‑9120‑x
    [Google Scholar]
  81. AbdelhamiedN. AbdelrahmanF. El-ShibinyA. HassanR.Y. Bacteriophage-based nano-biosensors for the fast impedimetric determination of pathogens in food samples.Sci. Rep.2023131349810.1038/s41598‑023‑30520‑336859463
    [Google Scholar]
  82. ZabalaS. CastánJ. MartínezC. Development of a time–temperature indicator (TTI) label by rotary printing technologies.Food Control201550576410.1016/j.foodcont.2014.08.007
    [Google Scholar]
  83. TsironiT. StamatiouA. GiannoglouM. VelliouE. TaoukisP.S. Predictive modelling and selection of Time Temperature Integrators for monitoring the shelf life of modified atmosphere packed gilthead seabream fillets.Lebensm. Wiss. Technol.20114441156116310.1016/j.lwt.2010.10.016
    [Google Scholar]
  84. WuD. HouS. ChenJ. SunY. YeX. LiuD. MengR. WangY. Development and characterization of an enzymatic time-temperature indicator (TTI) based on Aspergillus niger lipase.Lebensm. Wiss. Technol.20156021100110410.1016/j.lwt.2014.10.011
    [Google Scholar]
  85. KimJ.U. GhafoorK. AhnJ. ShinS. LeeS.H. ShahbazH.M. ShinH-H. KimS. ParkJ. Kinetic modeling and characterization of a diffusion-based time-temperature indicator (TTI) for monitoring microbial quality of non-pasteurized angelica juice.Lebensm. Wiss. Technol.20166714315010.1016/j.lwt.2015.11.034
    [Google Scholar]
  86. FuertesG. SotoI. CarrascoR. VargasM. SabattinJ. LagosC. Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety.J. Sensors20162016218
    [Google Scholar]
  87. RaynesJ.K. CarverJ.A. GrasS.L. GerrardJ.A. Protein nanostructures in food – Should we be worried?Trends Food Sci. Technol.2014371425010.1016/j.tifs.2014.02.003
    [Google Scholar]
  88. Arreguin-CamposR. Jiménez-MonroyK.L. DiliënH. CleijT.J. van GrinsvenB. EerselsK. Imprinted polymers as synthetic receptors in sensors for food safety.Biosensors20211124610.3390/bios1102004633670184
    [Google Scholar]
  89. SharonM. ChoudharyA.K. KumarR. Nanotechnology in agricultural diseases and food safety.J. Phytol2010201048392
    [Google Scholar]
  90. YangT. DuncanT.V. Challenges and potential solutions for nanosensors intended for use with foods.Nat. Nanotechnol.202116325126510.1038/s41565‑021‑00867‑7
    [Google Scholar]
  91. ChaiC. OhS.W. Electrochemical impedimetric biosensors for food safety.Food Sci. Biotechnol.202029787910.1007/s10068‑020‑00776‑w
    [Google Scholar]
  92. KeboV. StasaP. BenesF. SvubJ. Rfid technology in logistic processes.SGEM20131219225
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013313064240904074531
Loading
/content/journals/cnf/10.2174/0115734013313064240904074531
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): contamination; food safety; health; Nanoparticle; nanosensor; protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test