Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

The introduction of nanotechnology in food packaging has significantly transformed and impacted food safety, quality, and shelf-life enhancement. It simplifies the monitoring of product quality in real-time. This review gives an insight into the introductory perspective of food packaging, emphasizing active packaging, biosensors, and intelligent systems. Engineering of these nano-based active package materials to impart preservation, freshness, and safety advantages by interacting with the food environment. Nano-based biosensors play a major role in quality precision and rapid evaluation of packaged food matters. This article also provides advantages and challenges associated with these new-generation technologies to meet the requirements of food industries. To conclude, the future of food safety and preservation will be significantly determined by the increasing impact of nanotechnology in food packaging, making it a more effective, consumer-focused, and environmentally friendly option.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013297685240820043042
2024-09-04
2025-09-11
Loading full text...

Full text loading...

References

  1. NovaisC. MolinaA.K. AbreuR.M.V. Santo-BuelgaC. FerreiraI.C.F.R. PereiraC. BarrosL. Natural food colorants and preservatives: A review, a demand, and a challenge.J. Agric. Food Chem.20227092789280510.1021/acs.jafc.1c0753335201759
    [Google Scholar]
  2. AntolakH. KregielD. Food preservatives from plants.London, UKIntechOpen20174585
    [Google Scholar]
  3. TeshomeE. ForsidoS.F. RupasingheH.P.V. Olika KeyataE. Potentials of natural preservatives to enhance food safety and shelf life: A review.ScientificWorldJournal2022202211110.1155/2022/990101836193042
    [Google Scholar]
  4. SharmaC. DhimanR. RokanaN. PanwarH. Nanotechnology: An untapped resource for food packaging.Front. Microbiol.20178173510.3389/fmicb.2017.0173528955314
    [Google Scholar]
  5. NileS.H. BaskarV. SelvarajD. NileA. XiaoJ. KaiG. Nanotechnologies in food science: Applications, recent trends, and future perspectives.Nano-Micro Lett.20201214510.1007/s40820‑020‑0383‑934138283
    [Google Scholar]
  6. SinghR. DuttS. SharmaP. SundramoorthyA.K. DubeyA. SinghA. AryaS. Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety.Glob. Chall.202374220020910.1002/gch2.20220020937020624
    [Google Scholar]
  7. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules2802066136677717
    [Google Scholar]
  8. RaiM. RibeiroC. MattosoL.H.C. DuránN. Nanotechnologies in food and agriculture.Springer eBooks201510.1007/978‑3‑319‑14024‑7
    [Google Scholar]
  9. TripathiA. KhareN. Applications of nanobiotechnology in food packaging.IJTSRD20172-166266610.31142/ijtsrd7006
    [Google Scholar]
  10. KulkarniM.B. AyachitN.H. AminabhaviT.M. Recent advancements in nanobiosensors: Current trends, challenges, applications, and future scope.Biosensors2022121089210.3390/bios1210089236291028
    [Google Scholar]
  11. HeX. DengH. HwangH.M. The current application of nanotechnology in food and agriculture.Yao Wu Shi Pin Fen Xi201927112130648562
    [Google Scholar]
  12. PatelG. PillaiV. BhattP. MohammadS. Application of nanosensors in the food industry.Nanosensors for Smart Cities202035536810.1016/B978‑0‑12‑819870‑4.00020‑7
    [Google Scholar]
  13. RamezaniM. EsmaelpourfarkhaniM. TaghdisiS.M. AbnousK. AlibolandiM. Application of nanosensors for food safety.Elsevier eBooks 202036938610.1016/B978‑0‑12‑819870‑4.00021‑9
    [Google Scholar]
  14. Omanović-MikličaninaE MaksimovićM Nanosensors applications in agriculture and food industry.Bull. Chem. Technol. Bosnia Herzegovina2016475970
    [Google Scholar]
  15. MassonJ.F. Consideration of sample matrix effects and “Biological” noise in optimizing the limit of detection of biosensors.ACS Sens.20205113290329210.1021/acssensors.0c0225433233896
    [Google Scholar]
  16. SargaziS. FatimaI. Hassan KianiM. MohammadzadehV. ArshadR. BilalM. RahdarA. Díez-PascualA.M. BehzadmehrR. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review.Int. J. Biol. Macromol.202220611514710.1016/j.ijbiomac.2022.02.13735231532
    [Google Scholar]
  17. ArtilesM.S. RoutC.S. FisherT.S. Graphene-based hybrid materials and devices for biosensing.Adv. Drug Deliv. Rev.20116314-151352136010.1016/j.addr.2011.07.00521867736
    [Google Scholar]
  18. CampuzanoS. PedreroM. NikoleliG.P. PingarrónJ.M. NikolelisD.P. TzamtzisN. PsychoyiosV.N. ZnO and graphene microelectrode applications in biosensing. Biosensors Nanotechnology.Scrivener Publishing LLC201413510.1002/9781118773826.ch1
    [Google Scholar]
  19. LuongJ.H.T. MaleK.B. GlennonJ.D. Biosensor technology: Technology push versus market pull.Biotechnol. Adv.200826549250010.1016/j.biotechadv.2008.05.00718577442
    [Google Scholar]
  20. SteineggerA. WolfbeisO.S. BorisovS.M. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications.Chem. Rev.202012022123571248910.1021/acs.chemrev.0c0045133147405
    [Google Scholar]
  21. RajskaD. BrzózkaA. Marciszko-WiąckowskaM. MarzecM.M. ChlebdaD. Hnida-GutK.E. SulkaG.D. Optimization of synthesis conditions of thin Te-doped InSb films and first principles studies of their physicochemical properties.Appl. Surf. Sci.202153714771510.1016/j.apsusc.2020.147715
    [Google Scholar]
  22. HimshwetaS.M. SinghM. Nanosensor platforms for detection of milk adulterants.Sensors and Actuators Reports2023510015910.1016/j.snr.2023.100159
    [Google Scholar]
  23. BoriniS. WhiteR. WeiD. AstleyM. HaqueS. SpigoneE. HarrisN. KiviojaJ. RyhänenT. Ultrafast graphene oxide humidity sensors.ACS Nano2013712111661117310.1021/nn404889b24206232
    [Google Scholar]
  24. HamadA.F. HanJ.H. KimB.C. RatherI.A. The intertwine of nanotechnology with the food industry.Saudi J. Biol. Sci.2018251273010.1016/j.sjbs.2017.09.00429379352
    [Google Scholar]
  25. SwierczewskaM. LiuG. LeeS. ChenX. High-sensitivity nanosensors for biomarker detection.Chem. Soc. Rev.20124172641265510.1039/C1CS15238F22187721
    [Google Scholar]
  26. KhazaeiM. HosseiniM.S. HaghighiA.M. MisaghiM. Nanosensors and their applications in early diagnosis of cancer.Sens. Biosensing Res.20234110056910.1016/j.sbsr.2023.100569
    [Google Scholar]
  27. AdamT. GopinathS.C.B. Nanosensors: Recent perspectives on attainments and future promise of downstream applications.Process Biochem.202211715317310.1016/j.procbio.2022.03.024
    [Google Scholar]
  28. Nardi-AgmonI Abud-HawaM LiranO Gai-MorN IlouzeM OnnA Exhaled breath analysis for monitoring response to treatment in advanced lung cancer.J. Thorac. Oncol.2019116827837
    [Google Scholar]
  29. ChakraborthyA. NuthalapatiS. NagA. AfsarimaneshN. AlahiM.E.E. AltinsoyM.E. A critical review of the use of graphene-based gas sensors.Chemosensors202210935510.3390/chemosensors10090355
    [Google Scholar]
  30. LiY. LiuJ. WangZ. JinJ. LiuY. ChenC. TangZ. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging.Adv. Mater.20203214190771810.1002/adma.20190771832091152
    [Google Scholar]
  31. WangY. DuncanT.V. Nanoscale sensors for assuring the safety of food products.Curr. Opin. Biotechnol.201744748610.1016/j.copbio.2016.10.00527940406
    [Google Scholar]
  32. BarryS. O’RiordanA. Electrochemical nanosensors: Advances and applications.Rep Electrochem20166114
    [Google Scholar]
  33. MihindukulasuriyaS.D.F. LimL.T. Nanotechnology development in food packaging: A review.Trends Food Sci. Technol.201440214916710.1016/j.tifs.2014.09.009
    [Google Scholar]
  34. LimL.T. Active and intelligent packaging materials.Comprehensive Biotechnol20114629644
    [Google Scholar]
  35. DuncanT.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors.J. Colloid Interface Sci.2011363112410.1016/j.jcis.2011.07.01721824625
    [Google Scholar]
  36. MasciangioliT. ZhangW.X. Environmental technologies at the nanoscale.Environ. Sci. Technol.2003375102A108A10.1021/es032399812666906
    [Google Scholar]
  37. SchmidtD. ShahD. GiannelisE.P. New advances in polymer/layered silicate nanocomposites.Curr. Opin. Solid State Mater. Sci.20026320521210.1016/S1359‑0286(02)00049‑9
    [Google Scholar]
  38. ThostensonE. LiC. ChouT. Nanocomposites in context.Compos. Sci. Technol.2005653-449151610.1016/j.compscitech.2004.11.003
    [Google Scholar]
  39. UskokovićV. Nanotechnologies: What we do not know.Technol. Soc.2007291436110.1016/j.techsoc.2006.10.005
    [Google Scholar]
  40. BratovcicA. OdobasicA. CaticS. SestanI. Application of polymer nanocomposite materials in food packaging.Croat. J. Food Sci. Technol.201572869410.17508/CJFST.2015.7.2.06
    [Google Scholar]
  41. AlexandreM. DuboisP. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials.Mater. Sci. Eng. Rep.2000281-216310.1016/S0927‑796X(00)00012‑7
    [Google Scholar]
  42. LudueñaL.N. AlvarezV.A. VazquezA. Processing and microstructure of PCL/clay nanocomposites.Mater. Sci. Eng. A2007460-46112112910.1016/j.msea.2007.01.104
    [Google Scholar]
  43. BradleyE.L. CastleL. ChaudhryQ. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries.Trends Food Sci. Technol.2011221160461010.1016/j.tifs.2011.01.002
    [Google Scholar]
  44. SmolanderM. ChaudhryQ. Nanotechnologies in food packaging. Royal Society of Chemistry.RSC Publishing2010686101
    [Google Scholar]
  45. KruijfN.D. BeestM.V. RijkR. Sipiläinen-MalmT. LosadaP.P. MeulenaerB.D. Active and intelligent packaging: Applications and regulatory aspects.Food Addit. Contam.200219sup1Suppl.14416210.1080/0265203011007272211962703
    [Google Scholar]
  46. RealiniC.E. MarcosB. Active and intelligent packaging systems for a modern society.Meat Sci.201498340441910.1016/j.meatsci.2014.06.03125034453
    [Google Scholar]
  47. GarciaC.V. ShinG.H. KimJ.T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations.Trends Food Sci. Technol.201882213110.1016/j.tifs.2018.09.021
    [Google Scholar]
  48. NikolićM.V. VasiljevićZ.Z. AugerS. VidićJ. Metal oxide nanoparticles for safe active and intelligent food packaging.Trends Food Sci. Technol.202111665566810.1016/j.tifs.2021.08.019
    [Google Scholar]
  49. VermeirenL. DevlieghereF. van BeestM. de KruijfN. DebevereJ. Developments in the active packaging of foods.Trends Food Sci. Technol.1999103778610.1016/S0924‑2244(99)00032‑1
    [Google Scholar]
  50. dos SantosC.A. IngleA.P. RaiM. The emerging role of metallic nanoparticles in food.Appl. Microbiol. Biotechnol.202010462373238310.1007/s00253‑020‑10372‑x31989225
    [Google Scholar]
  51. AliA.I. DandagoM.A. AliF.I. ImmanuelG. NaskarJ. Oxide-based nanocomposites for food packaging application: A review.FSJ20224214510.33512/fsj.v4i2.14774
    [Google Scholar]
  52. NazarzadeS. GhorbaniH.R. Synthesis of CuO/Epoxy nanocomposites for the preparation of antifungal coating.Nanomed. J.20196214246
    [Google Scholar]
  53. GvozdenkoA.A. SiddiquiS.A. BlinovA.V. GolikA.B. NagdalianA.A. MaglakelidzeD.G. StatsenkoE.N. PirogovM.A. BlinovaA.A. SizonenkoM.N. SimonovA.N. ZhukovR.B. KolesnikovR.O. IbrahimS.A. Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications.Sci. Rep.20221211284310.1038/s41598‑022‑16878‑w35902676
    [Google Scholar]
  54. SmithJ.P. OoraikulB. KoersenW.J. JacksonE.D. LawrenceR.A. Novel approach to oxygen control in modified atmosphere packaging of bakery products.Food Microbiol.19863431532010.1016/0740‑0020(86)90015‑8
    [Google Scholar]
  55. FlorosJD DockLL HanJH Active packaging technologies and applications.Food Cosmet. Drug Packag.199720101037
    [Google Scholar]
  56. Pereira de AbreuD.A. CruzJ.M. Paseiro LosadaP. Active and intelligent packaging for the food industry.Food Rev. Int.201228214618710.1080/87559129.2011.595022
    [Google Scholar]
  57. TerryL.A. IlkenhansT. PoulstonS. RowsellL. SmithA.W.J. Development of new palladium-promoted ethylene scavenger.Postharvest Biol. Technol.200745221422010.1016/j.postharvbio.2006.11.020
    [Google Scholar]
  58. AbeK. WatadaA. Ethylene absorbent to maintain quality of lightly processed fruits and vegetables.J. Food Sci.19915661589159210.1111/j.1365‑2621.1991.tb08647.x
    [Google Scholar]
  59. SmithA.W.J. PoulstonS. RowsellL. TerryL.A. AndersonJ.A. A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit.Platin. Met. Rev.200953311212210.1595/147106709X462742
    [Google Scholar]
  60. KaliaA. KaurM. ShamiA. JawandhaS.K. AlghuthaymiM.A. ThakurA. Abd-ElsalamK.A. Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit.Biomolecules202111222410.3390/biom1102022433562547
    [Google Scholar]
  61. Thekkae PadilV.V. ČerníkM. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.Int. J. Nanomedicine2013888989823467397
    [Google Scholar]
  62. QuintavallaS. ViciniL. Antimicrobial food packaging in meat industry.Meat Sci.200262337338010.1016/S0309‑1740(02)00121‑322061613
    [Google Scholar]
  63. BijiK.B. RavishankarC.N. MohanC.O. Srinivasa GopalT.K. Smart packaging systems for food applications: A review.J. Food Sci. Technol.201552106125613510.1007/s13197‑015‑1766‑726396360
    [Google Scholar]
  64. De JongA.R. BoumansH. SlaghekT. Van VeenJ. RijkR. Van ZandvoortM. Active and intelligent packaging for food: Is it the future?Food Addit. Contam.2005221097597910.1080/0265203050033625416227181
    [Google Scholar]
  65. RestucciaD. SpizzirriU.G. ParisiO.I. CirilloG. CurcioM. IemmaF. PuociF. VinciG. PicciN. New EU regulation aspects and global market of active and intelligent packaging for food industry applications.Food Control201021111425143510.1016/j.foodcont.2010.04.028
    [Google Scholar]
  66. KimI. ViswanathanK. KasiG. ThanakkasaraneeS. SadeghiK. SeoJ. ZNO nanostructures in active Antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges.Food Rev. Int.202238453756510.1080/87559129.2020.1737709
    [Google Scholar]
  67. TankhiwaleR. BajpaiS.K. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging.Colloids Surf. B Biointerfaces201290162010.1016/j.colsurfb.2011.09.03122015180
    [Google Scholar]
  68. Gregor-SvetecD. Intelligent packaging.Nanomaterials for Food Packaging2018203247
    [Google Scholar]
  69. KuswandiB. WicaksonoY. Jayus AbdullahA. HengL.Y. AhmadM. Smart packaging: Sensors for monitoring of food quality and safety.Sens. Instrum. Food Qual. Saf.201153-413714610.1007/s11694‑011‑9120‑x
    [Google Scholar]
  70. KuswandiB. Environmental friendly food nano-packaging.Environ. Chem. Lett.201715220522110.1007/s10311‑017‑0613‑7
    [Google Scholar]
  71. BouwmeesterH. DekkersS. NoordamM.Y. HagensW.I. BulderA.S. de HeerC. ten VoordeS.E.C.G. WijnhovenS.W.P. MarvinH.J.P. SipsA.J.A.M. Review of health safety aspects of nanotechnologies in food production.Regul. Toxicol. Pharmacol.2009531526210.1016/j.yrtph.2008.10.00819027049
    [Google Scholar]
  72. LiaoF. ChenC. SubramanianV. Organic TFTs as gas sensors for electronic nose applications.Sens. Actuators B Chem.2005107284985510.1016/j.snb.2004.12.026
    [Google Scholar]
  73. AsadiG. MousaviS.M. Application of nanotechnology in food packaging.13th World Congress of Food Science & TechnologyJanuary 2006; 799-800.10.1051/IUFoST:20060739
    [Google Scholar]
  74. SozerN. KokiniJ.L. Nanotechnology and its applications in the food sector.Trends Biotechnol.2009272828910.1016/j.tibtech.2008.10.01019135747
    [Google Scholar]
  75. JayawardenaH.S.N. LiyanageS.H. RathnayakeK. PatelU. YanM. Analytical methods for characterization of nanomaterial surfaces.Anal. Chem.20219341889191110.1021/acs.analchem.0c0520833434434
    [Google Scholar]
  76. BrarS.K. VermaM. Measurement of nanoparticles by light-scattering techniques.Trends Analyt. Chem.201130141710.1016/j.trac.2010.08.008
    [Google Scholar]
  77. ServinA.D. Castillo-MichelH. Hernandez-ViezcasJ.A. De NolfW. De La Torre-RocheR. PaganoL. PignatelloJ. UchimiyaM. Gardea-TorresdeyJ. WhiteJ.C. Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: A synchrotron microspectroscopy study.J. Agric. Food Chem.201866266609661810.1021/acs.jafc.7b0461229281882
    [Google Scholar]
  78. LinY HuangM ChangH Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA.Electrophoresis200526232033010.1002/elps.20040617115657878
    [Google Scholar]
  79. JoshiM. BhattacharyyaA. AliS.W. Characterization techniques for nanotechnology applications in textiles.Indian J. Fibre Text. Res.2008301304317
    [Google Scholar]
  80. GarcíaM. ForbeT. GonzalezE. Potential applications of nanotechnology in the agro-food sector.Food Sci. Technol.201030357358110.1590/S0101‑20612010000300002
    [Google Scholar]
  81. MitranoD.M. LesherE.K. BednarA. MonserudJ. HigginsC.P. RanvilleJ.F. Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry.Environ. Toxicol. Chem.201231111512110.1002/etc.71922012920
    [Google Scholar]
  82. RyuS.W. KimC.H. HanJ.W. KimC.J. JungC. ParkH.G. ChoiY.K. Gold nanoparticle embedded silicon nanowire biosensor for applications of label-free DNA detection.Biosens. Bioelectron.20102592182218510.1016/j.bios.2010.02.01020227871
    [Google Scholar]
  83. BahruT.B. AjebeE.G. A review on nanotechnology: Analytical techniques use and applications.Int. Res. J. Pure Appl. Chem.201919411010.9734/irjpac/2019/v19i430117
    [Google Scholar]
  84. PalS JanaU MannaPK MohantaG ManavalanR Nanoparticle: An overview of preparation and characterization.J. Appl. Pharm. Sci.201116228234
    [Google Scholar]
  85. HuangX. ZhuY. KianfarE. Nano biosensors: Properties, applications and electrochemical techniques.J. Mater. Res. Technol.2021121649167210.1016/j.jmrt.2021.03.048
    [Google Scholar]
  86. NeethirajanS. RagavanV. WengX. ChandR. Biosensors for sustainable food engineering: Challenges and perspectives.Biosensors201881233110.3390/bios801002329534552
    [Google Scholar]
  87. VermaML RaniV Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: A review.Environ. Chem. Lett.2021191657166610.1007/s10311‑020‑01116‑4
    [Google Scholar]
  88. ZhangF. ZhangQ. ZhangD. LuY. LiuQ. WangP. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.Biosens. Bioelectron.20145438539210.1016/j.bios.2013.11.02024292144
    [Google Scholar]
  89. MoonJ.M. ThapliyalN. HussainK.K. GoyalR.N. ShimY.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review.Biosens. Bioelectron.201810254055210.1016/j.bios.2017.11.06929220802
    [Google Scholar]
  90. LiZ. YuY. LiZ. WuT. A review of biosensing techniques for detection of trace carcinogen contamination in food products.Anal. Bioanal. Chem.2015407102711272610.1007/s00216‑015‑8530‑825694149
    [Google Scholar]
  91. ArugulaM.A. SimonianA.L. Biosensors for detection of genetically modified organisms in food and feed.Genetically Modified Organisms in Food20169711010.1016/B978‑0‑12‑802259‑7.00010‑5
    [Google Scholar]
  92. Pola-LópezL.A. Camas-AnzuetoJ.L. Martínez-AntonioA. Luján-HidalgoM.C. Anzueto-SánchezG. Ruíz-ValdiviezoV.M. Grajales-CoutiñoR. GonzálezJ.H.C. Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell.Sens. Actuators B Chem.20182541061106810.1016/j.snb.2017.08.006
    [Google Scholar]
  93. SharmaR. RagavanK.V. ThakurM.S. RaghavaraoK.S.M.S. Recent advances in nanoparticle based aptasensors for food contaminants.Biosens. Bioelectron.20157461262710.1016/j.bios.2015.07.01726190473
    [Google Scholar]
  94. SportelliM.C. IzziM. VolpeA. ClementeM. PiccaR.A. AnconaA. LugaràP.M. PalazzoG. CioffiN. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials.Antibiotics2018736710.3390/antibiotics703006730060553
    [Google Scholar]
  95. BahadirE.B. SezginturkM.K. Biosensor technologies for analyses of food contaminants.Nanobiosensors201728933710.1016/B978‑0‑12‑804301‑1.00008‑4
    [Google Scholar]
  96. ThakurM. WangB. VermaM.L. Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives.Environ. Technol. Innov.20222610237110.1016/j.eti.2022.102371
    [Google Scholar]
  97. RizzelloL. PompaP.P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines.Chem. Soc. Rev.20144351501151810.1039/C3CS60218D24292075
    [Google Scholar]
  98. ZhangP. SunT. RongS. ZengD. YuH. ZhangZ. ChangD. PanH. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite.Bioelectrochemistry201912716317010.1016/j.bioelechem.2019.02.00330831354
    [Google Scholar]
  99. MeraatR. IssazadehK. Abdolahzadeh ZiabariA. Faezi GhasemiM. Rapid detection of Escherichia coli by β-galactosidase biosensor based on ZnO nanoparticles and MWCNTs: A comparative study.Curr. Microbiol.202077102633264110.1007/s00284‑020‑02040‑032444907
    [Google Scholar]
  100. YouK-H. LuoX-E. HuW-J. XuY. GuoJ-B. HeQ-H. Environmental-friendly gold nanoparticle immunochromatographic assay for ochratoxin A based on biosynthetic mimetic mycotoxin-conjugates.World Mycotoxin J.202013226727610.3920/WMJ2019.2511
    [Google Scholar]
  101. GaL. AiJ. WangY. AS1411 templated fluorescent copper nanomaterial synthesis and its application to detect melamine.J. Chem.20204067578
    [Google Scholar]
  102. HeJ. ZhangL. XuL. KongF. XuZ. Development of nanozyme labeled biomimetic immunoassay for determination of sulfadiazine residue in foods.Adv. Polym. Technol.202020201810.1155/2020/7647580
    [Google Scholar]
  103. ChenW. TengJ. YaoL. XuJ. LiuG. Determination of campylobacter jejuni in food.J. Agric. Food Chem.202068318455846110.1021/acs.jafc.0c0286532663006
    [Google Scholar]
  104. WangL. HuoX. QiW. XiaZ. LiY. LinJ. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification.Talanta202021112071510.1016/j.talanta.2020.12071532070611
    [Google Scholar]
  105. HuangF. GuoR. XueL. CaiG. WangS. LiY. LiaoM. WangM. LinJ. An acid-responsive microfluidic salmonella biosensor using curcumin as signal reporter and ZnO-capped mesoporous silica nanoparticles for signal amplification.Sens. Actuators B Chem.202031212795810.1016/j.snb.2020.127958
    [Google Scholar]
  106. ZhengL. CaiG. QiW. WangS. WangM. LinJ. Optical biosensor for rapid detection of Salmonella typhimurium based on porous gold @platinum nanocatalysts and a 3D fluidic chip.ACS Sens.202051657210.1021/acssensors.9b0147231875386
    [Google Scholar]
  107. GuoR HuangF CaiG ZhengL XueL LiY A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification.Microchim. Acta202018719710.1007/s00604‑020‑4169‑z
    [Google Scholar]
  108. ChengN. ZhuC. WangY. DuD. ZhuM.J. LuoY. XuW. LinY. Nanozyme enhanced colorimetric immunoassay for naked-eye detection of Salmonella enteritidis. J. Anal. Test.2019319910610.1007/s41664‑018‑0079‑z
    [Google Scholar]
  109. QiuQ ChenH YingS SharifS YouZ WangY Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes, and Vibrio parahemolyticus by using an ultrathin metal–organic framework (type Cu-TCPP).Microchim. Acta201918693
    [Google Scholar]
  110. JooJ. YimC. KwonD. LeeJ. ShinH.H. ChaH.J. JeonS. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes.Analyst2012137163609361210.1039/c2an35369e22576145
    [Google Scholar]
  111. LiZ. XueN. MaH. ChengZ. MiaoX. An ultrasensitive and switch-on platform for aflatoxin B1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites.Talanta201818134635110.1016/j.talanta.2018.01.03929426523
    [Google Scholar]
  112. SenerG. UzunL. DenizliA. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.ACS Appl. Mater. Interfaces2014621183951840010.1021/am507128325330256
    [Google Scholar]
  113. AlizadehA. KhodaeiM.M. HamidiZ. ShamsuddinM. Naked-eye colorimetric detection of Cu2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles.Sens. Actuators B Chem.201419078279110.1016/j.snb.2013.09.020
    [Google Scholar]
  114. SungY WuS Colorimetric detection of Cd(II) ions based on di-(1H pyrrol-2yl)methanethione functionalized gold nanoparticles.Sens. Actuators B Chem.20142018691
    [Google Scholar]
  115. SahooM. VishwakarmaS. PanigrahiC. KumarJ. Nanotechnology: Current applications and future scope in food.Food Front.20212132210.1002/fft2.58
    [Google Scholar]
  116. JovanovićB. Critical review of public health regulations of titanium dioxide, a human food additive.Integr. Environ. Assess. Manag.2015111102010.1002/ieam.157125091211
    [Google Scholar]
  117. YuH. ParkJ.Y. KwonC.W. HongS.C. ParkK.M. ChangP.S. An overview of nanotechnology in food science: Preparative methods, practical applications, and safety.J. Chem.2018201811010.1155/2018/5427978
    [Google Scholar]
  118. AshfaqA. KhursheedN. FatimaS. AnjumZ. YounisK. Application of nanotechnology in food packaging: Pros and Cons.J. Agric. Food Res.2022710027010.1016/j.jafr.2022.100270
    [Google Scholar]
  119. ChausaliN. SaxenaJ. PrasadR. Recent trends in nanotechnology applications of bio-based packaging.J. Agric. Food Res.2022710025710.1016/j.jafr.2021.100257
    [Google Scholar]
  120. HanW. YuY. LiN. WangL. Application and safety assessment for nano-composite materials in food packaging.Chin. Sci. Bull.201156121216122510.1007/s11434‑010‑4326‑6
    [Google Scholar]
  121. PowellJ.J. HarveyR.S.J. AshwoodP. WolstencroftR. GershwinM.E. ThompsonR.P.H. Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease.J. Autoimmun.20001419910510.1006/jaut.1999.034210648120
    [Google Scholar]
  122. GurrJ.R. WangA.S.S. ChenC.H. JanK.Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.Toxicology20052131-2667310.1016/j.tox.2005.05.00715970370
    [Google Scholar]
  123. HeX. AkerW.G. FuP.P. HwangH.M. Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: A review and perspective.Environ. Sci. Nano20152656458210.1039/C5EN00094G
    [Google Scholar]
  124. GirigoswamiA. GhoshM.M. PallaviP. RameshS. GirigoswamiK. Nanotechnology in detection of food toxins – Focus on the dairy products.Biointerface Res. Appl. Chem.2021116141551417210.33263/BRIAC116.1415514172
    [Google Scholar]
  125. KumarV. GuleriaP. MehtaS.K. Nanosensors for food quality and safety assessment.Environ. Chem. Lett.201715216517710.1007/s10311‑017‑0616‑4
    [Google Scholar]
  126. DuránN. MarcatoP.D. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review.Int. J. Food Sci. Technol.20134861127113410.1111/ijfs.12027
    [Google Scholar]
  127. OnyeakaH. PassarettiP. MiriT. Al-SharifyZ.T. The safety of nanomaterials in food production and packaging.Curr. Res. Food Sci.2022576377410.1016/j.crfs.2022.04.00535520272
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013297685240820043042
Loading
/content/journals/cnf/10.2174/0115734013297685240820043042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test