Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Introduction

This study aimed to explore the use of tuna ( sp.) bone fishmeal to boost the nutritional value of brownies, with a particular focus on the benefits of calcium for pregnant women. Incorporating tuna bone fishmeal into brownie recipes offered the potential to enhance both the sensory and nutritional qualities of this traditional product. The research investigated the organoleptic quality, proximate composition, and calcium content of brownies with added tuna bone fishmeal.

Methods

This study employed an experimental design involving three treatments: treatment A (tuna bone fishmeal 30 g: wheat flour 70 g), treatment B (tuna bone fishmeal 40 g: wheat flour 60 g), and treatment C (tuna bone fishmeal 50 g: wheat flour 50 g). Treatment C was selected for detailed analysis, and a hedonic test was conducted.

Results

Treatment C, consisting of 50 g of tuna bone fishmeal and 50 g of wheat flour, was favored based on hedonic test results. Chemical analysis showed a water content of 11.48%, ash content of 5.21%, protein content of 12.73%, fat content of 8.28%, and calcium content of 32.25 mg/g. However, water and fat content did not meet Indonesia's national standard (SNI) for semi-moist cakes, including brownies.

Conclusion

Incorporating tuna bone fishmeal into brownies enhanced their calcium content, offering potential nutritional benefits, particularly for pregnant women. Sensory evaluations were positive, though further adjustments may be needed to meet SNI standards for semi-moist cakes.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013304867250628184503
2025-07-08
2026-02-02
Loading full text...

Full text loading...

References

  1. HarinarayanC.V. AkhilaH. ShanthisreeE. Modern India and dietary calcium deficiency—half a century nutrition data—retrospect–introspect and the road ahead.Front. Endocrinol.20211258365410.3389/fendo.2021.58365433889131
    [Google Scholar]
  2. ShliskyJ. MandlikR. AskariS. AbramsS. BelizanJ.M. BourassaM.W. CormickG. Driller-ColangeloA. GomesF. KhadilkarA. OwinoV. PettiforJ.M. RanaZ.H. RothD.E. WeaverC. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes.Ann. N. Y. Acad. Sci.202215121102810.1111/nyas.1475835247225
    [Google Scholar]
  3. PérezA. RuzM. GarcíaP. JiménezP. ValenciaP. RamírezC. PintoM. NuñezS.M. ParkJ.W. AlmonacidS. Nutritional properties of fish bones: Potential applications in the food industry.Food Rev. Int.2024401799110.1080/87559129.2022.2153136
    [Google Scholar]
  4. FernandesG. AbhyankarV. M O’DellJ. Calcium sulfate as a scaffold for bone tissue engineering: A descriptive review.J. Dent. Oral Disord. Ther.20219112210.15226/jdodt.2021.001124
    [Google Scholar]
  5. ChauhanR.C. Calcium as a boon or bane for athlete: A review.Asian J. Res. Mark.20221111810.5958/2277‑6621.2022.00003.2
    [Google Scholar]
  6. JomovaK. MakovaM. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. RhodesC.J. ValkoM. Essential metals in health and disease.Chem. Biol. Interact.202236711017310.1016/j.cbi.2022.11017336152810
    [Google Scholar]
  7. AliA.A.H. Overview of the vital roles of macro minerals in the human body.J. Trace Elem. Miner.2023410007610.1016/j.jtemin.2023.100076
    [Google Scholar]
  8. LikharA. PatilM.S. Importance of maternal nutrition in the first 1,000 days of life and its effects on child development: A narrative review.Cureus20221410e3008310.7759/cureus.3008336381799
    [Google Scholar]
  9. RiyadiA. NingsihL. RahmadiA. The influence of calcium and iron supplementation in pregnant women to affect newborn body length in Bengkulu.Media Gizi Indonesia2023181SP384510.20473/mgi.v18i1SP.38‑45
    [Google Scholar]
  10. RyanB.A. KovacsC.S. The role of vitamin D physiology in regulating calcium and bone metabolism in mother and child: pregnancy, lactation, postweaning, fetus, and neonate.Vitamin D. FeldmanD. PikeJ.W. CambridgeAcademic Press2024693759
    [Google Scholar]
  11. LakshmaiahV.V. Nutraceuticals in pregnancy.Nutraceuticals for the treatment and prevention of sexual disorders.New YorkApple Academic Press2025163201
    [Google Scholar]
  12. KovacsC.S. Physiology of calcium, phosphorus, and bone metabolism during pregnancy, lactation, and postweaning.Maternal-Fetal and Neonatal Endocrinology.CambridgeAcademic Press2020617310.1016/B978‑0‑12‑814823‑5.00005‑2
    [Google Scholar]
  13. BrownL.L. CohenB.E. EdwardsE. GustinC.E. NoreenZ. Physiological need for calcium, iron, and folic acid for women of various subpopulations during pregnancy and beyond.J. Womens Health202130220721110.1089/jwh.2020.887333164624
    [Google Scholar]
  14. AhmedA. SaleemM.A. SaeedF. AfzaalM. ImranA. AkramS. HussainM. KhanA. Al JbawiE. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females.Food Sci. Nutr.20231195004502710.1002/fsn3.351937701195
    [Google Scholar]
  15. GioxariA. PapandreouP. DaskalouE. KalioraA.C. SkouroliakouM. Association of serum calcium levels of preterm neonates at birth with calcium intake from foods and supplements by bedridden women during pregnancy.Healthcare202412669310.3390/healthcare1206069338540656
    [Google Scholar]
  16. KyozukaH. MurataT. FukudaT. YamaguchiA. KannoA. YasudaS. SatoA. OgataY. KuseM. HosoyaM. YasumuraS. HashimotoK. NishigoriH. FujimoriK. KamijimaM. YamazakiS. OhyaY. KishiR. YaegashiN. HashimotoK. MoriC. ItoS. YamagataZ. InaderaH. NakayamaT. IsoH. ShimaM. KurozawaY. SuganumaN. KusuharaK. KatohT. Association between pre-pregnancy calcium intake and hypertensive disorders during the first pregnancy: The Japan environment and children’s study.BMC Pregnancy Childbirth202020142410.1186/s12884‑020‑03108‑232723367
    [Google Scholar]
  17. AjongA.B. KenfackB. AliI.M. YakumM.N. UkaogoP.O. MangalaF.N. AljerfL. TelefoP.B. Calcium supplementation in pregnancy: An analysis of potential determinants in an under-resourced setting.PLoS One20231810e029230310.1371/journal.pone.029230337796953
    [Google Scholar]
  18. MunniU.S. IslamK. Association between dietary calcium and pregnancy induced hypertension.Biores Commun20241021612161810.3329/brc.v10i2.74589
    [Google Scholar]
  19. ZhuQ. YuQ. LiuM. WeiY. Effectiveness of calcium supplementation in the prevention of gestational hypertension: A systematic review and meta-analysis of randomised controlled trials.Pregnancy Hypertens.20243810117410.1016/j.preghy.2024.10117439608269
    [Google Scholar]
  20. DewiL.K. SupriadiS. AminahS. Analysis of calcium (Ca) levels in milkfish (Chanos chanos) bone using atomic absorption spectrophotometry (AAS).J Akademika Kimia2021101151910.22487/j24775185.2021.v10.i1.pp15‑19
    [Google Scholar]
  21. Rosidi WNTM, Arshad NM, Mohtar NF. Characterization of Sardinella fimbriata and Clarias gariepinus bones. Biodiversitas 2021; 22(4). https://doi.org/10.13057/biodiv/d220405
  22. WangX. Natural bioactive compounds from fish.Natural Bioactive CompoundsAcademic Press202139340810.1016/B978‑0‑12‑820655‑3.00020‑3
    [Google Scholar]
  23. HeJ. GuoH. ZhangM. WangM. SunL. ZhuangY. Purification and characterization of a novel calcium-binding heptapeptide from the hydrolysate of tilapia bone with its osteogenic activity.Foods202211346810.3390/foods1103046835159617
    [Google Scholar]
  24. SalindehoN. MokolensangJ.F. ManuL. TaslimN.A. NurkolisF. GunawanW.B. YusufM. MayuluN. TsopmoA. Fish scale rich in functional compounds and peptides: A potential nutraceutical to overcome undernutrition.Front. Nutr.20229107237010.3389/fnut.2022.107237036570154
    [Google Scholar]
  25. NawazA. LiE. IrshadS. XiongZ. XiongH. ShahbazH.M. SiddiqueF. Valorization of fisheries by-products: Challenges and technical concerns to food industry.Trends Food Sci. Technol.202099344310.1016/j.tifs.2020.02.022
    [Google Scholar]
  26. RenX. WangJ. YuJ. SongB. FengH. ShenM. ZhangH. ZouJ. ZengG. TangL. WangJ. Waste valorization: Transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant.J. Clean. Prod.202129112522510.1016/j.jclepro.2020.125225
    [Google Scholar]
  27. Abdel-MoeminA.R. Abdel-RahmanM.K. Environmental protection with sustainable products from fish bone waste.Environ. Qual. Manage.202232142544010.1002/tqem.21878
    [Google Scholar]
  28. EgbediB. OsibonaA. Fish by-products consumption and discard pattern in Nigeria.J. Agric. Mar. Sci.2022272284010.53541/jams.vol27iss2pp28‑40
    [Google Scholar]
  29. CorrêaT.H.A. HolandaJ.N.F. Fish bone as a source of raw material for synthesis of calcium phosphate.Mater. Res.201922Suppl. 1e2019048610.1590/1980‑5373‑mr‑2019‑0486
    [Google Scholar]
  30. CarellaF. SeckM. EspostiL.D. DiadiouH. MaienzaA. BarontiS. VignaroliP. VaccariF.P. IafiscoM. AdamianoA. Thermal conversion of fish bones into fertilizers and biostimulants for plant growth – A low tech valorization process for the development of circular economy in least developed countries.J. Environ. Chem. Eng.20219110481510.1016/j.jece.2020.104815
    [Google Scholar]
  31. Junianto BrainerdE. MaghfiraR. SuyonoM.L.A. RizkiA.F. PratamaR.L. BarkahS.M. Utilization of fish bone waste for food.Asian J. Fish. Aquat. Res.2022202465610.9734/ajfar/2022/v20i2493
    [Google Scholar]
  32. BahriS. Optimizing the utilization of Decapterussp bone meal (DBM) in the formulation of nutritious stick cake snacks.Int. J. Res. Anal. Rev.202411325110.1729/Journal.41218
    [Google Scholar]
  33. PutraN.E. ZhouJ. ZadpoorA.A. Sustainable sources of raw materials for additive manufacturing of bone-substituting biomaterials.Adv. Healthc. Mater.2024131230183710.1002/adhm.20230183737535435
    [Google Scholar]
  34. MaktoofA.A. ElherarllaR.J. EthaibS. Identifying the nutritional composition of fish waste, bones, scales, and fins.IOP Conf. Series Mater. Sci. Eng.2020871101201310.1088/1757‑899X/871/1/012013
    [Google Scholar]
  35. AlfioV.G. ManzoC. MicilloR. From fish waste to value: An overview of the sustainable recovery of omega-3 for food supplements.Molecules2021264100210.3390/molecules2604100233668684
    [Google Scholar]
  36. JannathullaR. RajaramV. KalanjiamR. AmbasankarK. MuralidharM. DayalJ.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources.Aquacult. Res.201950123493350610.1111/are.14324
    [Google Scholar]
  37. HamidN.K.A. Sustainable aquafeed: Alternative ingredients produced locally as nutrient complementary in minimizing the use of fishmeal.2nd International Conference on Veterinary, Animal, and Environmental Sciences (ICVAES 2020)Atlantis Press B.V, 21 April 2021, pp. 7-10.10.2991/absr.k.210420.002
    [Google Scholar]
  38. PelyunthaW. YafaA. CharoenwongB. VongkamjanK. Effectiveness of the organic acid-based antimicrobial agent to prevent bacterial contamination in fish meal.Animals20221223336710.3390/ani1223336736496886
    [Google Scholar]
  39. PeñarubiaO. ToppeJ. AhernM. WardA. GriffinM. How value addition by utilization of tilapia processing by-products can improve human nutrition and livelihood.Rev. Aquacult.202315S1324010.1111/raq.12737
    [Google Scholar]
  40. RosfitasariE. TahirM.M. Study of making steamed brownies premix flour made from mung beans flour (Vigna radiata) and pumpkin flour (Cucurbita moschata).BIO Web Conf.2024960102610.1051/bioconf/20249601026
    [Google Scholar]
  41. Roshini D, Agarwal K, Suganya K. Development and nutritional evaluation of brownies incorporated with pumpkin seeds flour. Ann Food Sci Technol 2020; 21(4).
  42. UruakpaF.O. FleischerA.M. Sensory and nutritional attributes of black bean brownies.Am. J. Food Sci. Nutr.2016332736
    [Google Scholar]
  43. LigarnasariI.P. AnamC. SanjayaA.P. Physical, chemical and sensory properties of brownies substituted with sweet potato flour (Ipomoea batatas L.) with addition of black cumin oil (Nigella sativa L.).IOP Conf. Ser.: Earth Environ. Sci.201810201208410.1088/1755‑1315/102/1/012084
    [Google Scholar]
  44. PurwonegoroP.I. SulistiyatiT.D. Substitution of Eucheuma cottonii seaweed flour against acceptability and hardness of steamed brownies.Int. J. Sci. Res. Publ.201996p901810.29322/IJSRP.9.06.2019.p9018
    [Google Scholar]
  45. SumartiniS. HarahapK.S. MujiyantiA. Brownies from mangrove fruit flour: The use of variation of flours as an alternative to high food nutrition.Indones. Food Nutr. Prog.2021171162210.22146/ifnp.55188
    [Google Scholar]
  46. HongpanN. ChainarongK. KalawongS. Study of partial substitution levels of wheat flour with purple sweet potato puree on qualities of brownies.Burapha Sci. J.202126317451761
    [Google Scholar]
  47. FariasP.M. MarcelinoG. SantanaL.F. de AlmeidaE.B. GuimarãesR.C.A. PottA. HianeP.A. FreitasK.C. Minerals in pregnancy and their impact on child growth and development.Molecules20202523563010.3390/molecules2523563033265961
    [Google Scholar]
  48. MaulidaN. Using of yellowfin bone fishmeal (Thunnus albacares) as a supplement in making crackers.ThesisBogor: Bogor Agricultural Institute.2005http://repository.ipb.ac.id/handle/123456789/14084
    [Google Scholar]
  49. NasionalB.S. Water and wastewater - Part 13: Calcium (Ca) testing using titrimetric method.1992Available from: https://www.scribd.com/document/348112588/Air-Dan-Limbah-Ca-SNI-06-6989-13-2004
  50. HorwitzW. Determination of moisture, ash, protein, and fat, Official Method of Analysis of the Association of Analytical Chemists.18th edWashington, DCAOAC2005https://www.researchgate.net/publication/292783651_AOAC_2005
    [Google Scholar]
  51. Chemical test method-section 4: Determination of protein content by the total nitrogen method in fishery products.2006Available from: http://sispk.bsn.go.id/SNI/DetailSNI/7114
  52. Method of chemical test-part 3: Determination of total fat content in fishery product.2006Available from: http://sispk.bsn.go.id/SNI/DetailSNI/7113
  53. TokerO.S. PalabiyikI. PirouzianH.R. AktarT. KonarN. Chocolate aroma: Factors, importance and analysis.Trends Food Sci. Technol.20209958059210.1016/j.tifs.2020.03.035
    [Google Scholar]
  54. LiuS. SunH. MaG. ZhangT. WangL. PeiH. LiX. GaoL. Insights into flavor and key influencing factors of Maillard reaction products: A recent update.Front. Nutr.2022997367710.3389/fnut.2022.97367736172529
    [Google Scholar]
  55. ShakoorA. ZhangC. XieJ. YangX. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties.Food Chem.202239313341610.1016/j.foodchem.2022.13341635696950
    [Google Scholar]
  56. YangY. FengL. DongX. J. MaY. K. YanW. Y. ShiX. Y. SunB. G. Volatile organic compounds generated from the maillard reaction between l-ascorbic acid and glycine in hot compressed waterACS Food Sci Technol202510.1021/acsfoodscitech.4c00934
    [Google Scholar]
  57. TangkeU. DaengR.A. KatiandaghoB. Organoleptic quality of tuna porridge canned with fortified tuna bone meal.IOP Conf. Ser. Earth Environ. Sci.2021750101204710.1088/1755‑1315/750/1/012047
    [Google Scholar]
  58. BenjakulS. PomtongS. ChedosamaA. SaetangJ. SookchooP. NilsuwanK. Chemical compositions and characteristics of biocalcium from pre-cooked tuna bone as influenced by sodium chloride pretreatment and defatting by asian seabass lipase.Foods2024138126110.3390/foods1308126138672933
    [Google Scholar]
  59. XiaoN. XuH. GuoQ. ShiW. Effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation.J. Food Biochem.20224612e1440510.1111/jfbc.1440536121197
    [Google Scholar]
  60. de OliveiraF.C. CoimbraJ.S.R. de OliveiraE.B. ZuñigaA.D.G. RojasE.E.G. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review.Crit. Rev. Food Sci. Nutr.20165671108112510.1080/10408398.2012.75566924824044
    [Google Scholar]
  61. ManteuS.H. YusufN. MileL. Formulation of longgi flour-based brownies substituted with tilapia flour.NIKe Journal201973.10.37905/.v7i3.5029
    [Google Scholar]
  62. YuH. ZhongQ. LiuY. GuoY. XieY. ZhouW. YaoW. Recent advances of ultrasound-assisted Maillard reaction.Ultrason. Sonochem.20206410484410.1016/j.ultsonch.2019.10484431953006
    [Google Scholar]
  63. WinarnoF.G. Flavor bagi industri pangan (Flavor for the food industry).1st ednM-Brio PressBogor, Indonesia2002
    [Google Scholar]
  64. GarveyE.C. O’SullivanM.G. KerryJ.P. KilcawleyK.N. Factors influencing the sensory perception of reformulated baked confectionary products.Crit. Rev. Food Sci. Nutr.20206071160118810.1080/10408398.2018.156241930668147
    [Google Scholar]
  65. LeaseH. HendrieG.A. PoelmanA.A.M. DelahuntyC. CoxD.N. A sensory-diet database: A tool to characterise the sensory qualities of diets.Food Qual. Prefer.201649203210.1016/j.foodqual.2015.11.010
    [Google Scholar]
  66. AfriantiM. Total bacteria, pH, and moisture content of broiler chicken meat after soaking with senbuat leaf extract (Melastoma malabatchrium L.) during the storage period.J. Food Nutr.201347.10.26714/jpg.4.1.2013.%25p
    [Google Scholar]
  67. KutluN. PandiselvamR. SakaI. KamilogluA. SahniP. KothakotaA. Impact of different microwave treatments on food texture.J. Texture Stud.202253670973610.1111/jtxs.1263534580867
    [Google Scholar]
  68. LubisD.R.K. NurminahM. NainggolanR.J. Physicochemical and sensory characteristics of brownies from composite flour (modified breadfruit, purple sweet potato, saga seeds, and mocaf).IOP Conf. Ser. Earth Environ. Sci.2021713101203710.1088/1755‑1315/713/1/012037
    [Google Scholar]
  69. JafarzadehS. NafchiM.A. SalehabadiA. Oladzad-abbasabadiN. JafariS.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables.Adv. Colloid Interface Sci.202129110240510.1016/j.cis.2021.10240533819726
    [Google Scholar]
  70. KumarL. GaikwadK.K. Advanced food packaging systems for space exploration missions.Life Sci. Space Res.20233771410.1016/j.lssr.2023.01.00537087181
    [Google Scholar]
  71. HarrisG.K. MarshallM.R. Ash analysis.Food Science Text Series.SpringerCham20172879710.1007/978‑3‑319‑45776‑5_16
    [Google Scholar]
  72. OdzijewiczJ.I. WołejkoE. WydroU. WasilM. Jabłońska-TrypućA. Utilization of ashes from biomass combustion.Energies20221524965310.3390/en15249653
    [Google Scholar]
  73. AnggorodiH.R. Nutrition of Various Poultry Livestock.JakartaGramedia Pustaka Utama1995
    [Google Scholar]
  74. SyaziliA. AhmadK. UmakaapaI. Using tuna fish bone waste as mineral sources in feed formulation of tilapia (Oreochromis niloticus).IOP Conf. Ser. Earth Environ. Sci.2021890101202610.1088/1755‑1315/890/1/012026
    [Google Scholar]
  75. ThalibA. IstiqomahT. RistyanadiB. QomariyatiN. Consumer acceptance test of milkfish taste (chanos chanos forsskal) from several farming locations in Indonesia.Grouper2019102627010.30736/grouper.v10i2.58
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013304867250628184503
Loading
/content/journals/cnf/10.2174/0115734013304867250628184503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test