Skip to content
2000
image of Beyond Beauty: The Potent Dual Action of Rosa damascena in Managing Diabetes and Hyperlipidemia

Abstract

Introduction

Diabetes and hyperlipidemia are prevalent metabolic disorders that significantly contribute to global morbidity and mortality. Current pharmacological interventions often present limitations, including side effects, poor bioavailability, and high costs. Natural alternatives with fewer adverse effects are increasingly sought, with (Damask rose) showing promise beyond its traditional use in perfumery and cuisine. The main aim of this study was to investigate the therapeutic efficacy of distillate in managing alloxan-induced diabetes and high-fat diet-induced hyperlipidemia in rat models, and to evaluate its potential as a natural alternative for metabolic disorder management.

Methods

Forty male Wistar albino rats were divided into four groups for each experimental model. For the anti-hyperglycemic study, diabetes was induced via intraperitoneal alloxan injection (120 mg/kg). Treatment groups received either water (disease control), glibenclamide (3 mg/kg), or rose distillate (2.5 or 5 ml/kg) orally for 21 days, with fasting blood glucose monitored at regular intervals. For the anti-hyperlipidemic study, hyperlipidemia was induced a high-fat diet for two months, followed by 30 days of treatment with either a fat-rich diet alone (disease control), atorvastatin (2 mg/kg), or rose distillate (2.5 or 5 ml/kg), with subsequent serum lipid profile analysis.

Results

Rose distillate demonstrated significant dose-dependent anti-hyperglycemic activity, with the higher dose (5 ml/kg) showing superior glycemic control compared to glibenclamide after prolonged administration. By day 21, the higher-dose treatment reduced fasting blood glucose to 116.20±20.72 mg/dL compared to 141.82±8.33 mg/dL with standard treatment. In hyperlipidemic rats, both doses effectively normalized lipid profiles, significantly reducing total cholesterol, triglycerides, LDL, and VLDL levels comparable to atorvastatin therapy, while modestly increasing beneficial HDL cholesterol. No significant differences were observed between the two rose distillate dosage regimens in their anti-hyperlipidemic effects.

Discussion

distillate demonstrates remarkable therapeutic efficacy against both hyperglycemia and hyperlipidemia, with mechanisms likely involving antioxidant activity, enzyme inhibition, and metabolic pathway modulation through bioactive constituents including quercetin, kaempferol, eugenol, and citronellol.

Conclusion

These findings validate traditional ethnomedicinal applications and position rose distillate as a promising natural intervention for metabolic disorders, warranting further clinical investigation to establish optimal dosing regimens and evaluate long-term safety and efficacy in human populations.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013367622250711172441
2025-07-18
2025-09-29
Loading full text...

Full text loading...

References

  1. Atia T Iqbal MZ Ahmed FH Vitamin D supplementation could enhance the effectiveness of glibenclamide in treating diabetes and preventing diabetic nephropathy: A biochemical, histological and immunohistochemical study. Evid Based Integr Med 2022 27 2515690X221116403 10.1177/2515690X221116403
    [Google Scholar]
  2. Rahman M Barman RK Khan RI Ali A Sarker S Wahed II Pharmacological screening of glibenclamide solid dispersion in fructose-fed diabetic rats. RPS Pharma Pharma Rep 2023 2 2 rqad012 10.1093/rpsppr/rqad012
    [Google Scholar]
  3. Mahboubi M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med. 2016 6 1 10 16 10.1016/j.jtcme.2015.09.005 26870673
    [Google Scholar]
  4. Boskabady M.H. Shafei M.N. Saberi Z. Amini S. Pharmacological effects of Rosa damascena. Iran. J. Basic Med. Sci. 2011 14 4 295 307 23493250
    [Google Scholar]
  5. Kumar A. Gautam R.D. Singh S. Phenotyping floral traits and essential oil profiling revealed considerable variations in clonal selections of damask rose (Rosa damascena Mill.). Sci. Rep. 2023 13 1 8101 10.1038/s41598‑023‑34972‑5 37208367
    [Google Scholar]
  6. Labban L. Thallaj N. The medicinal and pharmacological properties of Damascene Rose (Rosa damascena): A review. Int. J. Herb. Med. 2020 8 33 37
    [Google Scholar]
  7. Akram M. Riaz M. Munir N. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J. Pharm. Pharmacol. 2020 72 2 161 174 10.1111/jphp.13185 31709541
    [Google Scholar]
  8. Tsanaktsidis C.G. Tamoutsidis E. Kasapidis G. Itziou A. Ntina E. Preliminary results on attributes of distillation products of the rose Rosa damascene as a dynamic and friendly to the environment rural crop. APCBEE Procedia 2012 1 66 73 10.1016/j.apcbee.2012.03.012
    [Google Scholar]
  9. Moein M. Zarshenas M.M. Delnavaz S. Chemical composition analysis of rose water samples from Iran. Pharm. Biol. 2014 52 10 1358 1361 10.3109/13880209.2014.885062 24863280
    [Google Scholar]
  10. Demirbolat İ. Ekinci C. Nuhoğlu F. Kartal M. Yıldız P. Geçer M.Ö. Effects of orally consumed Rosa damascena Mill. Hydrosol on hematology, clinical chemistry, lens enzymatic activity, and lens pathology in streptozotocin-induced diabetic rats. Molecules 2019 24 22 4069 10.3390/molecules24224069 31717650
    [Google Scholar]
  11. Babukumar S. Vinothkumar V. Sankaranarayanan C. Srinivasan S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol. 2017 55 1 1442 1449 10.1080/13880209.2017.1301494 28330423
    [Google Scholar]
  12. Srinivasan S. Muruganathan U. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chem. Biol. Interact. 2016 250 38 46 10.1016/j.cbi.2016.02.020 26944432
    [Google Scholar]
  13. Farhadi-Azar M. Ghahremani M. Mahboobifard F. Noroozzadeh M. Yaghmaei P. Tehrani F.R. Effects of Rosa damascena on reproductive improvement, metabolic parameters, liver function and insulin-like growth factor-1 gene expression in estradiol valerate induced polycystic ovarian syndrome in Wistar rats. Biomed. J. 2023 46 3 100538 10.1016/j.bj.2022.05.003 35605922
    [Google Scholar]
  14. Alsalti A.A. Hasan N. Aldia D. In-vitro and In-vivo hypoglycemic efficacy of Rosa damascena petals extracts. Bulletin of Pharmaceutical Sciences. Assiut 2022 45 2 593 604 10.21608/bfsa.2022.271532
    [Google Scholar]
  15. Inayatillah B. Jauhar T. Mastutik G. Rahniayu A. Hypoglycemic effects of Rosa damascena Mill. ethanolic extract on blood glucose levels and diameter of langerhans pancreatic islets. Indian J Foren Med Toxicol 2021 15 2 2133 2141 10.37506/ijfmt.v15i2.14679
    [Google Scholar]
  16. Kaneto H. Katakami N. Matsuhisa M. Matsuoka T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010 2010 1 11 10.1155/2010/453892 20182627
    [Google Scholar]
  17. Trendafilova A. Staleva P. Petkova Z. Phytochemical profile, antioxidant potential, antimicrobial activity, and cytotoxicity of dry extract from Rosa damascena mill. Molecules 2023 28 22 7666 10.3390/molecules28227666 38005389
    [Google Scholar]
  18. Wang H. Beneficial medicinal effects and material applications of rose. Heliyon 2024 10 1 e23530 10.1016/j.heliyon.2023.e23530 38169957
    [Google Scholar]
  19. Warraich H.J. Rana J.S. Dyslipidemia in diabetes mellitus and cardiovascular disease. Cardiovasc. Endocrinol. 2017 6 1 27 32 10.1097/XCE.0000000000000120 31646116
    [Google Scholar]
  20. Bhatt H.B. Smith R.J. Fatty liver disease in diabetes mellitus. Hepatobiliary Surg. Nutr. 2015 4 2 101 108 26005676
    [Google Scholar]
  21. Davoodi I. Rahimi R. Abdollahi M. Promising effect of Rosa damascena extract on high-fat diet-induced nonalcoholic fatty liver. J. Tradit. Complement. Med. 2017 7 4 508 514 10.1016/j.jtcme.2017.01.008 29034200
    [Google Scholar]
  22. Jauhar T. Inayatillah B. Rochmanti M. Basori A. Hypolipidemic effects of Rosa damascena Mill. extract in streptozotocin-induced diabetic rats. Indian J Foren Med Toxicol 2021 15 2 1065 1070 10.37506/ijfmt.v15i2.14461
    [Google Scholar]
  23. Mohammadi A. Fallah H. Gholamhosseinian A. Antihyperglycemic effect of Rosa damascena is mediated by PPAR. γ gene expression in animal model of insulin resistance. Iran. J. Pharm. Res. 2017 16 3 1080 1088 29201096
    [Google Scholar]
  24. Sanjari M. Najar G.A. Asadikaram G. Mashayekhi M. Tafreshi G.A. The safety and efficacy of Rosa damascena extract in patients with type II diabetes: Preliminary report of a triple blind randomized acarbose controlled clinical trial. J. Kerman Univ. Med. Sci. 2019 26 1 22 35 10.22062/jkmu.2019.87271
    [Google Scholar]
  25. Nayebi N. Khalili N. Kamalinejad M. Emtiazy M. A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complement. Ther. Med. 2017 34 129 140 10.1016/j.ctim.2017.08.014 28917365
    [Google Scholar]
  26. Saffari V.R. Ahmad K. Hossein L. Mesbah B. Obermaier J.F. Effects of different plant growth regulators and time of pruning on yield components of Rosa damascena mill. Int. J. Agric. Biol. 2004 6 6 1040 1042
    [Google Scholar]
  27. Osama M. Ikram R. Wei C.R. Biochemical investigation to evaluate chronic effects of “arq-e-gulab” on liver function test. African. J. Biomed. Res. 2021 8 4 1 9 10.53555/nveo.v8i4.5577
    [Google Scholar]
  28. Chalchat J.C. Özcan M.M. A comparative investigation on the composition of rose (Rosa damascena Mill.) oil produced by using two different methods. J. Essent. Oil-Bear. Plants 2009 12 4 447 452 10.1080/0972060X.2009.10643743
    [Google Scholar]
  29. Verma S. Padalia C. Chauhan A. Chemical investigation of the volatile components of shade-dried petals of damask rose (Rosa damascena Mill.). Arch. Biol. Sci. 2011 63 4 1111 1115 10.2298/ABS1104111V
    [Google Scholar]
  30. Lohani H. Andola H.C. Chauhan N.K. Gwari G. Bhandari U. Volatile constituents of rose water of Damask rose (Rosa damascena Mill.) from Uttarakhand Himalayas. Med Plants Inter J Phytomed Relat Indust 2013 5 2 102 104 10.5958/j.0975‑6892.5.2.016
    [Google Scholar]
  31. Solimine J. Garo E. Wedler J. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia 2016 108 13 19 10.1016/j.fitote.2015.11.012 26592852
    [Google Scholar]
  32. Rusanov K. Garo E. Rusanova M. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study. Planta Med. 2014 80 17 1657 1664 10.1055/s‑0034‑1383145 25295672
    [Google Scholar]
  33. Shah M.K. Khatri P. Vora N. Patel N.K. Jain S. Lin S. Lipid nanocarriers: Preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs. Biomedical Applications of Nanoparticles. Norwich, NY William Andrew 2019 117 147
    [Google Scholar]
  34. National Research Council, Commission on Life Sciences, Institute for Laboratory Animal Research, Committee on Occupational Safety, and Health in Research Animal Facilities Occupational health and safety in the care and use of research animals. National Academies Press 1997 1 8
    [Google Scholar]
  35. Osama M. Ikram R. Aqua distillation enhances the analgesic and anti-inflammatory properties of Rosa damascena Mill.; A pilot study. Int. J. Pharm. Sci. Res. 2018 9 12 5344 5349 10.13040/IJPSR.0975‑8232.9(12).5344‑49
    [Google Scholar]
  36. Babu K.G.D. Singh B. Joshi V.P. Singh V. Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragrance J. 2002 17 2 136 140 10.1002/ffj.1052
    [Google Scholar]
  37. Osama M. Ikram R. Sarfaraz S. Ahmed S. Iqbal A. Screening of water distilled Rosa damascena Mill. flowers as hematopoietic agent in an animal model. Pak. J. Pharm. Sci. 2020 33 1 103 107 32122837
    [Google Scholar]
  38. Ahmed M.F. Kazim S.M. Ghori S.S. Antidiabetic activity of Vinca rosea extracts in alloxan‐induced diabetic rats. Int. J. Endocrinol. 2010 2010 1 841090 20652054
    [Google Scholar]
  39. Ahmed S. Khan R.A. Jamil S. Afroz S. Report - Antidiabetic effects of native date fruit Aseel (Phoenix dactylifera L.) in normal and hyperglycemic rats. Pak. J. Pharm. Sci. 2017 30 5 1797 1802 29084704
    [Google Scholar]
  40. Yadav J.P. Saini S. Kalia A.N. Dangi A.S. Hypoglycemic and hypolipidemic activity of ethanolic extract of Salvadora oleoides in normal and alloxan-induced diabetic rats. Indian J. Pharmacol. 2008 40 1 23 27 10.4103/0253‑7613.40485 21264157
    [Google Scholar]
  41. Ahmed S. Khan R.A. Jamil S. Anti hyperlipidemic and hepatoprotective effects of native date fruit variety “Aseel” (Phoenix dactylifera). Pak. J. Pharm. Sci. 2016 29 6 1945 1950 28375109
    [Google Scholar]
  42. Jamil S. Khan R.A. Ahmed S. In vivo evaluation of antihyperlipidemic, antihyperglycemic and hepatoprotective effects of Vernonia anthelmintica seeds in diet model. Pak. J. Pharm. Sci. 2018 31 3 813 820 29716860
    [Google Scholar]
  43. Trivedi N.A. Mazumdar B. Bhatt J.D. Hemavathi K.G. Effect of shilajit on blood glucose and lipid profile in alloxan-induced diabetic rats. Indian J. Pharmacol. 2004 36 6 373 376
    [Google Scholar]
  44. Scully T. Diabetes in numbers. Nature 2012 485 7398 S2 S3 10.1038/485S2a 22616094
    [Google Scholar]
  45. Sharma V.K. Kumar S. Patel H.J. Hugar S. Hypoglycemic activity of Ficus glomerata in alloxan induced diabetic rats. Int. J. Pharm. Sci. Rev. Res. 2010 1 2 18 22
    [Google Scholar]
  46. Kamalakkannan N. Prince P.S.M. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol. 2006 98 1 97 103 10.1111/j.1742‑7843.2006.pto_241.x 16433898
    [Google Scholar]
  47. Boskabady M.H. Vatanprast A. Parsaee H. Boskabady M. Possible mechanism of inotropic and chronotropic effects of Rosa damascena on isolated guinea pig heart. Daru 2013 21 1 38 10.1186/2008‑2231‑21‑38 23688388
    [Google Scholar]
  48. Xiao J.B. Högger P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2014 22 1 23 38 10.2174/0929867321666140706130807 25005188
    [Google Scholar]
  49. Kim J.H. Kang M.J. Choi H.N. Jeong S.M. Lee Y.M. Kim J.I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011 5 2 107 111 10.4162/nrp.2011.5.2.107 21556223
    [Google Scholar]
  50. Pereira F.D. Cazarolli L.H. Lavado C. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 2011 27 11-12 1161 1167 10.1016/j.nut.2011.01.008 21684120
    [Google Scholar]
  51. Singh P. Jayaramaiah R.H. Agawane S.B. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: Proteomic and mechanistic insights. Sci. Rep. 2016 6 1 18798 10.1038/srep18798 26739611
    [Google Scholar]
  52. Ghule B.V. Ghante M.H. Saoji A.N. Yeole P.G. Hypolipidemic and antihyperlipidemic effects of Lagenaria siceraria (Mol.) fruit extracts. Indian J. Exp. Biol. 2006 44 11 905 909
    [Google Scholar]
  53. Lal A. Kumar T. Murthy P.B. Pillai K.S. Hypolipidemic effect of Coriandrum sativum L. in triton-induced hyperlipidemic rats. Indian J. Exp. Biol. 2004 42 9 909 912 15462185
    [Google Scholar]
  54. Kim H.S. Do not put too much value on conventional medicines. J. Ethnopharmacol. 2005 100 1-2 37 39 10.1016/j.jep.2005.05.030 16039812
    [Google Scholar]
  55. Cherubini A. Vigna G. Zuliani G. Ruggiero C. Senin U. Fellin R. Role of antioxidants in atherosclerosis: Epidemiological and clinical update. Curr. Pharm. Des. 2005 11 16 2017 2032 10.2174/1381612054065783 15974956
    [Google Scholar]
  56. Gebhardt R. Variable influence of kaempferol and myricetin on in vitro hepatocellular cholesterol biosynthesis. Planta Med. 2003 69 12 1071 1074 10.1055/s‑2003‑45184 14750019
    [Google Scholar]
  57. Kaur G. Meena C. Evaluation of anti-hyperlipidemic potential of combinatorial extract of curcumin, piperine and quercetin in Tritoninduced hyperlipidemia in rats. Sci. Int. 2013 1 3 57 63 10.5567/sciintl.2013.57.63
    [Google Scholar]
  58. Padma V.V. Lalitha G. Shirony N.P. Baskaran R. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats. Asian Pac. J. Trop. Biomed. 2012 2 11 910 915 10.1016/S2221‑1691(12)60252‑4 23569870
    [Google Scholar]
  59. Chang C. Tzeng T.F. Liou S.S. Chang Y.S. Liu I.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Med. 2011 77 17 1876 1882 10.1055/s‑0031‑1279992 21728151
    [Google Scholar]
  60. Khalil A.A. Rahman U. Khan M.R. Sahar A. Mehmood T. Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017 7 52 32669 32681 10.1039/C7RA04803C
    [Google Scholar]
  61. Chao P. Hsu C. Yin M. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. 2009 6 1 33 10.1186/1743‑7075‑6‑33 19678956
    [Google Scholar]
  62. Usta C. Ozdemir S. Schiariti M. Puddu P.E. The pharmacological use of ellagic acid-rich pomegranate fruit. Int. J. Food Sci. Nutr. 2013 64 7 907 913 10.3109/09637486.2013.798268 23700985
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013367622250711172441
Loading
/content/journals/cnf/10.2174/0115734013367622250711172441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test