Skip to content
2000
image of Surface Modification of Solid Lipid Nanoparticles: Enhancements in Drug Delivery and Treatment Efficacy

Abstract

Solid lipid nanoparticles (SLNs) have surfaced as promising nanocarriers in drug delivery systems due to their remarkable biocompatibility, high drug encapsulation efficiency, and capability to protect therapeutic agents from chemical and enzymatic degradation. Despite their promising potential, nanoparticles continue to face significant challenges related to biological barriers and biodistribution, which restrict their efficacy in clinical applications. One of the primary issues with traditional SLNs is their poor targeting capacity and rapid clearance by the reticuloendothelial system, which limits their effectiveness in drug delivery. In addition, their low bioavailability poses a major drawback, potentially leading to reduced therapeutic efficacy and an increased risk of side effects. Other challenges include limited drug-loading capacity, particle instability, potential immunogenicity, and the high cost of production, all of which hinder their widespread application in clinical treatments. To address these limitations, advanced techniques and chemical strategies have been employed to modify and functionalize the nanoparticle surfaces, optimizing their biological interactions and enhancing their therapeutic efficacy. Among these strategies, the use of polymers such as polyethylene glycol and chitosan, as well as functional lipids, has been extensively explored for improving the stability, mass transport, targeting, and circulation time of SLNs while minimizing immune detection. In addition, the potential of advanced modifications, such as cysteine-functionalized SLNs and ion pairing, to further optimize drug release and targeting is discussed. This review underscores how these tailored surface modifications can address existing challenges, paving the way for SLNs to emerge as highly effective drug delivery systems in clinical settings. The review explores how these alterations impact the therapeutic efficiency and pharmacokinetics of SLNs. With further optimization, surface-modified SLNs hold promise as an efficient and targeted drug delivery system for a variety of medical applications.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873368556250311190910
2025-03-20
2025-09-04
Loading full text...

Full text loading...

References

  1. Salah E. Abouelfetouh M.M. Pan Y. Chen D. Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf. B Biointerf. 2020 196 111305 10.1016/j.colsurfb.2020.111305 32795844
    [Google Scholar]
  2. Harde H. Das M. Jain S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011 8 11 1407 1424 10.1517/17425247.2011.604311 21831007
    [Google Scholar]
  3. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 10.3389/fphar.2021.618411 33679401
    [Google Scholar]
  4. Dhiman N. Awasthi R. Sharma B. Kharkwal H. Kulkarni G.T. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021 9 580118 10.3389/fchem.2021.580118 33981670
    [Google Scholar]
  5. Glassman P.M. Muzykantov V.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol. Exp. Ther. 2019 370 3 570 580 10.1124/jpet.119.257113 30837281
    [Google Scholar]
  6. Bandawane A. Saudagar R. A review on novel drug delivery system: A recent trend. J. Drug Deliv. Ther. 2019 9 3 517 521 10.22270/jddt.v9i3.2610
    [Google Scholar]
  7. Rudramurthy G. Swamy M. Sinniah U. Ghasemzadeh A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules 2016 21 7 836 10.3390/molecules21070836 27355939
    [Google Scholar]
  8. Haba Y. Kojima C. Harada A. Ura T. Horinaka H. Kono K. Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 2007 23 10 5243 5246 10.1021/la0700826 17419657
    [Google Scholar]
  9. Shi X. Sun K. Baker J.R. Jr Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J. Phys. Chem. C 2008 112 22 8251 8258 10.1021/jp801293a 19727334
    [Google Scholar]
  10. Mane S. Advances of hydrazone linker in polymeric drug delivery. J Crit Rev 2019 6 1 4 10.22159/jcr.2019v6i2.31833
    [Google Scholar]
  11. Boztepe T. Castro G.R. León I.E. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int. J. Pharm. 2021 605 120788 10.1016/j.ijpharm.2021.120788 34116182
    [Google Scholar]
  12. Park S.H. Oh S.G. Mun J.Y. Han S.S. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B Biointerf. 2006 48 2 112 118 10.1016/j.colsurfb.2006.01.006 16520025
    [Google Scholar]
  13. Geszke-Moritz M. Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater. Sci. Eng. C 2016 68 982 994 10.1016/j.msec.2016.05.119 27524099
    [Google Scholar]
  14. Lingayat V.J. Zarekar N.S. Shendge R.S. Solid lipid nanoparticles: A review. Nanosci. Nanotechnol. Res. 2017 4 2 67 72
    [Google Scholar]
  15. Nsairat H. Khater D. Sayed U. Odeh F. Bawab A.A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  16. Genç L. Dikmen G. Eskiler G.G. Formulation of nano drug delivery systems. J. Mater. Sci. Eng. A 2011 1 132 137
    [Google Scholar]
  17. Blasi P. Giovagnoli S. Schoubben A. Ricci M. Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007 59 6 454 477 10.1016/j.addr.2007.04.011 17570559
    [Google Scholar]
  18. Duan Y. Dhar A. Patel C. Khimani M. Neogi S. Sharma P. Kumar S.N. Vekariya R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020 10 45 26777 26791 10.1039/D0RA03491F 35515778
    [Google Scholar]
  19. Eldem T. Speiser P. Hincal A. Optimization of spray-dried and -congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm. Res. 1991 8 1 47 54 10.1023/A:1015874121860 2014208
    [Google Scholar]
  20. Speiser P. Lipidnanopellets als trägersystem für arzneimittel zur peroralen anwendung. Patent EP0167825A2 1990
  21. Lucks S. Müller R. Drug carrier made from solid lipid particles (solid lipid nanospheres (SLN)). Patent EP0605497B1 1996
  22. Ekambaram P. Sathali A.A. Priyanka K. Solid lipid nanoparticles: A review. Sci Revs Chem Commun. 2012 2 1 80 102
    [Google Scholar]
  23. Mirchandani Y. Patravale V.B. S B. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Rel. 2021 335 457 464 10.1016/j.jconrel.2021.05.032 34048841
    [Google Scholar]
  24. Stevens P.J. Sekido M. Lee R.J. Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation. Anticancer Res. 2004 24 1 161 165 15015592
    [Google Scholar]
  25. Mehnert W. Mäder K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2012 64 1 83 101 10.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  26. Manjunath K. Reddy J.S. Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol. 2005 27 2 127 144 10.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  27. Mehta M. Bui T.A. Yang X. Aksoy Y. Goldys E.M. Deng W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 2023 3 6 600 619 10.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  28. Puri A Loomis K Smith B Lee JH Yavlovich A Heldman E Blumenthal R Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier. Syst. 2009 26 6 523 580 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
    [Google Scholar]
  29. Mukherjee S. Ray S. Thakur R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009 71 4 349 358 10.4103/0250‑474X.57282 20502539
    [Google Scholar]
  30. Surender V. Deepika M. Solid lipid nanoparticles: A comprehensive review. J. Chem. Pharm. Res. 2016 8 8 102 114
    [Google Scholar]
  31. Mo K. Kim A. Choe S. Shin M. Yoon H. Overview of solid lipid nanoparticles in breast cancer therapy. Pharmaceutics 2023 15 8 2065 10.3390/pharmaceutics15082065 37631279
    [Google Scholar]
  32. Satyanarayana S.D. Lila A.A.S. Moin A. Moglad E.H. Khafagy E.S. Alotaibi H.F. Obaidullah A.J. Charyulu R.N. Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals 2023 16 7 1001 10.3390/ph16071001 37513913
    [Google Scholar]
  33. Munir M. Zaman M. Waqar M.A. Khan M.A. Alvi M.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery. J. Liposome Res. 2024 34 2 335 348 10.1080/08982104.2023.2268711 37840238
    [Google Scholar]
  34. Saporito F. Sandri G. Bonferoni M.C. Rossi S. Boselli C. Cornaglia I.A. Mannucci B. Grisoli P. Vigani B. Ferrari F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomed. 2017 13 175 186 10.2147/IJN.S152529 29343956
    [Google Scholar]
  35. Priano L. Zara G.P. El-Assawy N. Cattaldo S. Muntoni E. Milano E. Serpe L. Musicanti C. Pérot C. Gasco M.R. Miscio G. Mauro A. Baclofen-loaded solid lipid nanoparticles: Preparation, electrophysiological assessment of efficacy, pharmacokinetic and tissue distribution in rats after intraperitoneal administration. Eur. J. Pharm. Biopharm. 2011 79 1 135 141 10.1016/j.ejpb.2011.02.009 21352914
    [Google Scholar]
  36. Sanjula B. Shah F.M. Javed A. Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target. 2009 17 3 249 256 10.1080/10611860902718672 19255893
    [Google Scholar]
  37. Müller R. Runge S.A. Ravelli V. Thünemann A.F. Mehnert W. Souto E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 2008 68 3 535 544 10.1016/j.ejpb.2007.07.006 17804210
    [Google Scholar]
  38. Khatak S. Mehta M. Awasthi R. Paudel K.R. Singh S.K. Gulati M. Hansbro N.G. Hansbro P.M. Dua K. Dureja H. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis 2020 125 102008 10.1016/j.tube.2020.102008 33059322
    [Google Scholar]
  39. Kakkar V. Singh S. Singla D. Kaur I.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res. 2011 55 3 495 503 10.1002/mnfr.201000310 20938993
    [Google Scholar]
  40. Kelidari H.R. Moemenbellah-Fard M.D. Morteza-Semnani K. Amoozegar F. Shahriari-Namadi M. Saeedi M. Osanloo M. Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. J. Parasit. Dis. 2021 45 1 101 108 10.1007/s12639‑020‑01281‑x 33746393
    [Google Scholar]
  41. Varshosaz J. Tabbakhian M. Mohammadi M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res. 2010 20 4 286 296 10.3109/08982100903443065 19958118
    [Google Scholar]
  42. Singh M. Schiavone N. Papucci L. Maan P. Kaur J. Singh G. Nandi U. Nosi D. Tani A. Khuller G.K. Priya M. Singh R. Kaur I.P. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. Eur. J. Pharm. Biopharm. 2021 160 100 124 10.1016/j.ejpb.2021.01.009 33497794
    [Google Scholar]
  43. Sandhu S.K. Kumar S. Raut J. Singh M. Kaur S. Sharma G. Roldan T.L. Trehan S. Holloway J. Wahler G. Laskin J.D. Sinko P.J. Berthiaume F. Michniak-Kohn B. Rishi P. Ganesh N. Kaur I.P. Systematic development and characterization of novel, high drug-loaded, photostable, curcumin solid lipid nanoparticle hydrogel for wound healing. Antioxidants 2021 10 5 725 10.3390/antiox10050725 34063003
    [Google Scholar]
  44. Abdelbary G. Fahmy R.H. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS Pharm. Sci. Tech. 2009 10 1 211 219 10.1208/s12249‑009‑9197‑2 19277870
    [Google Scholar]
  45. Wang B. Wu K. Liu R. Huang Y. Chang Z. Gao Y. Liu Y. Chen H. Wang Z. Cui Y. Wang L. Ma P. Zhang L. Phyllanthi tannin loaded solid lipid nanoparticles for lung cancer therapy: Preparation, characterization, pharmacodynamics and safety evaluation. Molecules 2023 28 21 7399 10.3390/molecules28217399 37959818
    [Google Scholar]
  46. Li N. Li X. Cheng P. Yang P. Shi P. Kong L. Liu H. Preparation of curcumin solid lipid nanoparticles loaded with flower-shaped lactose for lung inhalation and preliminary evaluation of cytotoxicity in vitro. Evid. Based Complement. Alternat. Med. 2021 2021 1 15 10.1155/2021/4828169 34745284
    [Google Scholar]
  47. Hasan N. Imran M. Kesharwani P. Khanna K. Karwasra R. Sharma N. Rawat S. Sharma D. Ahmad F.J. Jain G.K. Bhatnagar A. Talegaonkar S. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 2021 599 120428 10.1016/j.ijpharm.2021.120428 33662465
    [Google Scholar]
  48. Hu L. Xing Q. Meng J. Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 2010 11 2 582 587 10.1208/s12249‑010‑9410‑3 20352534
    [Google Scholar]
  49. Subedi R.K. Kang K.W. Choi H.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci. 2009 37 3-4 508 513 10.1016/j.ejps.2009.04.008 19406231
    [Google Scholar]
  50. Mohammadi P. Mahjub R. Mohammadi M. Derakhshandeh K. Ghaleiha A. Mahboobian M.M. Pharmacokinetics and brain distribution studies of perphenazine-loaded solid lipid nanoparticles. Drug Dev. Ind. Pharm. 2021 47 1 146 152 10.1080/03639045.2020.1862172 33307865
    [Google Scholar]
  51. Gonçalves L.M.D. Maestrelli F. Di Cesare Mannelli L. Ghelardini C. Almeida A.J. Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur. J. Pharm. Biopharm. 2016 102 41 50 10.1016/j.ejpb.2016.02.012 26925503
    [Google Scholar]
  52. Manjunath K. Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Rel. 2005 107 2 215 228 10.1016/j.jconrel.2005.06.006 16014318
    [Google Scholar]
  53. Nooli M. Chella N. Kulhari H. Shastri N.R. Sistla R. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: Formulation, optimization and in vivo evaluation. Drug Dev. Ind. Pharm. 2017 43 4 611 617 10.1080/03639045.2016.1275666 28005442
    [Google Scholar]
  54. Hanafy A. Spahnlangguth H. Vergnault G. Grenier P. Tubicgrozdanis M. Lenhardt T. Langguth P. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv. Drug Deliv. Rev. 2007 59 6 419 426 10.1016/j.addr.2007.04.005 17566595
    [Google Scholar]
  55. Patravale V.B. Mirani A.G. Preparation and characterization of solid lipid nanoparticles-based gel for topical delivery. Methods Mol. Biol. 2019 2000 293 302 10.1007/978‑1‑4939‑9516‑5_20 31148023
    [Google Scholar]
  56. Puri D. Mishra A. Singh A.P. Gaur P.K. Singh M. Yasir M. Formulation development of topical preparation containing nanoparticles of povidone-iodine for wound healing. Assay Drug Dev. Technol. 2021 19 2 115 123 10.1089/adt.2020.1029 33535009
    [Google Scholar]
  57. Zara G.P. Bargoni A. Cavalli R. Fundarò A. Vighetto D. Gasco M.R. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J. Pharm. Sci. 2002 91 5 1324 1333 10.1002/jps.10129 11977108
    [Google Scholar]
  58. Ma P. Dong X. Swadley C.L. Gupte A. Leggas M. Ledebur H.C. Mumper R.J. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol. 2009 5 2 151 161 10.1166/jbn.2009.1021 20055093
    [Google Scholar]
  59. Butani D. Yewale C. Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerf. 2016 139 17 24 10.1016/j.colsurfb.2015.07.032 26700229
    [Google Scholar]
  60. Li D. Hu C. Yang J. Liao Y. Chen Y. Fu S.Z. Wu J.B. Enhanced anti-cancer effect of folate-conjugated olaparib nanoparticles combined with radiotherapy in cervical carcinoma. Int. J. Nanomed. 2020 15 10045 10058 10.2147/IJN.S272730 33328733
    [Google Scholar]
  61. Gokce E.H. Sandri G. Bonferoni M.C. Rossi S. Ferrari F. Güneri T. Caramella C. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm. 2008 364 1 76 86 10.1016/j.ijpharm.2008.07.028 18725276
    [Google Scholar]
  62. Liu Z. Zhang X. Wu H. Li J. Shu L. Liu R. Li L. Li N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm. 2011 37 4 475 481 10.3109/03639045.2010.522193 21054217
    [Google Scholar]
  63. Hao J. Fang X. Zhou Y. Wang J. Guo F. Li F. Peng X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomed. 2011 6 683 692 21556343
    [Google Scholar]
  64. Hippalgaonkar K. Adelli G.R. Hippalgaonkar K. Repka M.A. Majumdar S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: Development, characterization, and in vitro evaluation. J. Ocul. Pharmacol. Ther. 2013 29 2 216 228 10.1089/jop.2012.0069 23421502
    [Google Scholar]
  65. Baig M.S. Ahad A. Aslam M. Imam S.S. Aqil M. Ali A. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol. 2016 85 258 270 10.1016/j.ijbiomac.2015.12.077 26740466
    [Google Scholar]
  66. Kumar R. Sinha V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm. 2016 42 12 1956 1967 10.1080/03639045.2016.1185437 27143048
    [Google Scholar]
  67. Alhakamy N.A. Hosny K.M. Aldryhim A.Y. Rizg W.Y. Eshmawi B.A. Bukhary H.A. Murshid S.S.A. Khallaf R.A. Development and optimization of ofloxacin as solid lipid nanoparticles for enhancement of its ocular activity. J. Drug Deliv. Sci. Technol. 2022 72 103373 10.1016/j.jddst.2022.103373
    [Google Scholar]
  68. Seyfoddin A. Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm. 2013 39 4 508 519 10.3109/03639045.2012.665460 22424312
    [Google Scholar]
  69. Yadav M. Schiavone N. Guzman-Aranguez A. Giansanti F. Papucci L. Perez de Lara M.J. Singh M. Kaur I.P. Atorvastatin-loaded solid lipid nanoparticles as eye drops: Proposed treatment option for age-related macular degeneration (AMD). Drug Deliv. Transl. Res. 2020 10 4 919 944 10.1007/s13346‑020‑00733‑4 32270439
    [Google Scholar]
  70. Sharma A.K. Sahoo P.K. Majumdar D.K. Sharma N. Sharma R.K. Kumar A. Fabrication and evaluation of lipid nanoparticulates for ocular delivery of a COX-2 inhibitor. Drug Deliv. 2016 23 9 3364 3373 10.1080/10717544.2016.1183720 27128623
    [Google Scholar]
  71. Ganesan P. Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017 6 37 56 10.1016/j.scp.2017.07.002
    [Google Scholar]
  72. Kim H. Kim Y. Lee J. Liposomal formulations for enhanced lymphatic drug delivery. Asian J. Pharm. Sci. 2013 8 2 96 103 10.1016/j.ajps.2013.07.012
    [Google Scholar]
  73. Zhao Y.Q. Li L.J. Zhou E.F. Wang J.Y. Wang Y. Guo L.M. Zhang X.X. Lipid-based nanocarrier systems for drug delivery: Advances and applications. Pharmaceutical Fronts 2022 4 2 e43 e60 10.1055/s‑0042‑1751036
    [Google Scholar]
  74. Mane S.R. Sathyan A. Shunmugam R. Barbiturate derived amphiphilic homopolymers: Synthesis, characterization, self-assembly and anticancer drug delivery. Ther. Deliv. 2019 10 7 419 431 10.4155/tde‑2019‑0031 31359849
    [Google Scholar]
  75. Lai S.K. Wang Y.Y. Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009 61 2 158 171 10.1016/j.addr.2008.11.002 19133304
    [Google Scholar]
  76. Lee Y. Thompson D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 5 e1450 10.1002/wnan.1450 28198148
    [Google Scholar]
  77. Kumar V. Qin J. Jiang Y. Duncan R.G. Brigham B. Fishman S. RNAi-mediated gene silencing in non-human primates using siRNA nanoparticles. Mol. Ther. Nucleic Acids 2014 3 e210 10.1038/mtna.2014.61 25405467
    [Google Scholar]
  78. Wang T. Luo Y. Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 2019 11 23 11048 11063 10.1039/C9NR03025E 31149694
    [Google Scholar]
  79. Rozi M.F. Sabere M.A.S. A review on conventional and novel topical ocular drug delivery system. J. Pharm. 2021 1 1 19 26
    [Google Scholar]
  80. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. Mucus-penetrating nanoparticles for drug delivery. Adv. Drug Deliv. Rev. 2016 99 28 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  81. Mizrahy S. Peer D. Targeted drug delivery using nanoparticles. Chem. Soc. Rev. 2012 41 2623 10.1039/C1CS15239D 22085917
    [Google Scholar]
  82. Qi J. Zhuang J. Lu Y. Dong X. Zhao W. Wu W. Recent developments in drug discovery. Drug Discov. Today 2017 22 166 10.1016/j.drudis.2016.09.024 27713035
    [Google Scholar]
  83. Luo Y. Bai C.C. Liu M.X. Wang D. Chen M.Y. Yu S.S. PEGylation of boronate-affinity-oriented surface imprinting magnetic nanoparticles with improved performance. Talanta 2022 238 Pt 1 122992 10.1016/j.talanta.2021.122992 34857325
    [Google Scholar]
  84. Zarrintaj P. Ramsey J.D. Samadi A. Atoufi Z. Yazdi M.K. Ganjali M.R. Amirabad L.M. Zangene E. Farokhi M. Formela K. Saeb M.R. Mozafari M. Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020 110 37 67 10.1016/j.actbio.2020.04.028 32417265
    [Google Scholar]
  85. Bodratti A. Alexandridis P. Formulation of poloxamers for drug delivery. J. Funct. Biomater. 2018 9 1 11 10.3390/jfb9010011 29346330
    [Google Scholar]
  86. Deshpande A. Mohamed M. Daftardar S.B. Patel M. Boddu S.H.S. Nesamony J. Solid lipid nanoparticles in drug delivery: Opportunities and challenges. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier 2017 291 330
    [Google Scholar]
  87. Bodratti A.M. Alexandridis P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin. Drug Deliv. 2018 15 11 1085 1104 10.1080/17425247.2018.1529756 30259762
    [Google Scholar]
  88. Prasad P. Gordijo C.R. Abbasi A.Z. Maeda A. Ip A. Rauth A.M. DaCosta R.S. Wu X.Y. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014 8 4 3202 3212 10.1021/nn405773r 24702320
    [Google Scholar]
  89. Bugnicourt L. Ladavière C. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J. Control. Rel. 2017 256 121 140 10.1016/j.jconrel.2017.04.018 28414148
    [Google Scholar]
  90. Yang Q. Zhao J. Muhammad A. Tian L. Liu Y. Chen L. Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Mater. Today Bio 2022 16 100407 10.1016/j.mtbio.2022.100407 36090610
    [Google Scholar]
  91. Khoushab F. Yamabhai M. Chitin research revisited. Mar. Drugs 2010 8 7 1988 2012 10.3390/md8071988 20714419
    [Google Scholar]
  92. Nair R. Kumar A.C.K. Priya V.K. Yadav C.M. Raju P.Y. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis. 2012 11 1 72 10.1186/1476‑511X‑11‑72 22695222
    [Google Scholar]
  93. Dharmala K. Yoo J.W. Lee C.H. Development of chitosan–SLN microparticles for chemotherapy: in vitro approach through efflux- transporter modulation. J. Control. Rel. 2008 131 3 190 197 10.1016/j.jconrel.2008.07.034 18723057
    [Google Scholar]
  94. Rabelo R.S. Oliveira I.F. Silva D.V.M. Prata A.S. Hubinger M.D. Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. Int. J. Biol. Macromol. 2018 119 902 912 10.1016/j.ijbiomac.2018.07.174 30063935
    [Google Scholar]
  95. Rassu G. Soddu E. Cossu M. Gavini E. Giunchedi P. Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J. Drug Deliv. Sci. Technol. 2016 32 77 87 10.1016/j.jddst.2015.05.002
    [Google Scholar]
  96. Sinha V.R. Singla A.K. Wadhawan S. Kaushik R. Kumria R. Bansal K. Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004 274 1-2 1 33 10.1016/j.ijpharm.2003.12.026 15072779
    [Google Scholar]
  97. Cheng X. Lee R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 129 137 10.1016/j.addr.2016.01.022 26900977
    [Google Scholar]
  98. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  99. Caracciolo G. Pozzi D. Capriotti A.L. Cavaliere C. Laganà A. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles. J. Nanopart. Res. 2013 15 3 1498 10.1007/s11051‑013‑1498‑4
    [Google Scholar]
  100. Chen Y. He N. Yang T. Cai S. Zhang Y. Lin J. Huang M. Chen W. Zhang Y. Hong Z. Fucoxanthin loaded in palm stearin-and cholesterol-based solid lipid nanoparticle-microcapsules, with improved stability and bioavailability in vivo. Mar. Drugs 2022 20 4 237 10.3390/md20040237 35447909
    [Google Scholar]
  101. Herrera M. Kim J. Eygeris Y. Jozic A. Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 2021 9 12 4289 4300 10.1039/D0BM01947J 33586742
    [Google Scholar]
  102. Li Z. Zhang X.Q. Ho W. Li F. Gao M. Bai X. Xu X. Enzyme-catalyzed one-step synthesis of ionizable cationic lipids for lipid nanoparticle-based mRNA COVID-19 vaccines. ACS Nano 2022 16 11 18936 18950 10.1021/acsnano.2c07822 36269150
    [Google Scholar]
  103. Li J. Ghatak S. Masry E.M.S. Das A. Liu Y. Roy S. Lee R.J. Sen C.K. Topical lyophilized targeted lipid nanoparticles in the restoration of skin barrier function following burn wound. Mol. Ther. 2018 26 9 2178 2188 10.1016/j.ymthe.2018.04.021 29802017
    [Google Scholar]
  104. Miao L. Zhang Y. Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021 20 1 41 10.1186/s12943‑021‑01335‑5 33632261
    [Google Scholar]
  105. Schlich M. Palomba R. Costabile G. Mizrahy S. Pannuzzo M. Peer D. Decuzzi P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 2021 6 2 e10213 10.1002/btm2.10213 33786376
    [Google Scholar]
  106. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles— from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  107. Leonardi A. Crasci’ L. Panico A. Pignatello R. Antioxidant activity of idebenone-loaded neutral and cationic solid–lipid nanoparticles. Pharm. Dev. Technol. 2015 20 6 716 723 10.3109/10837450.2014.915572 24799075
    [Google Scholar]
  108. Kuo Y.C. Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int. J. Pharm. 2005 290 1-2 161 172 10.1016/j.ijpharm.2004.11.025 15664142
    [Google Scholar]
  109. Kuo Y.C. Lin T.W. Electrophoretic mobility, zeta potential, and fixed charge density of bovine knee chondrocytes, methyl methacrylate-sulfopropyl methacrylate, polybutylcyanoacrylate, and solid lipid nanoparticles. J. Phys. Chem. B 2006 110 5 2202 2208 10.1021/jp056266f 16471805
    [Google Scholar]
  110. Seyfoddin A. Shaw J. Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010 17 7 467 489 10.3109/10717544.2010.483257 20491540
    [Google Scholar]
  111. Cui S. Wang Y. Gong Y. Lin X. Zhao Y. Zhi D. Zhou Q. Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. 2018 7 3 473 479 10.1039/C8TX00005K 30090597
    [Google Scholar]
  112. Lv H. Zhang S. Wang B. Cui S. Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Rel. 2006 114 1 100 109 10.1016/j.jconrel.2006.04.014 16831482
    [Google Scholar]
  113. Rostami E. Kashanian S. Azandaryani A.H. Faramarzi H. Dolatabadi J.E.N. Omidfar K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids 2014 181 56 61 10.1016/j.chemphyslip.2014.03.006 24717692
    [Google Scholar]
  114. Tabatt K. Sameti M. Olbrich C. Müller R.H. Lehr C.M. Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm. 2004 57 2 155 162 10.1016/j.ejpb.2003.10.015 15018970
    [Google Scholar]
  115. Li R. Pu C. Sun Y. Sun Q. Tang W. Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocoll. 2022 130 107721 10.1016/j.foodhyd.2022.107721
    [Google Scholar]
  116. Cho H.Y. Lee T. Yoon J. Han Z. Rabie H. Lee K.B. Su W.W. Choi J.W. Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl. Mater. Interfaces 2018 10 11 9301 9309 10.1021/acsami.7b19255 29488744
    [Google Scholar]
  117. Yasir M. Zafar A. Noorulla K.M. Tura A.J. Sara U.V.S. Panjwani D. Solid lipid nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol. 2022 75 103631 10.1016/j.jddst.2022.103631
    [Google Scholar]
  118. Bang K.H. Na Y.G. Huh H.W. Hwang S.J. Kim M.S. Kim M. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers 2019 11 6 807 10.3390/cancers11060807 31212681
    [Google Scholar]
  119. Charron D.M. Chen J. Zheng G. Cancer treatment research. Rosen ST Mirkin CA Meade TJ Cham Springer 2015 5
    [Google Scholar]
  120. Jurczyk M. Jelonek K. Musiał-Kulik M. Beberok A. Wrześniok D. Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics 2021 13 3 326 10.3390/pharmaceutics13030326 33802531
    [Google Scholar]
  121. Araújo D.J.T.C. Duarte J.L. Filippo D.L.D. Araújo V.H.S. Carvalho G.C. Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: A review. J. Drug Target. 2021 29 8 808 821 10.1080/1061186X.2021.1892121 33645369
    [Google Scholar]
  122. Siram K. Karuppaiah A. Gautam M. Sankar V. Recent developments in cluster science. J. Cluster Sci. 2023 34 921 10.1007/s10876‑022‑02265‑y
    [Google Scholar]
  123. Tran T.H. Choi J.Y. Ramasamy T. Truong D.H. Nguyen C.N. Choi H.G. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr. Polym. 2014 114 407 425 10.1016/j.carbpol.2014.08.026 25263908
    [Google Scholar]
  124. Magro D.R. Ornaghi F. Cambianica I. Beretta S. Re F. Musicanti C. ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. J. Control. Rel. 2017 249 103 110 10.1016/j.jconrel.2017.01.039 28153761
    [Google Scholar]
  125. Singh I. Swami R. Jeengar M.K. Khan W. Sistla R. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain. Chem. Phys. Lipids 2015 188 1 9 10.1016/j.chemphyslip.2015.03.003 25819559
    [Google Scholar]
  126. Singh I. Swami R. Pooja D. Jeengar M.K. Khan W. Sistla R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J. Drug Target. 2016 24 3 212 223 10.3109/1061186X.2015.1068320 26219519
    [Google Scholar]
  127. Okamoto A. Asai T. Hirai Y. Shimizu K. Koide H. Minamino T. Oku N. Systemic administration of siRNA with anti-HB-EGF antibody-modified lipid nanoparticles for the treatment of triple-negative breast cancer. Mol. Pharm. 2018 15 4 1495 1504 10.1021/acs.molpharmaceut.7b01055 29502423
    [Google Scholar]
  128. Siddhartha V.T. Pindiprolu S.K.S.S. Chintamaneni P.K. Tummala S. Kumar S.N. RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro studies. Artif. Cells Nanomed. Biotechnol. 2018 46 2 387 397 10.1080/21691401.2017.1313267 28415882
    [Google Scholar]
  129. Gandomi N. Varshochian R. Atyabi F. Ghahremani M.H. Sharifzadeh M. Amini M. Solid lipid nanoparticles surface modified with anti-Contactin-2 or anti-Neurofascin for brain-targeted delivery of medicines. Pharm. Dev. Technol. 2017 22 3 426 435 10.1080/10837450.2016.1226901 27575893
    [Google Scholar]
  130. Xu Y. Liu R. Li R. Zhi X. Yang P. Qian L. Manipulating neovasculature-targeting capability of biomimetic nanodiscs for synergistic photoactivatable tumor infarction and chemotherapy. ACS Nano 2023 17 16 16192 16203 10.1021/acsnano.3c05463 37555449
    [Google Scholar]
  131. Abedi E. Pourmohammadi K. Chemical modifications and their effects on gluten protein: An extensive review. Food Chem. 2021 343 128398 10.1016/j.foodchem.2020.128398 33268180
    [Google Scholar]
  132. Abedi E. Savadkoohi S. Banasaz S. The effect of thiolation process with l-cysteine on amylolysis efficiency of starch-cysteine conjugate by α-amylase. Food Chem. 2023 410 135261 10.1016/j.foodchem.2022.135261 36610093
    [Google Scholar]
  133. Fang G. Tang B. Chao Y. Xu H. Gou J. Zhang Y. Xu H. Tang X. Cysteine-functionalized nanostructured lipid carriers for oral delivery of docetaxel: A permeability and pharmacokinetic study. Mol. Pharm. 2015 12 7 2384 2395 10.1021/acs.molpharmaceut.5b00081 25974386
    [Google Scholar]
  134. Puri V. Sharma A. Kumar P. Singh I. Thiolation of biopolymers for developing drug delivery systems with enhanced mechanical and mucoadhesive properties: A review. Polymers 2020 12 8 1803 10.3390/polym12081803 32796741
    [Google Scholar]
  135. Son G.H. Lee B.J. Cho C.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig. 2017 47 4 287 296 10.1007/s40005‑017‑0320‑1
    [Google Scholar]
  136. Van N.H. Vy N.T. Toi V.V. Dao A.H. Lee B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. United Kingdom OpenNano 2022 100064
    [Google Scholar]
  137. Pignatello R. Fuochi V. Petronio G. Greco A.S. Furneri P.M. Formulation and characterization of erythromycin-loaded solid lipid nanoparticles. J. Drug Deliv. Sci. Technol. 2017 37 142 152
    [Google Scholar]
  138. Arana L. Bayón-Cordero L. Sarasola L.I. Berasategi M. Ruiz S. Alkorta I. Solid lipid nanoparticles surface modification modulates cell internalization and improves chemotoxic treatment in an oral carcinoma cell line. Nanomaterials 2019 9 3 464 10.3390/nano9030464 30897724
    [Google Scholar]
  139. Ramalingam P. Ko Y.T. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf. B Biointerf. 2016 139 52 61 10.1016/j.colsurfb.2015.11.050 26700233
    [Google Scholar]
  140. Pai R.V. Monpara J.D. Vavia P.R. Exploring molecular dynamics simulation to predict binding with ocular mucin: An in silico approach for screening mucoadhesive materials for ocular retentive delivery systems. J. Control. Rel. 2019 309 190 202 10.1016/j.jconrel.2019.07.037 31356839
    [Google Scholar]
  141. Maretti E. Costantino L. Rustichelli C. Leo E. Croce M.A. Buttini F. Truzzi E. Iannuccelli V. Surface engineering of solid lipid nanoparticle assemblies by methyl α- d -mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int. J. Pharm. 2017 528 1-2 440 451 10.1016/j.ijpharm.2017.06.045 28624659
    [Google Scholar]
  142. Hazzah H.A. Farid R.M. Nasra M.M.A. Zakaria M. Gawish Y. El-Massik M.A. Abdallah O.Y. A new approach for treatment of precancerous lesions with curcumin solid–lipid nanoparticle-loaded gels: in vitro and clinical evaluation. Drug Deliv. 2016 23 4 1409 1419 10.3109/10717544.2015.1065524 26146889
    [Google Scholar]
  143. Ramalingam P. Ko Y.T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations. Pharm. Res. 2015 32 2 389 402 10.1007/s11095‑014‑1469‑1 25082210
    [Google Scholar]
  144. Pandit A.A. Dash A.K. Surface-modified solid lipid nanoparticulate formulation for ifosfamide: Development and characterization. Nanomedicine 2011 6 8 1397 1412 10.2217/nnm.11.57 22091968
    [Google Scholar]
  145. Fonte P. Andrade F. Araújo F. Andrade C. Neves J. Sarmento B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012 508 295 314 10.1016/B978‑0‑12‑391860‑4.00015‑X 22449932
    [Google Scholar]
  146. Shi L.L. Xie H. Lu J. Cao Y. Liu J.Y. Zhang X.X. Zhang H. Cui J.H. Cao Q.R. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol. Pharm. 2016 13 8 2667 2676 10.1021/acs.molpharmaceut.6b00226 27379550
    [Google Scholar]
  147. Derakhshandeh K. Kashanian Azandaryani H.A. New surface- modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Nanomed. 2011 6 2393 2401 10.2147/IJN.S20849 22114489
    [Google Scholar]
  148. Piazzini V. Cinci L. D’Ambrosio M. Luceri C. Bilia A.R. Bergonzi M.C. Solid lipid nanoparticles and chitosan-coated solid lipid nanoparticles as promising tools for silybin delivery: Formulation, characterization, and in vitro evaluation. Curr. Drug Deliv. 2018 16 2 142 152 10.2174/1567201815666181008153602 30306869
    [Google Scholar]
  149. Jeon H.S. Seo J.E. Kim M.S. Kang M.H. Oh D.H. Jeon S.O. Choi Y.W. Lee S. Seong Hoon Jeong A retinyl palmitate-loaded solid lipid nanoparticle system: Effect of surface modification with dicetyl phosphate on skin permeation in vitro and anti-wrinkle effect in vivo. Int. J. Pharm. 2013 452 1-2 311 320 10.1016/j.ijpharm.2013.05.023 23702002
    [Google Scholar]
  150. Shen H. Shi S. Zhang Z. Gong T. Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 2015 5 7 755 771 10.7150/thno.10804 25897340
    [Google Scholar]
  151. Rosière R. Woensel V.M. Gelbcke M. Mathieu V. Hecq J. Mathivet T. Vermeersch M. Antwerpen V.P. Amighi K. Wauthoz N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm. 2018 15 3 899 910 10.1021/acs.molpharmaceut.7b00846 29341619
    [Google Scholar]
  152. Eid H.M. Elkomy M.H. Menshawe E.S.F. Salem H.F. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating. AAPS Pharm. Sci. Tech. 2019 20 5 183 10.1208/s12249‑019‑1371‑6 31054011
    [Google Scholar]
  153. Zhang N. Ping Q. Huang G. Xu W. Cheng Y. Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm. 2006 327 1-2 153 159 10.1016/j.ijpharm.2006.07.026 16935443
    [Google Scholar]
  154. Pooja D. Kulhari H. Kuncha M. Rachamalla S.S. Adams D.J. Bansal V. Sistla R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm. 2016 13 11 3903 3912 10.1021/acs.molpharmaceut.6b00691 27696858
    [Google Scholar]
  155. Youssef N.A.H.A. Kassem A.A. Farid R.M. Ismail F.A. EL-Massik M.A.E. Boraie N.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int. J. Pharm. 2018 548 1 609 624 10.1016/j.ijpharm.2018.07.014 30033394
    [Google Scholar]
  156. Zhou M. Hou J. Zhong Z. Hao N. Lin Y. Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv. 2018 25 1 716 722 10.1080/10717544.2018.1447050 29516758
    [Google Scholar]
  157. Cho H.J. Park J.W. Yoon I.S. Kim D.D. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: Enhanced intestinal absorption and lymphatic uptake. Int. J. Nanomed. 2014 9 495 504 10.2147/IJN.S56648 24531717
    [Google Scholar]
  158. Zhang X. Chen G. Zhang T. Ma Z. Wu B. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: A mechanistic investigation. Int. J. Nanomed. 2014 9 5503 5514 25473287
    [Google Scholar]
  159. Fadeel A.D.A. Kamel R. Fadel M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Sci. Rep. 2020 10 1 10435 10.1038/s41598‑020‑67349‑z 32591621
    [Google Scholar]
  160. Liu Z. Zhao H. Shu L. Zhang Y. Okeke C. Zhang L. Li J. Li N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev. Ind. Pharm. 2015 41 3 353 361 10.3109/03639045.2013.861478 25784073
    [Google Scholar]
  161. Luo Y. Teng Z. Li Y. Wang Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 2015 122 221 229 10.1016/j.carbpol.2014.12.084 25817662
    [Google Scholar]
  162. Wang F. Chen L. Zhang D. Jiang S. Shi K. Huang Y. Li R. Xu Q. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J. Drug Target. 2014 22 9 849 858 10.3109/1061186X.2014.939983 25045926
    [Google Scholar]
  163. Sohaib M. Shah S.U. Shah K.U. Shah K.U. Khan N.R. Irfan M.M. Niazi Z.R. Alqahtani A.A. Alasiri A. Walbi I.A. Mahmood S. Physicochemical characterization of chitosan-decorated finasteride solid lipid nanoparticles for skin drug delivery. BioMed Res. Int. 2022 2022 1 7792180 10.1155/2022/7792180 35971450
    [Google Scholar]
  164. Sood S. Jawahar N. Jain K. Gowthamarajan K. Meyyanathan S.N. Olanzapine-loaded cationic solid lipid nanoparticles for improved oral bioavailability. Curr. Nanosci. 2013 9 26 34
    [Google Scholar]
  165. Liu D. Liu C. Zou W. Zhang N. Enhanced gastrointestinal absorption of N3-O-toluyl-fluorouracil by cationic solid lipid nanoparticles. J. Nanopart. Res. 2010 12 3 975 984 10.1007/s11051‑009‑9648‑4
    [Google Scholar]
  166. Rajpoot K. Jain S.K. 99mTc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J. Microencapsul. 2020 37 8 609 623 10.1080/02652048.2020.1829141 32985297
    [Google Scholar]
  167. Swami R. Singh I. Jeengar M.K. Naidu V.G.M. Khan W. Sistla R. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int. J. Pharm. 2015 486 1-2 287 296 10.1016/j.ijpharm.2015.03.065 25839415
    [Google Scholar]
  168. Okamoto A. Asai T. Kato H. Ando H. Minamino T. Mekada E. Oku N. Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF. Biochem. Biophys. Res. Commun. 2014 449 4 460 465 10.1016/j.bbrc.2014.05.043 24853808
    [Google Scholar]
  169. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A recent update: Solid lipid nanoparticles for effective drug delivery. Adv. Pharm. Bull. 2022 12 1 17 33 35517874
    [Google Scholar]
  170. Bayón-Cordero L. Alkorta I. Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019 9 3 474 10.3390/nano9030474 30909401
    [Google Scholar]
  171. Xu Y. Zheng Y. Wu L. Zhu X. Zhang Z. Huang Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl. Mater. Interfaces 2018 10 11 9315 9324 10.1021/acsami.8b00507 29484890
    [Google Scholar]
  172. Milani D. Athiyah U. Hariyadi D.M. Pathak Y.V. Surface Modification of Nanoparticles for Targeted Drug Delivery. Pathak Y.V. Cham Springer 2019 207 220 10.1007/978‑3‑030‑06115‑9_11
    [Google Scholar]
  173. Anju T Preetha R Shunmugam R Mane SR Arockiaraj J Ganapathy S Non-clinical investigation of tuberculosis drugs: Conjugated norbornene-based nanocarriers toxic impacts on zebrafish. Curr. Nanomed. 2021 11 4 224 236
    [Google Scholar]
  174. Kim C.H. Lee S.G. Kang M.J. Lee S. Choi Y.W. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J. Pharm. Investig. 2017 47 3 203 227 10.1007/s40005‑017‑0329‑5
    [Google Scholar]
  175. Gunaseelan S. Gunaseelan K. Deshmukh M. Zhang X. Sinko P.J. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev. 2010 62 4-5 518 531 10.1016/j.addr.2009.11.021 19941919
    [Google Scholar]
  176. Yu Z. Meng X. Zhang S. Chen Y. Zhang Z. Zhang Y. Recent progress in transdermal nanocarriers and their surface modifications. Molecules 2021 26 11 3093 10.3390/molecules26113093 34064297
    [Google Scholar]
  177. Pardeshi CV Souto EB Surface modification of nanocarriers as a strategy to enhance the direct nose-to-brain drug delivery. Direct Nose-to-Brain Drug Delivery United States Academic Press 2021 93 114 10.1016/B978‑0‑12‑822522‑6.00006‑0
    [Google Scholar]
  178. Patel P. Hanini A. Shah A. Patel D. Patel S. Bhatt P. Pathak Y.V. Surface modification of nanoparticles for targeted drug delivery. Cham Springer 2019 10.1007/978‑3‑030‑06115‑9_2
    [Google Scholar]
  179. Elkomy M.H. Alruwaili N.K. Elmowafy M. Shalaby K. Zafar A. Ahmad N. Alsalahat I. Ghoneim M.M. Eissa E.M. Eid H.M. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics 2022 14 3 563 10.3390/pharmaceutics14030563 35335939
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873368556250311190910
Loading
/content/journals/cnanom/10.2174/0124681873368556250311190910
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test