Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The complexity of the management of cancerous conditions requires innovative strategies, including the pharmacotechnical optimization of treatments. The improvement of galenic forms, or more generally of drug delivery, represents a rapidly developing area of research, particularly in oncology, in order to remedy side effects and drug resistance remains a worrying problem. Carbon nanotubes CNTs consist of thin sheets of benzene carbons coiled into a seamless tubular structure. These CNTs have remarkable size and surface properties that make them the ideal vehicle for targeted and selective drug delivery. Different and experiments have proven that these particles can be easily modified in such a way that the chemical drug can be delivered directly to the tumor site. Additionally, different types of ligands can be loaded on the surface of CNTs to improve selectivity or modulate drug release. On the other hand, advances in carbon nanotubes could well lead to a more effective understanding of biological and physicochemical processes. This will make it possible to find compounds more compatible with carbon nanotube technology and facilitate their use.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873312144240620110052
2024-07-09
2025-10-11
Loading full text...

Full text loading...

References

  1. World Health OrganizationAvailable from: https://www.who.int/health-topics/cancer (accessed September 24th, 2020).
  2. AstierA. New drug formulations for cancer therapy.Ann. Pharm. Fr.2006641233510.1016/S0003‑4509(06)75290‑716449935
    [Google Scholar]
  3. DreyerC. RaymondE. FaivreS. Les thérapies ciblées et leurs indications dans les tumeurs solides.Rev. Med. Interne200930541642410.1016/j.revmed.2008.12.02219299048
    [Google Scholar]
  4. KaurG.S.G. JeetK. Applications of carbon nanotubes in drug delivery: A comprehensive review.Characterization and Biology of Nanomaterials for Drug Delivery201911313510.1016/B978‑0‑12‑814031‑4.00005‑2
    [Google Scholar]
  5. XuP. Van KirkE.A. ZhanY. MurdochW.J. RadoszM. ShenY. Targeted charge-reversal nanoparticles for nuclear drug delivery.Angew. Chem. Int. Ed.200746264999500210.1002/anie.20060525417526044
    [Google Scholar]
  6. LangerR. TirrellD.A. Designing materials for biology and medicine.Nature200442869828792
    [Google Scholar]
  7. AllenT.M. CullisP.R. Drug delivery systems: Entering the mainstream.Science200430356651818182210.1126/science.109583315031496
    [Google Scholar]
  8. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  9. JiS. LiuC. ZhangB. YangF. XuJ. LongJ. JinC. FuD. NiQ. YuX. Carbon nanotubes in cancer diagnosis and therapy.Biochim. Biophys. Acta Rev. Cancer201018061293510.1016/j.bbcan.2010.02.00420193746
    [Google Scholar]
  10. SahooN.G. BaoH. PanY. PalM. KakranM. ChengH.K.F. LiL. TanL.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study.Chem. Commun.201147185235523710.1039/c1cc00075f21451845
    [Google Scholar]
  11. IijimaS. IchihashiT. Single-shell carbon nanotubes of 1-nm diameter.Nature1993363643060360510.1038/363603a0
    [Google Scholar]
  12. PengB. LocascioM. ZapolP. LiS. MielkeS.L. SchatzG.C. EspinosaH.D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.Nat. Nanotechnol.200831062663110.1038/nnano.2008.21118839003
    [Google Scholar]
  13. QianD. WagnerG.J. LiuW.K. YuM-F. RuoffR.S. Mechanics of carbon nanotubes.Appl. Mech. Rev.200255649553310.1115/1.1490129
    [Google Scholar]
  14. AbdallahaBanu Carbon nanotubes drug delivery system for cancer treatment.Advances in Medical and Surgical Engineering202031333210.1016/B978‑0‑12‑819712‑7.00016‑4
    [Google Scholar]
  15. MohapatraS.S. RanjanS. DasguptaN. Nanocarriers for drug delivery. Micro and nano technologies.Elsevier201946952910.1016/B978‑0‑12‑814033‑8.00016‑3
    [Google Scholar]
  16. YamaguchiT. BandowS. IijimaS. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods.Chem. Phys. Lett.20043891-318118510.1016/j.cplett.2004.03.068
    [Google Scholar]
  17. DaiH. RinzlerA.G. NikolaevP. ThessA. ColbertD.T. SmalleyR.E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide.Chem. Phys. Lett.19962603-447147510.1016/0009‑2614(96)00862‑7
    [Google Scholar]
  18. RahamathullaM. BhosaleR.R. OsmaniR.A.M. MahimaK.C. JohnsonA.P. HaniU. GhazwaniM. BegumM.Y. AlshehriS. GhoneimM.M. ShakeelF. GangadharappaH.V. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies.Materials20211421670710.3390/ma1421670734772234
    [Google Scholar]
  19. JhaR. SinghA. SharmaP.K. FuloriaN.K. Smart carbon nanotubes for drug delivery system: A comprehensive study.J. Drug Deliv. Sci. Technol.20205810181110.1016/j.jddst.2020.101811
    [Google Scholar]
  20. SinnottS.B. AndrewsR. Carbon nanotubes: Synthesis, properties, and applications.Crit. Rev. Solid State Mater. Sci.200126314524910.1080/20014091104189
    [Google Scholar]
  21. Vander WalR.L. BergerG.M. HallL.J. Single-walled carbon nanotube synthesis via a multi-stage flame configuration.J. Phys. Chem. B2002106143564356710.1021/jp012844q
    [Google Scholar]
  22. ShahK.A. TaliB.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates.Mater. Sci. Semicond. Process.201641678210.1016/j.mssp.2015.08.013
    [Google Scholar]
  23. NikolaevP. BronikowskiM.J. BradleyR.K. RohmundF. ColbertD.T. SmithK.A. SmalleyR.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.Chem. Phys. Lett.19993131-2919710.1016/S0009‑2614(99)01029‑5
    [Google Scholar]
  24. ResascoD.E. AlvarezW.E. PompeoF. BalzanoL. HerreraJ.E. KitiyananB. BorgnaA. A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst.J. Nanopart. Res.200241/213113610.1023/A:1020174126542
    [Google Scholar]
  25. RaoC.R. GovindarajA. Nanotubes and Nanowires.RSC201110.1039/9781849732840
    [Google Scholar]
  26. BhaskarA.K. DeshmukhV.N. PrajapatiL. Carbon nanotube as a drug delivery system: A review.Int. J. Pharm. Technol.2013526952711
    [Google Scholar]
  27. BiancoA. KostarelosK. PartidosC.D. PratoM. Biomedical applications of functionalised carbon nanotubes.Chem. Commun.2005557157710.1039/b410943k15672140
    [Google Scholar]
  28. TagmatarchisN. PratoM. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions.J. Mater. Chem.200414443743910.1039/b314039c
    [Google Scholar]
  29. LayC.L. LiuJ. LiuY. Functionalized carbon nanotubes for anticancer drug delivery.Expert Rev. Med. Devices20118556156610.1586/erd.11.3422026621
    [Google Scholar]
  30. JeyamohanP. HasumuraT. NagaokaY. YoshidaY. MaekawaT. KumarD.S. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.Int. J. Nanomedicine201382653266723926428
    [Google Scholar]
  31. PengH. AlemanyL.B. MargraveJ.L. KhabasheskuV.N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes.J. Am. Chem. Soc.200312549151741518210.1021/ja037746s14653752
    [Google Scholar]
  32. YuC ShiL YaoZ Thermal conductance and thermopower of an individual single-wall carbon nanotube.Nano Lett20055184210.1021/nl051044e
    [Google Scholar]
  33. ZhangW. ZhangZ. ZhangY. The application of carbon nanotubes in target drug delivery systems for cancer therapies.Nanoscale Res. Lett.20116155510.1186/1556‑276X‑6‑55521995320
    [Google Scholar]
  34. HirlekarR. YamagarM. GarseH. Carbon nanotubes and its applications: A review.Asian J. Pharm. Clin. Res.200921727
    [Google Scholar]
  35. YangS.T. LuoJ. ZhouQ. WangH. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes.Theranostics20122327128210.7150/thno.361822509195
    [Google Scholar]
  36. WangH. WangJ. DengX. SunH. ShiZ. GuZ. LiuY. ZhaocY. Biodistribution of carbon single-wall carbon nanotubes in mice.J. Nanosci. Nanotechnol.2004481019102410.1166/jnn.2004.14615656196
    [Google Scholar]
  37. SinghR. PantarottoD. LacerdaL. PastorinG. KlumppC. PratoM. BiancoA. KostarelosK. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers.Proc. Natl. Acad. Sci.200610393357336210.1073/pnas.050900910316492781
    [Google Scholar]
  38. KaganV.E. KonduruN.V. FengW. AllenB.L. ConroyJ. VolkovY. VlasovaI.I. BelikovaN.A. YanamalaN. KapralovA. TyurinaY.Y. ShiJ. KisinE.R. MurrayA.R. FranksJ. StolzD. GouP. Klein-SeetharamanJ. FadeelB. StarA. ShvedovaA.A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.Nat. Nanotechnol.20105535435910.1038/nnano.2010.4420364135
    [Google Scholar]
  39. SinghG.P.B. BaburaoC. PispatiV. Carbon nanotubes : A novel drug delivery system.Int. J. Res. Pharm. Chem.20122523532
    [Google Scholar]
  40. BobrowskaD.M. OlejnikP. EchegoyenL. Plonska-BrzezinskaM.E. Onion-like carbon nanostructures: An overview of bio-applications.Curr. Med. Chem.201926386896691410.2174/092986732566618110110553530381066
    [Google Scholar]
  41. Anaya-PlazaE. ShaukatA. LehtonenI. KostiainenM.A. Biomolecule-directed carbon nanotube self-assembly.Adv. Healthc. Mater.2021101200116210.1002/adhm.20200116233124183
    [Google Scholar]
  42. AhlawatJ. Masoudi AsilS. Guillama BarrosoG. NurunnabiM. NarayanM. Application of carbon nano onions in the biomedical field: Recent advances and challenges.Biomater. Sci.20219362664410.1039/D0BM01476A33241797
    [Google Scholar]
  43. BrookesP. LawleyP.D. The reaction of mustard gas with nucleic acids in vitro and in vivo.Biochem. J.196077347848410.1042/bj077047816748853
    [Google Scholar]
  44. EmadiA. JonesR.J. BrodskyR.A. Cyclophosphamide and cancer: Golden anniversary.Nat. Rev. Clin. Oncol.200961163864710.1038/nrclinonc.2009.14619786984
    [Google Scholar]
  45. PuyoS. MontaudonD. PourquierP. From old alkylating agents to new minor groove binders.Crit. Rev. Oncol. Hematol.2014891436110.1016/j.critrevonc.2013.07.00623972663
    [Google Scholar]
  46. ThierschI.B. Bone-marrow changes in man after treatment with aminopterin, amethopterin, and aminoanfol. With special reference to megaloblastosis and tumor remission.Cancer19492587788310.1002/1097‑0142(194909)2:5<877::AID‑CNCR2820020520>3.0.CO;2‑018136926
    [Google Scholar]
  47. TiwariM. Antimetabolites: Established cancer therapy.J. Cancer Res. Ther.20128451051910.4103/0973‑1482.10652623361267
    [Google Scholar]
  48. NobleR.L. BeerC.T. CuttsJ.H. Role of chance observations in chemotherapy: Vinca rosea.Ann. N. Y. Acad. Sci.195876388289410.1111/j.1749‑6632.1958.tb54906.x13627916
    [Google Scholar]
  49. JordanM.A. WilsonL. Microtubules as a target for anticancer drugs.Nat. Rev. Cancer20044425326510.1038/nrc131715057285
    [Google Scholar]
  50. ImbertT.F. Discovery of podophyllotoxins.Biochimie199880320722210.1016/S0300‑9084(98)80004‑79615861
    [Google Scholar]
  51. RosenL.S. Irinotecan in lymphoma, leukemia, and breast, pancreatic, ovarian, and small-cell lung cancers.Oncology1998128Suppl. 61031099726101
    [Google Scholar]
  52. MitaA.C. DenisL.J. RowinskyE.K. DeBonoJ.S. GoetzA.D. OchoaL. ForouzeshB. BeeramM. PatnaikA. MolpusK. SemiondD. BesenvalM. TolcherA.W. Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors.Clin. Cancer Res.200915272373010.1158/1078‑0432.CCR‑08‑059619147780
    [Google Scholar]
  53. WaksmanS.A. WoodruffH.B. Bacteriostatic and bacteriocidal substances produced by soil actinomycetes.Exp. Biol. Med.194045260961410.3181/00379727‑45‑11768
    [Google Scholar]
  54. Di MarcoA GaetaniM DorigottiL Daunomycin: Anewantibiotic with antitumoractivity.Tumori.196349203217
    [Google Scholar]
  55. UmezawaH. MaedaK. TakeuchiT. OkamiY. New antibiotics, bleomycin A and B.J. Antibiot.19661952002095953301
    [Google Scholar]
  56. Di MarcoA. GaetaniM. ScarpinatoB. Adriamycin (NSC-123,127): A new antibiotic with antitumor activity.Cancer Chemother. Rep.196953133375772652
    [Google Scholar]
  57. TsimberidouA.M. Targeted therapy in cancer.Cancer Chemother. Pharmacol.20157661113113210.1007/s00280‑015‑2861‑126391154
    [Google Scholar]
  58. CarterP PrestaL GormanC.M Humanization of an anti-p185HER2 antibody for human cancer therapy.Proc Natl Acad Sci199289104285428910.1073/pnas.89.10.4285
    [Google Scholar]
  59. YafoutM. OusaidA. KhayatiY. El OtmaniI.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments.Sci. Am.202111e0068510.1016/j.sciaf.2020.e00685
    [Google Scholar]
  60. FDA approved drugs databaseAvailable from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=reportsSearch.process (accessed September 24th 2020).
    [Google Scholar]
  61. WuP. ClausenM.H. NielsenT.E. Allosteric small-molecule kinase inhibitors.Pharmacol. Ther.2015156596810.1016/j.pharmthera.2015.10.00226478442
    [Google Scholar]
  62. BuchdungerE. ZimmermannJ. MettH. MeyerT. MüllerM. DrukerB.J. LydonN.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative.Cancer Res.19965611001048548747
    [Google Scholar]
  63. ZitvogelL. GalluzziL. SmythM.J. KroemerG. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance.Immunity2013391748810.1016/j.immuni.2013.06.01423890065
    [Google Scholar]
  64. HertzS. RobertsA. SalterW.T. Radioactive iodine as an indicator in thyroid physiology. iv. the metabolism of iodine in graves’ disease.J. Clin. Invest.1942211252910.1172/JCI10127516694887
    [Google Scholar]
  65. ChoiJ.Y. Treatment of bone metastasis with bone-targeting radiopharmaceuticals.Nucl. Med. Mol. Imaging201852320020710.1007/s13139‑017‑0509‑229942398
    [Google Scholar]
  66. MesséantO HouotR. CAR-T cells in lymphomas: Current and evolving role.Bull Cancer202110810SS28S3910.1016/j.bulcan.2021.04.022
    [Google Scholar]
  67. XuD. JinG. ChaiD. ZhouX. GuW. ChongY. SongJ. ZhengJ. The development of CAR design for tumor CAR-T cell therapy.Oncotarget2018917139911400410.18632/oncotarget.2417929568411
    [Google Scholar]
  68. EichenauerD.A. AlemanB.M.P. AndréM. Oon behalf of the ESMO guidelines committee. hodgkin lymphoma: ESMO clinical practice guidelines.Ann. Oncol.201829Suppl. 4IV19IV2910.1093/annonc/mdy08029796651
    [Google Scholar]
  69. ZhaoC. MiaoJ. ShenG. LiJ. ShiM. ZhangN. HuG. ChenX. HuX. WuS. ChenJ. ShaoX. WangL. HanF. MaiH. ChuaM.L.K. XieC. Anti-epidermal growth factor receptor (EGFR) monoclonal antibody combined with cisplatin and 5-fluorouracil in patients with metastatic nasopharyngeal carcinoma after radical radiotherapy: a multicentre, open-label, phase II clinical trial.Ann. Oncol.201930463764310.1093/annonc/mdz02030689735
    [Google Scholar]
  70. CohenM. OmairM.A. KeystoneE.C. Monoclonal antibodies in rheumatoid arthritis.Int. J. Clin. Rheumatol.20138554155610.2217/ijr.13.52
    [Google Scholar]
  71. CardosoF. Paluch-ShimonS. SenkusE. CuriglianoG. AaproM.S. AndréF. BarriosC.H. BerghJ. BhattacharyyaG.S. BiganzoliL. BoyleF. CardosoM.J. CareyL.A. CortésJ. El SaghirN.S. ElzayatM. EniuA. FallowfieldL. FrancisP.A. GelmonK. GligorovJ. HaidingerR. HarbeckN. HuX. KaufmanB. KaurR. KielyB.E. KimS.B. LinN.U. MertzS.A. NeciosupS. OffersenB.V. OhnoS. PaganiO. PratA. Penault-LlorcaF. RugoH.S. SledgeG.W. ThomssenC. VorobiofD.A. WisemanT. XuB. NortonL. CostaA. WinerE.P. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5).Ann. Oncol.202031121623164910.1016/j.annonc.2020.09.01032979513
    [Google Scholar]
  72. Web site of the American Cancer SocietyAvailable from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html (accessed September 26th 2020).
  73. AzizN.M. Cancer survivorship research: State of knowledge, challenges and opportunities.Acta Oncol.200746441743210.1080/0284186070136787817497308
    [Google Scholar]
  74. HaugnesH.S. BoslG.J. BoerH. GietemaJ.A. BrydøyM. OldenburgJ. DahlA.A. BremnesR.M. FossåS.D. Long-term and late effects of germ cell testicular cancer treatment and implications for follow-up.J. Clin. Oncol.201230303752376310.1200/JCO.2012.43.443123008318
    [Google Scholar]
  75. CastelM. DespasF. ModestoA. GalesC. HontonB. GalinierM. SenardJ.M. PathakA. Effets indésirables cardiaques des chimiothérapies.Presse Med.2013421263910.1016/j.lpm.2012.04.01422727981
    [Google Scholar]
  76. JubbA.M. HarrisA.L. Biomarkers to predict the clinical efficacy of bevacizumab in cancer.Lancet Oncol.201011121172118310.1016/S1470‑2045(10)70232‑121126687
    [Google Scholar]
  77. BlibechH. BachaS. ChaouchN. AyariA. RacilH. Cheikh RouhouS. ZarroukM. ChabbouA. Cancer du poumon et chimiothérapie : quels effets indésirables?Rev. Mal. Respir.201532Suppl.A12510.1016/j.rmr.2014.10.647
    [Google Scholar]
  78. PrigersonH.G. BaoY. ShahM.A. PaulkM.E. LeBlancT.W. SchneiderB.J. GarridoM.M. ReidM.C. BerlinD.A. AdelsonK.B. NeugutA.I. MaciejewskiP.K. Chemotherapy use, performance status, and quality of life at the end of life.JAMA Oncol.20151677878410.1001/jamaoncol.2015.237826203912
    [Google Scholar]
  79. FessartD. RobertJ. Mechanisms of cancer drug resistance.Bull. Cancer20241111375010.1016/j.bulcan.2023.07.00137679207
    [Google Scholar]
  80. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  81. BerettaG.L. CassinelliG. PennatiM. ZucoV. GattiL. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents.Eur. J. Med. Chem.201714227128910.1016/j.ejmech.2017.07.06228851502
    [Google Scholar]
  82. FarrowJ.M. YangJ.C. EvansC.P. Autophagy as a modulator and target in prostate cancer.Nat. Rev. Urol.201411950851610.1038/nrurol.2014.19625134829
    [Google Scholar]
  83. TanK.B. MatternM.R. EngW.K. McCabeF.L. JohnsonR.K. Nonproductive rearrangement of DNA topoisomerase I and II genes: Correlation with resistance to topoisomerase inhibitors.J. Natl. Cancer Inst.198981221732173510.1093/jnci/81.22.17322553992
    [Google Scholar]
  84. TakebeN. ZhaoS.C. UralA.U. JohnsonM.R. BanerjeeD. DiasioR.B. BertinoJ.R. Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+-enriched peripheral blood progenitor cells.Cancer Gene Ther.200181296697310.1038/sj.cgt.770039311781659
    [Google Scholar]
  85. LaverdièreC. ChiassonS. CosteaI. MoghrabiA. KrajinovicM. Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia.Blood2002100103832383410.1182/blood.V100.10.383212411325
    [Google Scholar]
  86. LesniakD. XuY. DeschenesJ. LaiR. ThomsJ. MurrayD. GoshS. MackeyJ.R. SabriS. AbdulkarimB. Beta1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer.Cancer Res.200969228620862810.1158/0008‑5472.CAN‑09‑159119887601
    [Google Scholar]
  87. SinghR. TortiS.V. Carbon nanotubes in hyperthermia therapy.Adv. Drug Deliv. Rev.201365152045206010.1016/j.addr.2013.08.00123933617
    [Google Scholar]
  88. Khalili FardJ. JafariS. EghbalM.A. A review of molecular mechanisms involved in toxicity of nanoparticles.Adv. Pharm. Bull.20155444745410.15171/apb.2015.06126819915
    [Google Scholar]
  89. ZhangL. LvD. SuW. Detection of cancer biomarkers with nanotechnology.Am. J. Biochem. Biotechnol.201391718910.3844/ajbbsp.2013.71.89
    [Google Scholar]
  90. LiuZ. ChenK. DavisC. SherlockS. CaoQ. ChenX. DaiH. Drug delivery with carbon nanotubes for in vivo cancer treatment.Cancer Res.200868166652666010.1158/0008‑5472.CAN‑08‑146818701489
    [Google Scholar]
  91. ShaoW. PaulA. ZhaoB. LeeC. RodesL. PrakashS. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model.Biomaterials20133438101091011910.1016/j.biomaterials.2013.09.00724060420
    [Google Scholar]
  92. ShaoW. PaulA. RodesL. PrakashS. A new carbon nanotube-based breast cancer drug delivery system: preparation and in vitro analysis using paclitaxel.Cell Biochem. Biophys.20157131405141410.1007/s12013‑014‑0363‑027101155
    [Google Scholar]
  93. LiuX. TaoH. YangK. ZhangS. LeeS.T. LiuZ. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors.Biomaterials201132114415110.1016/j.biomaterials.2010.08.09620888630
    [Google Scholar]
  94. HilderT.A. HillJ.M. Modeling the loading and unloading of drugs into nanotubes.Small20095330030810.1002/smll.20080032119058282
    [Google Scholar]
  95. BrennerB.M. HostetterT.H. HumesH.D. Glomerular permselectivity: Barrier function based on discrimination of molecular size and charge.Am. J. Physiol.19782346F455F460665772
    [Google Scholar]
  96. YangF. JinC. YangD. JiangY. LiJ. DiY. HuJ. WangC. NiQ. FuD. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment.Eur. J. Cancer201147121873188210.1016/j.ejca.2011.03.01821493061
    [Google Scholar]
  97. AroraS. KumarR. KaurH. RayatC.S. KaurI. AroraS.K. SrivastavaJ. BharadwajL.M. Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells.J. Biomed. Nanotechnol.201410123601360910.1166/jbn.2014.187526000373
    [Google Scholar]
  98. RisiG. BloiseN. MerliD. Icaro-CornagliaA. ProfumoA. FagnoniM. QuartaroneE. ImbrianiM. VisaiL. in vitro study of multiwall carbon nanotubes (MWCNTs) with adsorbed mitoxantrone (MTO) as a drug delivery system to treat breast cancer.RSC Advances2014436186831869310.1039/C4RA02366H
    [Google Scholar]
  99. CirilloG. VittorioO. KunhardtD. ValliE. VoliF. FarfallaA. CurcioM. SpizzirriU.G. HampelS. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells.Materials20191218288910.3390/ma1218288931500165
    [Google Scholar]
  100. HaugnesH.S. OldenburgJ. BremnesR.M. Pulmonary and cardiovascular toxicity in long-term testicular cancer survivors.Urol. Oncol.201533939940610.1016/j.urolonc.2014.11.01225554583
    [Google Scholar]
  101. LiJ PantA ChinCF in vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes.Nanomedicine20141071465147510.1016/j.nano.2014.01.004
    [Google Scholar]
  102. AryaN. AroraA. VasuK.S. SoodA.K. KattiD.S. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: A reactive oxygen species mediated synergism for treatment of lung cancer.Nanoscale2013572818282910.1039/c3nr33190c23443459
    [Google Scholar]
  103. YuB. TanL. ZhengR. TanH. ZhengL. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes.Mater. Sci. Eng. C20166857958410.1016/j.msec.2016.06.02527524057
    [Google Scholar]
  104. ZhangW. ZhangD. TanJ. CongH. Carbon nanotube exposure sensitize human ovarian cancer cells to paclitaxel.J. Nanosci. Nanotechnol.20121297211721410.1166/jnn.2012.650623035454
    [Google Scholar]
  105. LiuZ TabakmanS WelsherK Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery.Nano Res200928512010.1007/s12274‑009‑9009‑8
    [Google Scholar]
  106. MehraN.K. JainN.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes.J. Drug Target.201321874575810.3109/1061186X.2013.81302823822734
    [Google Scholar]
  107. JiZ. LinG. LuQ. MengL. ShenX. DongL. FuC. ZhangX. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system.J. Colloid Interface Sci.2012365114314910.1016/j.jcis.2011.09.01321974923
    [Google Scholar]
  108. LiQ. RuanH. LiH. Nanocarbon materials for photodynamic therapy and photothermal therapy.Pharm. Nanotechnol.201422586410.2174/2211738502666140929211831
    [Google Scholar]
  109. BeikJ. AbedZ. GhoreishiF.S. Hosseini-NamiS. MehrzadiS. Shakeri-ZadehA. KamravaS.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications.J. Control. Release201623520522110.1016/j.jconrel.2016.05.06227264551
    [Google Scholar]
  110. HahnG.M. Hyperthermia and Cancer.New York, NY, USASpringer Science & Business Media2012
    [Google Scholar]
  111. FalkM.H. IsselsR.D. Hyperthermia in oncology.Int. J. Hyperthermia200117111810.1080/0265673015020155211212876
    [Google Scholar]
  112. LiangC. DiaoS. WangC. GongH. LiuT. HongG. ShiX. DaiH. LiuZ. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes.Adv. Mater.201426325646565210.1002/adma.20140182524924258
    [Google Scholar]
  113. ZhangB. WangH. ShenS. SheX. ShiW. ChenJ. ZhangQ. HuY. PangZ. JiangX. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor.Biomaterials201679465510.1016/j.biomaterials.2015.11.06126695116
    [Google Scholar]
  114. KhanS.A. KanchanapallyR. FanZ. BeqaL. SinghA.K. SenapatiD. RayP.C. A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells.Chem. Commun.201248536711671310.1039/c2cc32313c22627619
    [Google Scholar]
  115. IancuC. MocanL. Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia.Int. J. Nanomedicine201161675168410.2147/IJN.S2358821904457
    [Google Scholar]
  116. MuraliV.S. MikoryakC. WangR. DraperR.K. Abstract 5374: Effect of carbon nanotube amount and subcellular location on the near infrared (NIR) photothermal ablation of cells.Cancer Res.20147419_Supplement537410.1158/1538‑7445.AM2014‑5374
    [Google Scholar]
  117. GannonC.J. CherukuriP. YakobsonB.I. CognetL. KanziusJ.S. KittrellC. WeismanR.B. PasqualiM. SchmidtH.K. SmalleyR.E. CurleyS.A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field.Cancer2007110122654266510.1002/cncr.2315517960610
    [Google Scholar]
  118. GaoF. XieS.X. SitharamanB. Functionalized carbon nanotube theranostic agents for microwave diagnostic imaging and thermal therapy of tumors.Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014)The Hague, The Netherlands201469169310.1109/EuCAP.2014.6901853
    [Google Scholar]
  119. PanchapakesanB. LuS. SivakumarK. TekerK. CesaroneG. WickstromE. Singlewall carbon nanotube nanobomb agents for killing breast cancer cells.NanoBiotechnology20051213314010.1385/NBT:1:2:133
    [Google Scholar]
  120. MocanL. TabaranF.A. MocanT. BeleC. OrzaA.I. LucanC. StiufiucR. ManailaI. IuliaF. DanaI. ZaharieF. OsianG. VladL. IancuC. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes.Int. J. Nanomedicine2011691592821720504
    [Google Scholar]
  121. MadyM.M. Cationic liposomes as gene delivery system.Afr. J. Pharm. Pharmacol.2011520072012
    [Google Scholar]
  122. TaghaviS. HashemNiaA. MosaffaF. AskarianS. AbnousK. RamezaniM. Preparation and evaluation of polyethylenimine- functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells.Colloids Surf. B Biointerfaces2016140283910.1016/j.colsurfb.2015.12.02126731195
    [Google Scholar]
  123. Maurer-JonesM.A. BantzK.C. LoveS.A. MarquisB.J. HaynesC.L. Toxicity of therapeutic nanoparticles.Nanomedicine20094221924110.2217/17435889.4.2.21919193187
    [Google Scholar]
  124. PikulaK. ChaikaV. ZakharenkoA. MarkinaZ. VedyaginA. KuznetsovV. GusevA. ParkS. GolokhvastK. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae.Nanomaterials202010348510.3390/nano1003048532182662
    [Google Scholar]
  125. SayesC.M. LiangF. HudsonJ.L. MendezJ. GuoW. BeachJ.M. MooreV.C. DoyleC.D. WestJ.L. BillupsW.E. AusmanK.D. ColvinV.L. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro.Toxicol. Lett.2006161213514210.1016/j.toxlet.2005.08.01116229976
    [Google Scholar]
  126. EmaM. HougaardK.S. KishimotoA. HondaK. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review.Nanotoxicology201610439141210.3109/17435390.2015.107381126375634
    [Google Scholar]
  127. ChowdhryA KaurJ KhatriM Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo.Heliyon2019510e02605
    [Google Scholar]
  128. WisdomK.S. BhatI.A. ChanuT.I. KumarP. PathakotaG.B. NayakS.K. WalkeP. SharmaR. Chitosan grafting onto single-walled carbon nanotubes increased their stability and reduced the toxicity in vivo (catfish) model.Int. J. Biol. Macromol.202015569770710.1016/j.ijbiomac.2020.03.18932224185
    [Google Scholar]
  129. CuiD. TianF. OzkanC.S. WangM. GaoH. Effect of single wall carbon nanotubes on human HEK293 cells.Toxicol. Lett.20051551738510.1016/j.toxlet.2004.08.01515585362
    [Google Scholar]
  130. ShvedovaA. CastranovaV. KisinE. Schwegler-BerryD. MurrayA. GandelsmanV. MaynardA. BaronP. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells.J. Toxicol. Environ. Health A200366201909192610.1080/71385395614514433
    [Google Scholar]
  131. KaganV.E. TyurinaY.Y. TyurinV.A. KonduruN.V. PotapovichA.I. OsipovA.N. KisinE.R. Schwegler-BerryD. MercerR. CastranovaV. ShvedovaA.A. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron.Toxicol. Lett.200616518810010.1016/j.toxlet.2006.02.00116527436
    [Google Scholar]
  132. VisalliG. FacciolàA. CurròM. LaganàP. La FauciV. IannazzoD. PistoneA. Di PietroA. Mitochondrial impairment induced by sub-chronic exposure to multiwalled carbon nanotubes.Int. J. Environ. Res. Public Health201916579210.3390/ijerph1605079230841488
    [Google Scholar]
  133. GhanbariF. NasarzadehP. SeydiE. GhasemiA. Taghi JoghataeiM. AshtariK. AkbariM. Mitochondrial oxidative stress and dysfunction induced by single- and multiwall carbon nanotubes: A comparative study.J. Biomed. Mater. Res. A201710572047205510.1002/jbm.a.3606328296041
    [Google Scholar]
  134. DonaldsonK AitkenR TranL Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety.Toxicol. Sci.2006921522
    [Google Scholar]
  135. DongJ MaQ Advances in mechanisms and signaling pathways of carbon nanotube toxicity.Nanotoxicology201595658676
    [Google Scholar]
  136. GhoshM OnerD DucaRC Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells.Oncotarget201892920351
    [Google Scholar]
  137. McShanD. YuH. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.Toxicol. Ind. Health201430648949810.1177/074823371245991423012341
    [Google Scholar]
  138. TabetL. BussyC. AmaraN. SetyanA. GrodetA. RossiM.J. PaironJ.C. BoczkowskiJ. LanoneS. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells.J. Toxicol. Environ. Health A2008722607310.1080/1528739080247699119034795
    [Google Scholar]
  139. Di GiorgioM.L. BucchianicoS.D. RagnelliA.M. AimolaP. SantucciS. PomaA. Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20117221203110.1016/j.mrgentox.2011.02.00821382506
    [Google Scholar]
  140. YehiaH.N. DraperR.K. MikoryakC. WalkerE.K. BajajP. MusselmanI.H. DaigrepontM.C. DieckmannG.R. PantanoP. Single-walled carbon nanotube interactions with HeLa cells.J. Nanobiotechnology200751810.1186/1477‑3155‑5‑817956629
    [Google Scholar]
  141. NajafiA. MojtahedzadehM. AhmadiA. RamezaniM. ShariatmoharariR. HazratiE. Rapidly changing tachyarrhythmia in acute stroke.Basic Clin. Neurosci.20134216917125337344
    [Google Scholar]
  142. HongjieD. ZhuangL. XiaolinL. XiaomingS. Supra molecular functionalization of graphtc nanoparticles for Drug delivery.US patent 9233166B22016.
  143. DavidA. Targeted self-assembly 0f functionalized carbon nanotubes on tumors..Patent EP 2797605B12017.
  144. NoyesD.B. Methods of Forming Carbon Nanotubes Having a Bimodal Size Distribution.US. Patent 9896341B22018.
  145. SebastianMilo ShafferPeter WindleAlan H. The Masters Lodge Johnson, Junfeng Geng, Douglas Shephard and Charanjeet Singh. Cvd synthesis of carbon nanotubes.Patent EP1558524B12019.
  146. ProvineJ. BeasleyC. PitnerG. Method for Carbon Nanotube Purification.US. Patent 20200216320A12020.
  147. DemirciH Carbon nanotubes and complex therof for treating and detecting ocular tumors.Patent WO2021/231866A92021.
  148. KimSung Jin ChoiByung Yul ChoDong Hyun KimDuk Ki Bundle-type carbon nanotubes and method for preparing the same.Patent EP 3461790B12022.
  149. KimSung Jin KimSe Hyun OhEu Gene KimOg Sin ParkHye Jin GimMin Yeong Method for preparing catalyst for manufacture of carbon nanotubes.Patent EP 4289505A12023.
  150. JeongMyung Hoon KimHyun Tae RyuSang Hyo JeongChung Heon LeeWan Sung JungWoo Ram ChangGu Kang Preparing method of catalyst for preparing low-diameter carbon Nanotube and preparing method of carbon nanotube using same.Patent EP 4361098A12024.
  151. LeeWan Sung KimHyun Tae RyuSang Hyo JeongChung Heon JeongMyung Hoon JungWoo Ram ChangGu Kang Preparing method for low-diameter carbon nanotube and carbon Nanotube prepared by the method.Patent EP 4361099A12024.
  152. LeeS.S. PaliourasM. TrifiroM.A. Functionalized carbon nanoparticles as theranostic agents and their future clinical utility in oncology.Bioengineering202310110810.3390/bioengineering1001010836671680
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873312144240620110052
Loading
/content/journals/cnanom/10.2174/0124681873312144240620110052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test