Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Precision medicine has emerged as a promising approach for personalized healthcare, particularly in the field of cardiovascular diseases (CVDs). Diagnostic approach in early basis plays a crucial impact in improving patient outcomes, as it permits timely intervention and tailored treatment strategies. Nanosensors, with their unique properties and capabilities, offer groundbreaking opportunities for detection in the primary phase and as well as disease monitoring. The basic fundamental principles of Nanosensors are important to understand the mechanism of working and utilization of the technique. Cardiac diseases are the foremost origin of illness and mortality all over the globe. The physical, biological and pathophysiology of CVDs can be precisely identified by appropriate and exact detection of pertinent biomarkers and function limits. Nanosensors basically incorporate the benefit of Nanomaterials for detection methods. Nanosensors generally exposed a great possible approach for speedy detection of CVDs, specifically in primary prophecy. Advancement of current therapy in Nanosensors for recognition of cardiac disease are briefed, including different types of sensors such as optical, electrochemical, paper-based and pressure Nanosensors. Though Nanoparticles raise the impact on health, there are some limitations in scalability, and standardization of the Nanosensor having good selectivity, efficacy, sensitivity, biocompatibility and limit of detection as compared to the conventional way. Project tactics for various Nanosensors conforming identifying Nanomaterials, with their mechanistic approach, highlight the potential of precision medicine as well as Nanosensor.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873309692240603120103
2024-06-21
2025-10-11
Loading full text...

Full text loading...

References

  1. NabelE.G. Cardiovascular disease.N. Engl. J. Med.20033491607210.1056/NEJMra03509812840094
    [Google Scholar]
  2. MagomedovaS.A. DamadaevaA.S. Medico-social and psychological aspects of cardiovascular diseases.Biol. Med.201686110.4172/0974‑8369.1000332
    [Google Scholar]
  3. ZafarR. An insight into pathogenesis of cardiovascular diseases.J. Cardiovasc. Dis. Diagn.2015331710.4172/2329‑9517.1000197
    [Google Scholar]
  4. EngelmannJ. ManuwaldU. RubachC. KuglerJ. BirkenfeldA.L. HanefeldM. RotheU. Determinants of mortality in patients with type 2 diabetes: A review.Rev. Endocr. Metab. Disord.201617112913710.1007/s11154‑016‑9349‑027068710
    [Google Scholar]
  5. AKTÜRKO.M. AKTÜRKO.M. KOCAKUŞAKA. CANTÜRKA.Ö. Fistula GuidebookAcademician Bookstore2023
    [Google Scholar]
  6. ThirietM. ThirietM. Cardiovascular disease: an introduction.Vasculopathies2018190
    [Google Scholar]
  7. MuhammadY. TahirM. HayatM. ChongK.T. Early and accurate detection and diagnosis of heart disease using intelligent computational model.Sci. Rep.20201011974710.1038/s41598‑020‑76635‑933184369
    [Google Scholar]
  8. CurrieG. DellesC. Precision medicine and personalized medicine in cardiovascular disease.Adv. Exp. Med. Biol.2018106558960510.1007/978‑3‑319‑77932‑4_3630051409
    [Google Scholar]
  9. IzumiY. Therapeutical potential of microvesicles in cardiovascular diseases.J. Genet. Syndr. Gene Ther.2012341210.4172/2157‑7412.1000e107
    [Google Scholar]
  10. AfrozR. TanvirE. LittleP. Honey-derived flavonoids: Natural products for the prevention of atherosclerosis and cardiovascular diseases.Clin. Exp. Pharmacol.201663
    [Google Scholar]
  11. ButtZ. Next-generation self-powered Nanosensors.Nanosensors for Smart Manufacturing.Elsevier202148751510.1016/B978‑0‑12‑823358‑0.00023‑X
    [Google Scholar]
  12. RanaM. ChowdhuryP. Modern applications of quantum dots: environmentally hazardous metal ion sensing and medical imaging.Handbook of Nanomaterials for Sensing Applications.Elsevier2021465503
    [Google Scholar]
  13. ChauhanM. Conducting Polymers and metal-organic frameworks as advanced materials for development of Nanosensors.Advances in Nanosensors for Biological and Environmental Analysis.Elsevier2019436210.1016/B978‑0‑12‑817456‑2.00003‑6
    [Google Scholar]
  14. KurbanogluS. Chemical Nanosensors in pharmaceutical analysis.New Developments in Nanosensors for Pharmaceutical Analysis.Elsevier201914117010.1016/B978‑0‑12‑816144‑9.00005‑5
    [Google Scholar]
  15. DattaS.P.A. Future healthcare: Bioinformatics, nano-sensors, and emerging innovations.Nanosensors: Theory and Applications in Industry. Healthcare and DefenseTaylor & Francis Group2016247
    [Google Scholar]
  16. JianrongC. YuqingM. NongyueH. XiaohuaW. SijiaoL. Nanotechnology and biosensors.Biotechnol. Adv.200422750551810.1016/j.biotechadv.2004.03.00415262314
    [Google Scholar]
  17. AgrawalS.S. PrajapatiR. Nanosensors and their pharmaceutical applications: A review.Int. J. Pharmac. Sci. Nanotechnol.2012441528153510.37285/ijpsn.2011.4.4.2
    [Google Scholar]
  18. BaranwalJ. BarseB. GattoG. BroncovaG. KumarA. Electrochemical sensors and their applications: A review.Chemosensors202210936310.3390/chemosensors10090363
    [Google Scholar]
  19. JovanovskiV. XhanariK. FinšgarM. Editorial: Recent advances of metal-film electrodes for trace electrochemical analysis.Front Chem.20221097367210.3389/fchem.2022.97367235936094
    [Google Scholar]
  20. ChenJ. TanL. QuK. CuiZ. WangJ. Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment.Mikrochim. Acta202218939510.1007/s00604‑022‑05205‑935142925
    [Google Scholar]
  21. PandaA. KeerthiM. SakthivelR. DhawanU. LiuX. ChungR.J. Biocompatible electrochemical sensor based on platinum-nickel alloy nanoparticles for in situ monitoring of hydrogen sulfide in breast cancer cells.Nanomaterials202212225810.3390/nano1202025835055275
    [Google Scholar]
  22. MengF. QinY. ZhangW. ChenF. ZhengL. XingJ. AihaitiA. ZhangM. Amplified electrochemical sensor employing Ag NPs functionalized graphene paper electrode for high sensitive analysis of Sudan I.Food Chem.202237113120410.1016/j.foodchem.2021.13120434598114
    [Google Scholar]
  23. BatoolR. RhouatiA. NawazM.H. HayatA. MartyJ.L. A review of the construction of nano-hybrids for electrochemical biosensing of glucose.Biosensors2019914610.3390/bios901004630934645
    [Google Scholar]
  24. AdeelM. RahmanM.M. LeeJ.J. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets.Biosens. Bioelectron.201912614315010.1016/j.bios.2018.10.06030399516
    [Google Scholar]
  25. ChenF. WuQ. SongD. WangX. MaP. SunY. Fe3O4@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I.Colloids Surf. B Biointerfaces201917710511110.1016/j.colsurfb.2019.01.05330711758
    [Google Scholar]
  26. ChengZ. WangR. XingY. ZhaoL. ChooJ. YuF. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers.Analyst2019144226533654010.1039/C9AN01260E31553332
    [Google Scholar]
  27. HuangZ. ZhangA. ZhangQ. CuiD. Nanomaterial-based SERS sensing technology for biomedical application.J. Mater. Chem. B Mater. Biol. Med.20197243755377410.1039/C9TB00666D
    [Google Scholar]
  28. KalimuthuK. ChaB.S. KimS. ParkK.S. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review.Microchem. J.202015210429610.1016/j.microc.2019.104296
    [Google Scholar]
  29. SoldatkinO.O. SoldatkinaO.V. PiliponskiyI.I. RieznichenkoL.S. GruzinaT.G. DybkovaS.M. DzyadevychS.V. SoldatkinA.P. Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors.Appl. Nanosci.2022124995100310.1007/s13204‑021‑01807‑6
    [Google Scholar]
  30. CuarteroM. ParrillaM. CrespoG. Wearable potentiometric sensors for medical applications.Sensors201919236310.3390/s1902036330658434
    [Google Scholar]
  31. LiuG. LinY. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents.Anal. Chem.200678383584310.1021/ac051559q16448058
    [Google Scholar]
  32. YusifovA. BordersM.O. DeHoffM.A. PolsonS.M. SchmittE.E. BrunsD.R. Juvenile physical activity protects against isoproterenol-induced cardiac dysfunction later in life.J. Appl. Physiol.2023135357258310.1152/japplphysiol.00010.202337439235
    [Google Scholar]
  33. JoH. HerJ. LeeH. ShimY.B. BanC. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes.Talanta201716544244810.1016/j.talanta.2016.12.09128153281
    [Google Scholar]
  34. BingX. WangG. Label free C-reactive protein detection based on an electrochemical sensor for clinical application.Int. J. Electrochem. Sci.20171276304631410.20964/2017.07.60
    [Google Scholar]
  35. MunawarA. Drug-detection performance of carbon Nanotubes decorated with metal oxide Nanoparticles.Metal Oxide-Carbon Hybrid Materials.Elsevier202247549310.1016/B978‑0‑12‑822694‑0.00001‑6
    [Google Scholar]
  36. KaurR. SharmaS.K. TripathyS. Advantages and limitations of environmental Nanosensors.Advances in Nanosensors for biological and environmental analysis.Elsevier201911913210.1016/B978‑0‑12‑817456‑2.00007‑3
    [Google Scholar]
  37. ZhangD. Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas.2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS)Shanghai, China, 2016, pp. 920-923.
    [Google Scholar]
  38. LanzaG.M. WinterP.M. CaruthersS.D. HughesM.S. CyrusT. MarshJ.N. NeubauerA.M. PartlowK.C. WicklineS.A. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles.Nanomedicine20061332132910.2217/17435889.1.3.32117716162
    [Google Scholar]
  39. SuS. YuT. HuJ. XianyuY. A bio-inspired plasmonic nanosensor for angiotensin-converting enzyme through peptide-mediated assembly of gold nanoparticles.Biosens. Bioelectron.202219511362110.1016/j.bios.2021.11362134555635
    [Google Scholar]
  40. KimM. LeeJ.H. NamJ.M. Plasmonic photothermal nanoparticles for biomedical applications.Adv. Sci.2019617190047110.1002/advs.20190047131508273
    [Google Scholar]
  41. LiS. BuT. ZhengJ. LiuL. HeG. WuJ. Preparation, bioavailability, and mechanism of emerging activities of ile-pro-pro and val-pro-pro.Compr. Rev. Food Sci. Food Saf.20191841097111010.1111/1541‑4337.1245733337010
    [Google Scholar]
  42. LiuD. GuoY. WuP. WangY. Kwaku GollyM. MaH. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities.Food Chem.202031112596010.1016/j.foodchem.2019.12596031862569
    [Google Scholar]
  43. WuL. XianyuY. WangZ. DongY. HuX. ChenY. Amplified magnetic resonance sensing via enzyme-mediated click chemistry and magnetic separation.Anal. Chem.20199124155551556210.1021/acs.analchem.9b0355031800215
    [Google Scholar]
  44. XianyuY. DongY. ZhangZ. WangZ. YuW. WangZ. ChenY. Gd3+-nanoparticle-enhanced multivalent biosensing that combines magnetic relaxation switching and magnetic separation.Biosens. Bioelectron.202015511210610.1016/j.bios.2020.11210632090877
    [Google Scholar]
  45. ShiL. LiuC. WangH. ZhengJ. WangQ. ShiL. LiT. Framework and spherical nucleic acids synergistically enhanced electrochemiluminescence nanosensors for rapidly diagnosing acute myocardial infarction based on circulating microrna levels.Anal. Chem.20229441143941440110.1021/acs.analchem.2c0314436198129
    [Google Scholar]
  46. SunY. WangQ. MiL. ShiL. LiT. Target-induced payload amplification for spherical nucleic acid enzyme (SNAzyme)-catalyzed electrochemiluminescence detection of circulating microRNAs.Anal. Chem.20199120129481295310.1021/acs.analchem.9b0300131538773
    [Google Scholar]
  47. ShiL. SunY. MiL. LiT. Target-catalyzed self-growing spherical nucleic acid enzyme (SNAzyme) as a double amplifier for ultrasensitive chemiluminescence MicroRNA detection.ACS Sens.20194123219322610.1021/acssensors.9b0165531763826
    [Google Scholar]
  48. ChenJ. HuangY. VdovenkoM. SakharovI.Y. SuG. ZhaoS. An enhanced chemiluminescence resonance energy transfer system based on target recycling G-guadruplexes/hemin DNAzyme catalysis and its application in ultrasensitive detection of DNA.Talanta2015138596310.1016/j.talanta.2015.02.00425863372
    [Google Scholar]
  49. MiL. SunY. ShiL. LiT. Hemin-bridged MOF interface with double amplification of G-quadruplex payload and DNAzyme catalysis: Ultrasensitive lasting chemiluminescence MicroRNA imaging.ACS Appl. Mater. Interfaces20201277879788710.1021/acsami.9b1805331983198
    [Google Scholar]
  50. LiW. PengW. ZhangY. LiuP. GongX. LiuH. ChangJ. A lateral flow strip biosensor platform based on cascade nucleic acid amplification technology for ultrasensitive detection of OSCC-associated salivary MicroRNA.Anal. Chim. Acta2022122134011210.1016/j.aca.2022.34011235934354
    [Google Scholar]
  51. KnutsonS.D. SanfordA.A. SwensonC.S. KornM.M. ManuelB.A. HeemstraJ.M. Thermoreversible control of nucleic acid structure and function with glyoxal caging.J. Am. Chem. Soc.202014241177661778110.1021/jacs.0c0899633017148
    [Google Scholar]
  52. HannocksM.J. ZhangX. GerwienH. ChashchinaA. BurmeisterM. KorposE. SongJ. SorokinL. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes.Matrix Biol.201975-7610211310.1016/j.matbio.2017.11.00729158162
    [Google Scholar]
  53. OlubamwoO.O. VirtanenJ.K. VoutilainenA. KauhanenJ. PihlajamäkiJ. TuomainenT.P. Association of fatty liver index with the risk of incident cardiovascular disease and acute myocardial infarction.Eur. J. Gastroenterol. Hepatol.20183091047105410.1097/MEG.000000000000118329912803
    [Google Scholar]
  54. LuM. FlanaganJ.U. LangleyR.J. HayM.P. PerryJ.K. Targeting growth hormone function: Strategies and therapeutic applications.Signal Transduct. Target. Ther.201941310.1038/s41392‑019‑0036‑y30775002
    [Google Scholar]
  55. KurbanogluS. OzkanS.A. MerkoçiA. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.Biosens. Bioelectron.201789Pt 288689810.1016/j.bios.2016.09.10227818056
    [Google Scholar]
  56. WangC.F. SunX.Y. SuM. WangY.P. LvY.K. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules.Analyst202014551550156210.1039/C9AN02047K31951223
    [Google Scholar]
  57. TaoL.C. XuJ. WangT. HuaF. LiJ.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations.Cardiovasc. Diabetol.20222116810.1186/s12933‑022‑01511‑x35524263
    [Google Scholar]
  58. JangA.Y. HanS.H. SohnI.S. OhP.C. KohK.K. Lipoprotein(a) and cardiovascular diseases : Revisited.Circ. J.202084686787410.1253/circj.CJ‑20‑005132336721
    [Google Scholar]
  59. IobE. SteptoeA. Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress.Curr. Cardiol. Rep.2019211011610.1007/s11886‑019‑1208‑731471749
    [Google Scholar]
  60. LiJ. CaoT. WeiY. ZhangN. ZhouZ. WangZ. LiJ. ZhangY. WangS. WangP. ChengN. YeL. LiM. YuY. DingC. TanZ. ZhanB. HeQ. BaoH. WuY. LiuL. LiJ. XuX. ChengX. HuangX. A review of novel cardiac biomarkers in acute or chronic cardiovascular diseases: The role of soluble ST2 (sST2), lipoprotein-associated phospholipase A2 (Lp-PLA2), myeloperoxidase (MPO), and procalcitonin (PCT).Dis. Markers2021202111010.1155/2021/625886534422136
    [Google Scholar]
  61. TakahashiK. Distribution of urocortins and corticotropin-releasing factor receptors in the cardiovascular system.Int. J. Endocrinol.2012201211010.1155/2012/39528422675352
    [Google Scholar]
  62. WischhusenJ. MeleroI. FridmanW.H. Growth/Differentiation Factor-15 (GDF-15): From biomarker to novel targetable immune checkpoint.Front. Immunol.20201195110.3389/fimmu.2020.0095132508832
    [Google Scholar]
  63. MahatoK. Nanobiosensors: next generation point-of-care biomedical devices for personalized diagnosis.J. Anal. Bioanal. Tech.201672
    [Google Scholar]
  64. DasA. Biosensors: The future of diagnostics.Sens. Netw. Data. Commun.20161S1e001
    [Google Scholar]
  65. KoH.J. Recent update of nanobiosensors using olfactory sensing elements and nanomaterials.Biosens. J.201541292
    [Google Scholar]
  66. Gonzalez-RodriguezJ. RaveendranM. Importance of biosensors.Biosens J.201541e104
    [Google Scholar]
  67. Divya MahapatraS. SrivastavaV.R. ChandraP. Nanobioengineered sensing technologies based on cellulose matrices for detection of small molecules, macromolecules, and cells.Biosensors202111616810.3390/bios1106016834073910
    [Google Scholar]
  68. FangY. Biosensors: On the origin of label-free cell phenotypic profiles of drug-target interactions.J. Biochips.Tiss. Chip.201332e12610.4172/2153‑0777.1000e126
    [Google Scholar]
  69. MenaaF. Graphene-based biosensors for Nano and pico applications: The future is here.Pharm. Anal. Acta201351e16110.4172/2153‑2435.1000e161
    [Google Scholar]
  70. BroderickP.A. Biosensors and biochips sense central and peripheral disease.J. Biochips.Tiss. Chip.2013311210.4172/2153‑0777.1000e122
    [Google Scholar]
  71. VashistS. Nanomaterials-based health care and bioanalytical applications: Trend and prospects.J Nanomater Mol Nanotechnol2013216
    [Google Scholar]
  72. Ramirez-VickJ.E. Nanostructured ZnO for electrochemical biosensors.J. Biosens. Bioelectron.20123210.4172/2155‑6210.1000e109
    [Google Scholar]
  73. DavidC. SubbiahA. Recent advances in biosensors and biosensing protocols.J Biosens Bioelectron.201233
    [Google Scholar]
  74. SirivisootS. WebsterT.J. Biosensors as implantable medical devices for personalized medicine.J. Biosens. Bioelectron.201232110.4172/2155‑6210.1000e104
    [Google Scholar]
  75. AchyuthanK. Whither commercial nanobiosensors?J Biosens Bioelectron.20112110.4172/2155‑6210.1000102e
    [Google Scholar]
  76. AsifM.H. ElinderF. WillanderM. Electrochemical biosensors based on ZnO Nanostructures to measure intracellular metal ions and glucose.J. Anal. Bioanal. Tech.2011S7S00310.4172/2155‑9872
    [Google Scholar]
  77. RodaE. Evaluation of two different screening ELISA assays for synthetic cathinones (mephedrone/methcathinone and MDPV) with LC-MS method in intoxicated patients.J Clin Toxicol.20166321610495
    [Google Scholar]
  78. MittalP. JainM. Proteomics: An indispensable tool for novel biomarker identification in melanoma.J. Data Mining Genom. Proteom.2016732153060210.4172/2153‑0602.1000204
    [Google Scholar]
  79. YilmaM. MekonnenM. Competitive enzyme linked immuno-sorbent assay (c-ELISA) based sero-prevalence of bluetongue virus (BTV) on small ruminants in selected areas of Wolyita, Southern Ethiopia.Virol mycol2015414821610517
    [Google Scholar]
  80. BiswasS. SahaM.K. Uncertainty of measurement for ELISA in a serological testing laboratory.Immunochem Immunopathol.201512
    [Google Scholar]
  81. AfayoaM. Development and evaluation of an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) for the diagnosis of african swine fever.Virol mycol2015414521610517.1000145
    [Google Scholar]
  82. KamakotiV. ShanmugamN.R. TanakA.S. JagannathB. PrasadS. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications.Appl. Surf. Sci.201843644145010.1016/j.apsusc.2017.12.026
    [Google Scholar]
  83. DayaZ. HearnJ.H. Mindfulness interventions in medical education: A systematic review of their impact on medical student stress, depression, fatigue and burnout.Med. Teach.201840214615310.1080/0142159X.2017.139499929113526
    [Google Scholar]
  84. HickeyB.A. ChalmersT. NewtonP. LinC.T. SibbrittD. McLachlanC.S. Clifton-BlighR. MorleyJ. LalS. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: A systematic review.Sensors20212110346110.3390/s2110346134065620
    [Google Scholar]
  85. WahjudiJ.W. FindyartiniA. KaligisF. The relationship between empathy and stress: A cross-sectional study among undergraduate medical students.Korean J. Med. Educ.201931321522610.3946/kjme.2019.13231455051
    [Google Scholar]
  86. GoldJ.A. HuX. HuangG. TrockelM. LiW. WuY. GaoS. LiuZ. RohrbaughR.M. WilkinsK.M. GaoS. LiuZ.N. RohrbaughR.M. WilkinsK.M. Medical student depression and its correlates across three international medical schools.World J. Psychiatry201994657710.5498/wjp.v9.i4.6531799151
    [Google Scholar]
  87. ZhangX. LiP. ChenJ. LiH. Acute stress impairs reward positivity effect in probabilistic learning.Psychophysiology2020574e1353110.1111/psyp.1353131953853
    [Google Scholar]
  88. ZhuC. YangG. LiH. DuD. LinY. Electrochemical sensors and biosensors based on nanomaterials and nanostructures.Anal. Chem.201587123024910.1021/ac503986325354297
    [Google Scholar]
  89. AtesH.C. NguyenP.Q. Gonzalez-MaciaL. Morales-NarváezE. GüderF. CollinsJ.J. DincerC. End-to-end design of wearable sensors.Nat. Rev. Mater.202271188790710.1038/s41578‑022‑00460‑x35910814
    [Google Scholar]
  90. LiJ. ZhaoN. ZhangW. LiP. YinX. ZhangW. WangH. TangB. Assessing the progression of early atherosclerosis mice using a fluorescence nanosensor for the simultaneous detection and imaging of pH and phosphorylation.Angew. Chem. Int. Ed.2023623e20221517810.1002/anie.20221517836357335
    [Google Scholar]
  91. ZhangD. LiuJ. JiangC. LiuA. XiaB. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model.Sens. Actuators B Chem.2017240556510.1016/j.snb.2016.08.085
    [Google Scholar]
  92. TonezzerM. LeD.T.T. IannottaS. Van HieuN. Selective discrimination of hazardous gases using one single metal oxide resistive sensor.Sens. Actuators B Chem.201827712112810.1016/j.snb.2018.08.103
    [Google Scholar]
  93. NicholsJ. Contemporary practice in clinical chemistry.The NetherlandsElsevier Amsterdam2020
    [Google Scholar]
  94. WangY. YuL. KongX. SunL. Application of nanodiagnostics in point-of-care tests for infectious diseases.Int. J. Nanomedicine2017124789480310.2147/IJN.S13733828740385
    [Google Scholar]
  95. LuT. JiS. JinW. YangQ. LuoQ. RenT.L. Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: reform the next generation healthcare.Sensors2023236299110.3390/s2306299136991702
    [Google Scholar]
  96. ScaranoS. MasciniM. TurnerA.P.F. MinunniM. Surface plasmon resonance imaging for affinity-based biosensors.Biosens. Bioelectron.201025595796610.1016/j.bios.2009.08.03919765967
    [Google Scholar]
  97. BormP.J.A. RobbinsD. HauboldS. KuhlbuschT. FissanH. DonaldsonK. SchinsR. StoneV. KreylingW. LademannJ. KrutmannJ. WarheitD. OberdorsterE. The potential risks of nanomaterials: A review carried out for ECETOC.Part. Fibre Toxicol.2006311110.1186/1743‑8977‑3‑1116907977
    [Google Scholar]
  98. NirschlM. RantalaA. TukkiniemiK. AuerS. HellgrenA.C. PitzerD. SchreiterM. Vikholm-LundinI. CMOS-integrated film bulk acoustic resonators for label-free biosensing.Sensors20101054180419310.3390/s10050418022399875
    [Google Scholar]
  99. HwangK.S. LeeS.M. KimS.K. LeeJ.H. KimT.S. Micro and nanocantilever devices and systems for biomolecule detection.Annu. Rev. Anal. Chem.200921779810.1146/annurev‑anchem‑060908‑15523220636054
    [Google Scholar]
  100. RuckhT.T. ClarkH.A. Implantable nanosensors: Toward continuous physiologic monitoring.Anal. Chem.20148631314132310.1021/ac402688k24325255
    [Google Scholar]
  101. RastogiS. KumariV. SharmaV. AhmadF.J. Gold Nanoparticle-based sensors in food safety applications.Food Anal. Methods202215246848410.1007/s12161‑021‑02131‑z
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873309692240603120103
Loading
/content/journals/cnanom/10.2174/0124681873309692240603120103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test