Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Herbal medicine and its active phytochemicals have been used since ancient times to cure, mitigate, and treat various health issues, such as inflammation, wounds, fever, cough, cold, diabetes, viral diseases, cancers, Different databases, such as Scopus, Google Scholar, Pubmed, Pubchem, and ScienceDirect, were searched exhaustively to find potent herbal leads and their novel carrier systems. Literature was collected from these databases for the last twenty years. Various research articles, review articles, books, and patents were referred for screening of the herbal bioactives. In the recent past, herbal medicine-derived bioactives like curcumin, paclitaxel, catechin, betulinic acid, ferulic acid, gallic acid, rutin, quercetin, resveratrol, glycyrrhizin, silybin, berberine and many more have been reported for several pharmacological activities, including anticancer, antidiabetic, hepatoprotective, antioxidant, antiinflammatory, antipyretic, antimicrobial, However, they have limitations like low aqueous solubility and poor bioavailability, which restrict their therapeutic efficacy and clinical use. In this context, Novel Carrier Systems (NCSs) are promising to overcome the problems of herbal bioactives. NCSs, such as liposomes, nanoparticles, nanocapsules, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers, nanoemulsions, phytosomes, transfersomes, ethosomes, ., have been utilized to encapsulate the bioactives and drugs to enhance their solubility, permeability, elimination half-life, bioavailability, pharmacokinetics, and therapeutic efficacy. Moreover, they protect the drugs/herbal bioactive from the gastric environment and minimize the dose-associated toxicity. Recent advances in the various approaches, including new methodology, analytical techniques, delivery mechanism, materials, loading capacity, encapsulation efficiency, and and models, were considered in the compilation of this review article. It was found that NCSs are pioneering in drug delivery and targeting. The present study highlights the importance of herbal bioactives, advanced NCSs, patents, and their clinical trial status.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873305117240627172050
2024-07-23
2025-10-11
Loading full text...

Full text loading...

References

  1. HarwanshR.K. DeshmukhR. BarkatM.A. RahmanM.A. Bioinspired polymeric-based core-shell smart nano-systems.Pharm. Nanotechnol.20197318120510.2174/221173850766619042910455031486750
    [Google Scholar]
  2. AlexanderA. Ajazuddin PatelR.J. SarafS. SarafS. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.J. Control. Release201624111012410.1016/j.jconrel.2016.09.01727663228
    [Google Scholar]
  3. MukherjeeP.K. HarwanshR.K. BhattacharyyaS. Bioavailability of herbal products: Approach toward improved pharmacokinetics.In:Evidence-based validation of herbal medicine.Elsevier Boston 2015; pp. 217-245
    [Google Scholar]
  4. HarwanshR.K. YadavP. DeshmukhR. Current insight into novel delivery approaches of resveratrol for improving therapeutic efficacy and bioavailability with its clinical updates.Curr. Pharm. Des.202329372921293910.2174/011381612828271323112909471538053352
    [Google Scholar]
  5. DeshmukhR. SinghV. HarwanshR.K. AgrawalR. GargA. SinghS. ElossailyG.M. AnsariM.N. AliN. PrajapatiB.G. Emerging trends of nanomedicines in the management of prostate cancer: Perspectives and potential applications.Pharmaceutics202416329710.3390/pharmaceutics1603029738543191
    [Google Scholar]
  6. DeshmukhR. SinghR. SharmaS. MishraA.K. HarwanshR.K. A snapshot of selenium-enclosed nanoparticles for the management of cancer.Curr. Pharm. Des.2024301184185810.2174/011381612829732924030507110338462835
    [Google Scholar]
  7. HarwanshR.K. ChauhanS. DeshmukhR. MazumderR. Recent insight into herbal bioactives-based novel approaches for chronic intestinal inflammatory disorders therapy.Curr. Pharm. Biotechnol.20242510.2174/011389201028243223122206035538310453
    [Google Scholar]
  8. Akhlaquer RahmanM. HarwanshR. Aamir MirzaM. HussainS. HussainA. Oral lipid based drug delivery system (LBDDS): formulation, characterization and application: a review.Curr. Drug Deliv.20118433034510.2174/15672011179576790621453264
    [Google Scholar]
  9. ShakeelK. AhmadF.J. HarwanshR.K. RahmanM.A. β-artemether and lumefantrine dual drug loaded lipid nanoparticles: Physicochemical characterization, pharmacokinetic evaluation and biodistribution study.Pharm. Nanotechnol.202210321021910.2174/221173851066622042813353236029070
    [Google Scholar]
  10. DeshmukhR. JainA.K. SinghR. PaulS.D. HarwanshR.K. Andrographis paniculata and andrographolide - a snapshot on recent advances in nano drug delivery systems against cancer.Curr. Drug Deliv.202421563164410.2174/156720182066623020311575236740794
    [Google Scholar]
  11. HarwanshR.K. YadavM. DeshmukhR. RahmanA. Recent insights into nanoparticulate carrier systems of curcumin and its clinical perspective in the management of various health issues.Curr. Pharm. Des.202329181421144010.2174/138161282966623061311544737312443
    [Google Scholar]
  12. BiswasS. MukherjeeP.K. HarwanshR.K. BannerjeeS. BhattacharjeeP. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid–phospholipid complex.Drug Dev. Ind. Pharm.201945694695810.1080/03639045.2019.158375530767678
    [Google Scholar]
  13. PrajapatiM. DeshmukhR. HarwanshR.K. Recent trends in nanoparticulate delivery system for amygdalin as potential therapeutic herbal bioactive agent for cancer treatment.Curr. Drug Deliv.20232110.2174/011567201828038123111915073238037911
    [Google Scholar]
  14. HarwanshR.K. BahadurS. DeshmukhR. RahmanM.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective.Curr. Pharm. Des.202026111191120510.2174/138161282666620013110115632003686
    [Google Scholar]
  15. DeshmukhR. DewanganB. HarwanshR.K. AgrawalR. GargA. ChopraH. Current trends in nanotechnology-based drug delivery systems for the diagnosis and treatment of malaria: A review.Curr. Drug Deliv.20242110.2174/011567201829125324011501232738265385
    [Google Scholar]
  16. LiuL. HitchensT.K. YeQ. WuY. BarbeB. PriorD.E. LiW.F. YehF.C. FoleyL.M. BainD.J. HoC. Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid.Biochim. Biophys. Acta, Gen. Subj.2013183063447345310.1016/j.bbagen.2013.01.02123396002
    [Google Scholar]
  17. LeeG. HanS. InocencioI. CaoE. HongJ. PhillipsA.R.J. WindsorJ.A. PorterC.J.H. TrevaskisN.L. Lymphatic uptake of liposomes after intraperitoneal administration primarily occursviathe diaphragmatic lymphatics and is dependent on liposome surface properties.Mol. Pharm.201916124987499910.1021/acs.molpharmaceut.9b0085531625752
    [Google Scholar]
  18. HarwanshR.K. MukherjeeP.K. BahadurS. BiswasR. Enhanced permeability of ferulic acid loaded nanoemulsion based gel through skin against UVA mediated oxidative stress.Life Sci.201514120221110.1016/j.lfs.2015.10.00126437269
    [Google Scholar]
  19. HarwanshR.K. MukherjeeP.K. KarA. BahadurS. Al-DhabiN.A. DuraipandiyanV. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress.J. Photochem. Photobiol. B201616031832910.1016/j.jphotobiol.2016.03.02627167597
    [Google Scholar]
  20. HarwanshR.K. BhatiH. DeshmukhR. Recent updates on the therapeutics benefits, clinical trials, and novel delivery systems of chlorogenic acid for the management of diseases with a special emphasis on ulcerative colitis.Curr. Pharm. Des.202430642043910.2174/011381612829575324012907403538299405
    [Google Scholar]
  21. HarwanshR.K. MukherjeeP.K. BiswasS. Nanoemulsion as a novel carrier system for improvement of betulinic acid oral bioavailability and hepatoprotective activity.J. Mol. Liq.201723736137110.1016/j.molliq.2017.04.051
    [Google Scholar]
  22. AlhodiebF.S. RahmanM.A. BarkatM.A. AlaneziA.A. BarkatH.A. HadiH.A. HarwanshR.K. MittalV. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer’s disease.Nanomedicine202318214516810.2217/nnm‑2022‑010836938800
    [Google Scholar]
  23. DeshmukhR. PrajapatiM. HarwanshR.K. Recent advances and prospects in naringin nanocarrier drug delivery system for cancer management.J. Drug Deliv. Sci. Technol.20249110518210.1016/j.jddst.2023.105182
    [Google Scholar]
  24. PoojaD. KulhariH. KunchaM. RachamallaS.S. AdamsD.J. BansalV. SistlaR. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles.Mol. Pharm.201613113903391210.1021/acs.molpharmaceut.6b0069127696858
    [Google Scholar]
  25. LingG. ZhangP. ZhangW. SunJ. MengX. QinY. DengY. HeZ. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition.J. Control. Release2010148224124810.1016/j.jconrel.2010.08.01020727928
    [Google Scholar]
  26. TrucilloP. Biomaterials for drug delivery and human applications.Materials202417245610.3390/ma1702045638255624
    [Google Scholar]
  27. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Biol. Earth Sci.20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  28. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Biol. Earth Sci.20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  29. HuseynovE. KhalilovR. MohamedA.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv. Biol. Earth Sci.20249Special Issue819110.62476/abes9s81
    [Google Scholar]
  30. SalahshourP. AbdolmalekiS. MonemizadehS. GholizadehS. KhaksarS. Nanobiomaterials/bioinks based scaffolds in 3d bioprinting for tissue engineering and artificial human organs.Adv. Biol. Earth Sci.20249Special Issue9710410.62476/abes9s97
    [Google Scholar]
  31. AfrinS. JahanI. HasanA. DeepaK. Novel approaches of herbal drug delivery.J. Pharm. Res. Int.201821511110.9734/JPRI/2018/39143
    [Google Scholar]
  32. BahadurS. SachanN. HarwanshR.K. DeshmukhR. Nanoparticlized system: Promising approach for the management of alzheimer’s disease through intranasal delivery.Curr. Pharm. Des.202026121331134410.2174/138161282666620031113165832160843
    [Google Scholar]
  33. DeshmukhR. PrajapatiM. HarwanshR.K. Management of colorectal cancer using nanocarriers-based drug delivery for herbal bioactives: Current and emerging approaches.Curr. Pharm. Biotechnol.202425559962210.2174/011389201024202823100207551238807329
    [Google Scholar]
  34. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: a review.Int. J. Nanomedicine2014911524363556
    [Google Scholar]
  35. LacatusuI. IstratiD. BordeiN. PopescuM. SeciuA.M. PanteliL.M. BadeaN. Synergism of plant extract and vegetable oils-based lipid nanocarriers: Emerging trends in development of advanced cosmetic prototype products.Mater. Sci. Eng.202010811041210.1016/j.msec.2019.11041231923989
    [Google Scholar]
  36. SharmaP. VermaS. MisriP. Global need for novel herbal drug formulations.Int. J. Pharmacogn. Phytochem. Res.2016815351544
    [Google Scholar]
  37. PandeyR. BhairamM. ShuklaS.S. GidwaniB. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru202129241543810.1007/s40199‑021‑00403‑x34327650
    [Google Scholar]
  38. JainN. ValliK.S. DeviV.K. Importance of novel drug delivery systems in herbal medicines.Pharmacogn. Rev.201047273110.4103/0973‑7847.6532222228938
    [Google Scholar]
  39. Huesca-UriósteguiK. García-ValderramaE.J. Gutierrez-UribeJ.A. Antunes-RicardoM. Guajardo-FloresD. Nanofiber systems as herbal bioactive compounds carriers: Current applications in healthcare.Pharmaceutics202214119110.3390/pharmaceutics1401019135057087
    [Google Scholar]
  40. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  41. BabazadehA. ZeinaliM. HamishehkarH. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy.Curr. Drug Targets201819217018010.2174/138945011866617050809525028482783
    [Google Scholar]
  42. RivaA. RonchiM. PetrangoliniG. BosisioS. AllegriniP. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin.Eur. J. Drug Metab. Pharmacokinet.201944216917710.1007/s13318‑018‑0517‑330328058
    [Google Scholar]
  43. SusilawatiY. ChaerunisaA. PurwaningsihH. Phytosome drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent.J. Adv. Pharm. Technol. Res.202112432733410.4103/japtr.JAPTR_100_2034820305
    [Google Scholar]
  44. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical delivery through transferosome (phytosome): An advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.85086235281927
    [Google Scholar]
  45. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  46. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  47. DuG. SunX. Ethanol injection method for liposome preparation.Methods Mol. Biol.20232622657010.1007/978‑1‑0716‑2954‑3_536781750
    [Google Scholar]
  48. LiangY. ZhangZ.R. Research development in transfersome-based drug delivery system.Sichuan Da Xue Xue Bao Yi Xue Ban202152454354734323028
    [Google Scholar]
  49. SimrahH. HafeezA. UsmaniS.A. IzharM.P. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications.Naunyn Schmiedebergs Arch. Pharmacol.2024397263967310.1007/s00210‑023‑02670‑837597094
    [Google Scholar]
  50. HyeonT.I. YoonK.S. Ethosome containing ceramide as a skin carrier of active ingredients.Curr. Drug Deliv.202320792794210.2174/156720181966622072012373735864796
    [Google Scholar]
  51. MohapatraS. MirzaM.A. AhmadS. FarooqU. AnsariM.J. KohliK. IqbalZ. Quality by design assisted optimization and risk assessment of black cohosh loaded ethosomal gel for menopause: Investigating different formulation and process variables.Pharmaceutics202315246510.3390/pharmaceutics1502046536839787
    [Google Scholar]
  52. AshaoluT.J. Nanoemulsions for health, food, and cosmetics: a review.Environ. Chem. Lett.20211943381339510.1007/s10311‑021‑01216‑933746662
    [Google Scholar]
  53. MoghtaderiM. SedaghatniaK. BourbourM. FatemizadehM. Salehi MoghaddamZ. HejabiF. HeidariF. QuaziS. Farasati FarB. Niosomes: a novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑336175809
    [Google Scholar]
  54. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.10605234740786
    [Google Scholar]
  55. LiuM. WangF. PuC. TangW. SunQ. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier.Food Chem.202135812984010.1016/j.foodchem.2021.12984033933956
    [Google Scholar]
  56. TahaE. NourS.A. MamdouhW. SelimA.A. SwidanM.M. IbrahimA.B. NaguibM.J. Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, in vitro optimization, ex-vivo cytotoxicity in vivo biodistribution utilizing radioiodinated zopiclone.Int. J. Pharm.2023510016010.1016/j.ijpx.2023.10016036647457
    [Google Scholar]
  57. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  58. GuizzeF. SerraC.H.R. GiarollaJ. Pamam dendrimers: A review of methodologies employed in biopharmaceutical classification.J. Pharm. Sci.2022111102662267310.1016/j.xphs.2022.07.00935850238
    [Google Scholar]
  59. GalanakouC. DhumalD. PengL. Amphiphilic dendrimers against antibiotic resistance: light at the end of the tunnel?Biomater. Sci.202311103379339310.1039/D2BM01878K36866708
    [Google Scholar]
  60. HwangD. RamseyJ.D. KabanovA.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval.Adv. Drug Deliv. Rev.20201568011810.1016/j.addr.2020.09.00932980449
    [Google Scholar]
  61. KubiakT. Polymeric capsules and micelles as promising carriers of anticancer drugs.Polim. Med.2022521375010.17219/pim/14551335196423
    [Google Scholar]
  62. LeiL. BergstromD. ZhangB. ZhangH. YinR. SongK.Y. ZhangW. Micro/nanospheres generation by fluid-fluid interaction technology: A literature review.Recent Pat. Nanotechnol.2017111153310.2174/187221051066616053012564627562806
    [Google Scholar]
  63. HemlataG. GuptaS. TejavathK.K. Ros-mediated apoptosis induced by bsa nanospheres encapsulated with fruit extract of cucumis prophetarum in various human cancer cell lines.ACS Omega2021615103831039510.1021/acsomega.1c0075534056191
    [Google Scholar]
  64. XuL. YuZ. HeK. WenZ. AleemM.T. YanR. SongX. LuM. LiX. Plga nanospheres as delivery platforms for eimeria mitis 1a protein: A novel strategy to improve specific immunity.Front. Immunol.20221390175810.3389/fimmu.2022.90175835693811
    [Google Scholar]
  65. XuJ. ZhaoJ.H. LiuY. FengN.P. ZhangY.T. RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin.Int. J. Nanomedicine2012721121922275836
    [Google Scholar]
  66. ShenY. MaH. Oridonin-loaded lipid-coated calcium phosphate nanoparticles: preparation, characterization, and application in A549 lung cancer.Pharm. Dev. Technol.202227559860510.1080/10837450.2022.209095835734959
    [Google Scholar]
  67. ChengZ. LianY. KamalZ. MaX. ChenJ. ZhouX. SuJ. QiuM. Nanocrystals technology for pharmaceutical science.Curr. Pharm. Des.201824212497250710.2174/138161282466618051808242029773056
    [Google Scholar]
  68. XiongS. LiuW. LiD. ChenX. LiuF. YuanD. PanH. WangQ. FangS. ChenT. Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-parkinsonian efficacy.Mol. Pharm.20191641444145510.1021/acs.molpharmaceut.8b0101230811206
    [Google Scholar]
  69. LiT. WangP. GuoW. HuangX. TianX. WuG. XuB. LiF. YanC. LiangX.J. LeiH. Natural berberine-based chinese herb medicine assembled nanostructures with modified antibacterial application.ACS Nano20191366770678110.1021/acsnano.9b0134631135129
    [Google Scholar]
  70. ZengW. ChengN. LiangX. HuH. LuoF. JinJ. LiY. Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing.Sci. Rep.20221211090010.1038/s41598‑022‑13141‑035764658
    [Google Scholar]
  71. TanC. HosseiniS.F. JafariS.M. Cubosomes and hexosomes as novel nanocarriers for bioactive compounds.J. Agric. Food Chem.20227051423143710.1021/acs.jafc.1c0674735089018
    [Google Scholar]
  72. KumarA. SinghalK. KaushikN. Cubosomes: Versatile nanosized formulation for efficient delivery of therapeutics.Curr. Drug Deliv.202219664465710.2174/156720181866621070812385534238187
    [Google Scholar]
  73. PatelD.K. JungE. PriyaS. WonS.Y. HanS.S. Recent advances in biopolymer-based hydrogels and their potential biomedical applications.Carbohydr. Polym.202432312140810.1016/j.carbpol.2023.12140837940291
    [Google Scholar]
  74. NegriV. Pacheco-TorresJ. CalleD. López-LarrubiaP. Carbon nanotubes in biomedicine.Top. Curr. Chem.202037811510.1007/s41061‑019‑0278‑831938922
    [Google Scholar]
  75. WitkowskaM. FlorekE. MrówczyńskiR. Assessment of pristine carbon nanotubes toxicity in rodent models.Int. J. Mol. Sci.202223231534310.3390/ijms23231534336499665
    [Google Scholar]
  76. PleskovaS. MikheevaE. GornostaevaE. Using of quantum dots in biology and medicine.Adv. Exp. Med. Biol.2018104832333410.1007/978‑3‑319‑72041‑8_1929453547
    [Google Scholar]
  77. XuQ. GaoJ. WangS. WangY. LiuD. WangJ. Quantum dots in cell imaging and their safety issues.J. Mater. Chem. B Mater. Biol. Med.20219295765577910.1039/D1TB00729G34212167
    [Google Scholar]
  78. GuptaD. BooraA. ThakurA. GuptaT.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.Environ. Res.2023231Pt 311631610.1016/j.envres.2023.11631637270084
    [Google Scholar]
  79. Medina-CruzD. MostafaviE. Vernet-CruaA. ChengJ. ShahV. Cholula-DiazJ.L. GuisbiersG. TaoJ. García-MartínJ.M. WebsterT.J. Green nanotechnology-based drug delivery systems for osteogenic disorders.Expert Opin. Drug Deliv.202017334135610.1080/17425247.2020.172744132064959
    [Google Scholar]
  80. SinghN.B. JainP. DeA. TomarR. Green synthesis and applications of nanomaterials.Curr. Pharm. Biotechnol.202122131705174710.2174/138920102266621041214273433845733
    [Google Scholar]
  81. MiereF. VicasS.I. TimarA.V. GaneaM. ZdrincaM. CavaluS. FriteaL. VicasL. MuresanM. PallagA. DobjanschiL. Preparation and characterization of two different liposomal formulations with bioactive natural extract for multiple applications.Processes202193432
    [Google Scholar]
  82. LiuD. HuH. LinZ. ChenD. ZhuY. HouS. ShiX. Quercetin deformable liposome: Preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo.J. Photochem. Photobiol. B201312781710.1016/j.jphotobiol.2013.07.01423933244
    [Google Scholar]
  83. ElmowafyM. ViitalaT. IbrahimH.M. Abu-ElyazidS.K. SamyA. KassemA. YliperttulaM. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake.Eur. J. Pharm. Sci.201350216117110.1016/j.ejps.2013.06.01223851081
    [Google Scholar]
  84. HeZ.F. LiuD.Y. ZengS. YeJ.T. Study on preparation of ampelopsin liposomes.Zhongguo Zhongyao Zazhi2008331273018338614
    [Google Scholar]
  85. EinbondL.S. MightyJ. RedentiS. WuH. Actein induces calcium release in human breast cancer cells.Fitoterapia201391283810.1016/j.fitote.2013.07.02523939423
    [Google Scholar]
  86. HongW. ChenD.W. ZhaoX.L. QiaoM.X. HuH.Y. Preparation and study in vitro of long-circulating nanoliposomes of curcumin.Zhongguo Zhongyao Zazhi200833888989218619344
    [Google Scholar]
  87. LiraM.C. FerrazM.S. da SilvaD.G. CortesM.E. TeixeiraK.I. CaetanoN.P. SinisterraR.D. PonchelG. Santos-MagalhaesN.S.J.J. Inclusion complex of usnic acid with β-cyclodextrin: characterization and nanoencapsulation into liposomes.J. Incl. Phenom. Macrocycl. Chem.200964215224
    [Google Scholar]
  88. MarwahM. BadhanR.K.S. LowryD. Development of a novel polymer-based carrier for deformable liposomes for the controlled dermal delivery of naringenin.J. Liposome Res.202232218119410.1080/08982104.2021.195652934423727
    [Google Scholar]
  89. Xiao-YingL. LuoJ.B. YanZ.H. RongH.S. HuangW.M. Preparation and in vitro and in vivo evaluations of topically applied capsaicin transfersomes.Yao Xue Xue Bao200641546146616848325
    [Google Scholar]
  90. SinghH.P. UtrejaP. TiwaryA.K. JainS. Elastic liposomal formulation for sustained delivery of colchicine: in vitro characterization and in vivo evaluation of anti-gout activity.AAPS J.2009111546410.1208/s12248‑008‑9078‑819191031
    [Google Scholar]
  91. ZhengY. HouS.X. ChenT. LuY. Preparation and characterization of transfersomes of three drugs in vitro.Zhongguo Zhongyao Zazhi200631972873117048677
    [Google Scholar]
  92. YenF.L. WuT.H. LinL.T. ChamT.M. LinC.C. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.Food Chem. Toxicol.20084651771177710.1016/j.fct.2008.01.02118308443
    [Google Scholar]
  93. AlvenS. AderibigbeB.A. Nanoparticles formulations of artemisinin and derivatives as potential therapeutics for the treatment of cancer, leishmaniasis and malaria.Pharmaceutics202012874810.3390/pharmaceutics1208074832784933
    [Google Scholar]
  94. ZhouX. SuoF. HaslingerK. QuaxW.J. Artemisinin-type drugs in tumor cell death: Mechanisms, combination treatment with biologics and nanoparticle delivery.Pharmaceutics202214239510.3390/pharmaceutics1402039535214127
    [Google Scholar]
  95. SuY. FuZ. ZhangJ. WangW. WangH. WangY. ZhangQ.J.P.T. Microencapsulation of radix Salvia miltiorrhiza nanoparticles by spray-drying.Powder Technol.2008184111412110.1016/j.powtec.2007.08.014
    [Google Scholar]
  96. ChiangnoonR. SameeW. UttayaratP. JittachaiW. RuksiriwanichW. SommanoS.R. AthikomkulchaiS. ChittasuphoC. Phytochemical analysis, antioxidant, and wound healing activity of Pluchea indica l. (less) branch extract nanoparticles.Molecules202227363510.3390/molecules2703063535163900
    [Google Scholar]
  97. YenF.L. WuT.H. LinL.T. ChamT.M. LinC.C. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure.Pharm. Res.200926489390210.1007/s11095‑008‑9791‑019034626
    [Google Scholar]
  98. VrouvakiI. KoutraE. KornarosM. AvgoustakisK. LamariF.N. HatziantoniouS. Polymeric nanoparticles of Pistacia lentiscus var. Chia essential oil for cutaneous applications.Pharmaceutics202012435310.3390/pharmaceutics1204035332295134
    [Google Scholar]
  99. YouJ. CuiF. HanX. WangY. YangL. YuY. LiQ. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion–solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil.Colloids Surf. B Biointerfaces2006481354110.1016/j.colsurfb.2005.12.01116480856
    [Google Scholar]
  100. FrentO.D. VicasL.G. DuteanuN. NemesN.S. PascuB. TeusdeaA. MorgovanC.M. MuresanM.E. JurcaT. PallagA. VlaseA.M. VlaseL. DejeuI. DejeuG.E. MarianE. Formulation, physico-chemical characterization, and evaluation of the in vitro release capacity of the Ruta graveolens L. Phytocomplex from biodegradable chitosan and alginate microspheres.Appl. Sci.20231317993910.3390/app13179939
    [Google Scholar]
  101. ChaoP. DeshmukhM. KutscherH.L. GaoD. RajanS.S. HuP. LaskinD.L. SteinS. SinkoP.J. Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model.Anticancer Drugs2010211657610.1097/CAD.0b013e328332a32219966540
    [Google Scholar]
  102. SilvaP.I. StringhetaP.C. TeófiloR.F. de OliveiraI.R.N. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses.J. Food Eng.2013117453854410.1016/j.jfoodeng.2012.08.039
    [Google Scholar]
  103. KaityS. IsaacJ. GhoshA. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.Carbohydr. Polym.201394145646710.1016/j.carbpol.2013.01.07023544563
    [Google Scholar]
  104. NesterenkoA. AlricI. SilvestreF. DurrieuV. Influence of soy protein’s structural modifications on their microencapsulation properties: α-Tocopherol microparticle preparation.Food Res. Int.201248238739610.1016/j.foodres.2012.04.023
    [Google Scholar]
  105. Yesil-CeliktasO. Cetin-UyanikgilE.O. in vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method.J. Supercrit. Fluids20126221922510.1016/j.supflu.2011.11.005
    [Google Scholar]
  106. ZengH. WangY. NieC. KongJ. LiuX. Preparation of magnetic molecularly imprinted polymers for separating rutin from Chinese medicinal plants.Analyst2012137102503251210.1039/c2an35259a22489285
    [Google Scholar]
  107. LiG. ZhongM. ZhouZ. ZhongY. DingP. HuangY. Formulation optimization of chelerythrine loaded O-carboxymethylchitosan microspheres using response surface methodology.Int. J. Biol. Macromol.201149597097810.1016/j.ijbiomac.2011.08.01921889529
    [Google Scholar]
  108. GlennG.M. KlamczynskiA.P. WoodsD.F. ChiouB. OrtsW.J. ImamS.H. Encapsulation of plant oils in porous starch microspheres.J. Agric. Food Chem.20105874180418410.1021/jf903782620196603
    [Google Scholar]
  109. Torkzadeh-MahaniM. HajizadehM.R. MalekiH. BaraniM. FahmidehkarM.A. MahmoodiM. in vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents.Res. Pharm. Sci.201914544845810.4103/1735‑5362.26820631798662
    [Google Scholar]
  110. ArsenieL.V. LacatusuI. OpreaO. BordeiN. BacalumM. BadeaN. Azelaic acid-willow bark extract-panthenol – Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations.Ind. Crops Prod.202015411265810.1016/j.indcrop.2020.112658
    [Google Scholar]
  111. PiazziniV. MicheliL. LuceriC. D’AmbrosioM. CinciL. GhelardiniC. BiliaA.R. Di Cesare MannelliL. BergonziM.C. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model.Int. J. Pharm.201957211883810.1016/j.ijpharm.2019.11883831715362
    [Google Scholar]
  112. LacatusuI. BalanucaB. SerafimA. OttC. ProdanaM. BadeaN. Salicin and hederacoside c-based extracts and uv-absorbers co-loaded into bioactive lipid nanocarriers with promoted skin antiaging and hydrating efficacy.Nanomaterials20221214236210.3390/nano1214236235889587
    [Google Scholar]
  113. PaleiN.N. MounikaG. MohantaB.C. RajangamJ. Quercetin and morin dual drug loaded nanostructured lipid carriers: Formulation and in vitro cytotoxicity study on mcf7 breast cancer cells.Dispersion Sci Technol202320231910.1080/01932691.2023.2248261
    [Google Scholar]
  114. SamprasitW. OpanasopitP. ChamsaiB. Alpha-mangostin and resveratrol, dual-drugs-loaded mucoadhesive thiolated chitosan-based nanoparticles for synergistic activity against colon cancer cells.J. Biomed. Mater. Res. B Appl. Biomater.202211061221123310.1002/jbm.b.3499234919783
    [Google Scholar]
  115. SuhandiC. WilarG. LesmanaR. ZulhendriF. SuharyaniI. HasanN. WathoniN. Propolis-based nanostructured lipid carriers for α-mangostin delivery: Formulation, characterization, and in vitro antioxidant activity evaluation.Molecules20232816605710.3390/molecules2816605737630309
    [Google Scholar]
  116. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  117. YuZ. LvH. HanG. MaK. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation.PLoS One2016117e015996710.1371/journal.pone.015996727441661
    [Google Scholar]
  118. FatimaZ. Formulation and performance evaluation of Berberis aristata extract loaded ethosomal gel.Asian J. Pharm.201711176183
    [Google Scholar]
  119. RahmanH.S. OthmanH.H. HammadiN.I. YeapS.K. AminK.M. Abdul SamadN. AlitheenN.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications.Int. J. Nanomedicine2020152439248310.2147/IJN.S22780532346289
    [Google Scholar]
  120. RamalingamR. DhandC. MayandiV. LeungC.M. EzhilarasuH. KaruppannanS.K. PrasannanP. OngS.T. SunderasanN. KaliappanI. KamruddinM. BarathiV.A. VermaN.K. RamakrishnaS. LakshminarayananR. ArunachalamK.D. Core-shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing.ACS Appl. Mater. Interfaces20211321243562436910.1021/acsami.0c2064234024104
    [Google Scholar]
  121. AlmasianA. NajafiF. EftekhariM. ArdekaniM.R.S. SharifzadehM. KhanaviM. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies.Mater. Sci. Eng. C202011411103910.1016/j.msec.2020.11103932994005
    [Google Scholar]
  122. Al-KaabiW.J. AlbukhatyS. Al-FartosyA.J.M. Al-KaragolyH.K. Al-MusawiS. SulaimanG.M. DewirY.H. AlwahibiM.S. SolimanD.A. Development of inula graveolens (l.) plant extract electrospun/polycaprolactone nanofibers: A novel material for biomedical application.Appl. Sci.202111282810.3390/app11020828
    [Google Scholar]
  123. JafariA. TabaeiS.S. RahimiM. TaranejooS. GhanimatdanM.J. Herbal extract incorporated chitosan based nanofibers as a new strategy for smart anticancer drug delivery system: An in vitro model.World Cancer Res J.2020711
    [Google Scholar]
  124. AlmasianA. NajafiF. EftekhariM. Shams ArdekaniM.R. SharifzadehM. KhanaviM. Preparation of polyurethane/pluronic f127 nanofibers containing peppermint extract loaded gelatin nanoparticles for diabetic wounds healing: Characterization, in vitro, and in vivo studies.Evid. Based Complement. Alternat. Med.2021202111610.1155/2021/664670234093721
    [Google Scholar]
  125. NafiuS. ApalangyaV.A. YayaA. SabiE.B. Boron nitride nanotubes for curcumin delivery as an anticancer drug: A DFT investigation.Appl. Sci. (Basel)202212287910.3390/app12020879
    [Google Scholar]
  126. ShejawalK.P. RandiveD.S. BhingeS.D. BhutkarM.A. WadkarG.H. TodkarS.S. MohiteS.K. Functionalized carbon nanotube for colon-targeted delivery of isolated lycopene in colorectal cancer: in vitro cytotoxicity and in vivo roentgenographic study.J. Mater. Res.202136244894490710.1557/s43578‑021‑00431‑y
    [Google Scholar]
  127. HüschJ. BohnetJ. FrickerG. SkarkeC. ArtariaC. AppendinoG. Schubert-ZsilaveczM. Abdel-TawabM. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract.Fitoterapia201384899810.1016/j.fitote.2012.10.00223092618
    [Google Scholar]
  128. FerraraT. De VincentiisG. Di PierroF. Functional study on Boswellia phytosome as complementary intervention in asthmatic patients.Eur. Rev. Med. Pharmacol. Sci.201519193757376226502867
    [Google Scholar]
  129. JainP. TaleuzzamanM. KalaC. Kumar GuptaD. AliA. AslamM. Quality by design (Qbd) assisted development of phytosomal gel of Aloe vera extract for topical delivery.J. Liposome Res.202131438138810.1080/08982104.2020.184927933183121
    [Google Scholar]
  130. MaoJ.T. XueB. FanS. NeisP. QuallsC. MassieL. FiehnO. Leucoselect phytosome modulates serum eicosapentaenoic acid, docosahexaenoic acid, and prostaglandin e3 in a phase i lung cancer chemoprevention study.Cancer Prev. Res.202114661962610.1158/1940‑6207.CAPR‑20‑058533707173
    [Google Scholar]
  131. SahuA.N. SharmaS. Development, characterization, and evaluation of hepatoprotective effect of Abutilon indicum and Piper longum phytosomes.Pharmacognosy Res.201681293610.4103/0974‑8490.17110226941533
    [Google Scholar]
  132. WuP.S. LiY.S. KuoY.C. TsaiS.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules2403060030743989
    [Google Scholar]
  133. AroraD. KhuranaB. NandaS. DoE directed optimization, development and evaluation of resveratrol loaded ultradeformable vesicular cream for topical antioxidant benefits.Drug Dev. Ind. Pharm.202046222723510.1080/03639045.2020.171637331928244
    [Google Scholar]
  134. KaurC.D. Nimisha RizviD.A. FatimaZ. Neema Antipsoriatic and anti-inflammatory studies of Berberis aristata extract loaded nanovesicular gels.Pharmacogn. Mag.20171351Suppl. 358710.4103/pm.pm_210_1729142419
    [Google Scholar]
  135. NangareS. BhataneD. MaliR. ShitoleM. Development of a novel freeze-dried mulberry leaf extract-based transfersome gel.Turk. J. Pharm. Sci.2021181445510.4274/tjps.galenos.2019.9862433633053
    [Google Scholar]
  136. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.124785028050929
    [Google Scholar]
  137. ShiC. WuH. XuK. CaiT. QinK. WuL. CaiB. Liquiritigenin-loaded submicron emulsion protects against doxorubicin-induced cardiotoxicityviaantioxidant, anti-inflammatory, and anti-apoptotic activity.Int. J. Nanomedicine2020151101111510.2147/IJN.S23583232110010
    [Google Scholar]
  138. Zadeh MehriziT. KhamesipourA. Shafiee ArdestaniM. Ebrahimi ShahmabadiH. Haji Molla HoseiniM. MosaffaN. RamezaniA. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus.Int. J. Nanomedicine2019147593760710.2147/IJN.S22041031802863
    [Google Scholar]
  139. GuptaL. SharmaA.K. GothwalA. KhanM.S. KhinchiM.P. QayumA. SinghS.K. GuptaU. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics.Int. J. Pharm.20175281-2889910.1016/j.ijpharm.2017.04.07328533175
    [Google Scholar]
  140. LiC. WangY. ZhangS. ZhangJ. WangF. SunY. HuangL. BianW. pH and ROS sequentially responsive podophyllotoxin prodrug micelles with surface charge-switchable and self-amplification drug release for combating multidrug resistance cancer.Drug Deliv.202128168069110.1080/10717544.2021.190575033818237
    [Google Scholar]
  141. WangY. ZhaoB. WangS. LiangQ. CaiY. YangF. LiG. Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin.Drug Deliv.20162351623163510.3109/10717544.2015.113548926786787
    [Google Scholar]
  142. AzizZ.A.A. NasirH.M. AhmadA. SetaparS.H.M. AhmadH. NoorM.H.M. RafatullahM. KhatoonA. KausarM.A. AhmadI. KhanS. Al-ShaeriM. AshrafG.M. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats’ assay.Sci. Rep.2019911367810.1038/s41598‑019‑50134‑y31548590
    [Google Scholar]
  143. OuN. SunY. ZhouS. GuP. LiuZ. BoR. HuY. LiuJ. WangD. Evaluation of optimum conditions for Achyranthes bidentata polysaccharides encapsulated in cubosomes and immunological activity in vitro.Int. J. Biol. Macromol.201810974876010.1016/j.ijbiomac.2017.11.06429157913
    [Google Scholar]
  144. KumariS. GoyalA. GargM. Box-behnken design (bbd) based optimization of beta-carotene loaded cubosomes for anti-oxidant activity using dpph assay.Bionanoscience202313246648010.1007/s12668‑023‑01089‑y
    [Google Scholar]
  145. FaragD.B.E. YousryC. Al-MahallawiA.M. El-AskaryH.I. MeselhyM.R. AbuBakrN. The efficacy of Origanum majorana nanocubosomal systems in ameliorating submandibular salivary gland alterations in streptozotocin-induced diabetic rats.Drug Deliv.2022291627410.1080/10717544.2021.201852234964423
    [Google Scholar]
  146. EspositoL. BarbosaA.I. MonizT. Costa LimaS. CostaP. CeliaC. ReisS. Design and characterization of sodium alginate and poly(vinyl) alcohol hydrogels for enhanced skin delivery of quercetin.Pharmaceutics20201212114910.3390/pharmaceutics1212114933260825
    [Google Scholar]
  147. AbbaszadehS. RashidipourM. KhosraviP. ShahryarhesamiS. AshrafiB. KavianiM. Moradi SarabiM. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells.Int. J. Nanomedicine2020155963597510.2147/IJN.S26301332884259
    [Google Scholar]
  148. WangL. DongJ. ZhaoZ. LiD. DongW. LuY. JinB. LiH. LiuQ. DengB. Quarternized chitosan/quercetin/polyacrylamide semi-interpenetrating network hydrogel with recoverability, toughness and antibacterial properties for wound healing.Int. J. Biol. Macromol.2023228485810.1016/j.ijbiomac.2022.12.08636521714
    [Google Scholar]
  149. ZhangM. ChengJ. HuJ. LuoJ. ZhangY. LuF. KongH. QuH. ZhaoY. Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice.J. Nanobiotechnology202119110510.1186/s12951‑021‑00847‑y33858431
    [Google Scholar]
  150. KumarS. BaldiA. SharmaD.K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals.J. Dev. Drugs2019918
    [Google Scholar]
  151. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  152. AbdulridhaM.K. Al-MarzoqiA.H. Al-awsiG.R.L. MubarakS.M.H. HeidarifardM. GhasemianA. Anticancer effects of herbal medicine compounds and novel formulations: A literature review.J. Gastrointest. Cancer202051376577310.1007/s12029‑020‑00385‑032140897
    [Google Scholar]
  153. RastogiV. JainA. KumarP. YadavP. PorwalM. ChaturvediS. ChandraP. VermaA. A critical review on the role of nanotheranostics mediated approaches for targeting β amyloid in Alzheimer’s.J. Drug Target.202331772574410.1080/1061186X.2023.223825037459647
    [Google Scholar]
  154. ShreeD. PatraC.N. SahooB.M. Novel herbal nanocarriers for treatment of dermatological disorders.Pharm. Nanotechnol.202210424625610.2174/221173851066622062212301935733305
    [Google Scholar]
  155. ChaturvediS. AgrawalS. GargA. RastogiV. Potential of nanoencapsulated quercetin topical formulations in the management of diabetic foot ulcer.Rev. Bras. Farmacogn.202233348450110.1007/s43450‑022‑00345‑8
    [Google Scholar]
  156. BansalK. SharmaS. BajpaiM. Herbal medicines - a fruitful approach to periodic illness dysmenorrhoea: Evidence-based review.Curr. Pharm. Biotechnol.202325217919510.2174/138920102466623062316111337357517
    [Google Scholar]
  157. MishraR. GuptaS. Novel nano carriers for the treatment of progressive auto immune disease rheumatoid arthritis.Curr. Pharm. Des.202127212468248110.2174/138161282666620102113014633087024
    [Google Scholar]
  158. de BoerH.J. IchimM.C. NewmasterS.G. DNA barcoding and pharmacovigilance of herbal medicines.Drug Saf.201538761162010.1007/s40264‑015‑0306‑826076652
    [Google Scholar]
  159. ChoudhuryA. SinghP.A. BajwaN. DashS. BishtP. Pharmacovigilance of herbal medicines: Concerns and future prospects.J. Ethnopharmacol.202330911638310.1016/j.jep.2023.11638336918049
    [Google Scholar]
  160. PaiV. SubrayaC.K. Holavana Halli NanjundaiahA.R. KamathV. KunhikattaV. Issues and challenges in pharmacovigilance of herbal formulations.Curr. Drug Saf.2024191192310.2174/157488631866623020911092236757041
    [Google Scholar]
  161. RyuS. ParkS. LeeH.Y. LeeH. ChoC.W. BaekJ.S. Biodegradable nanoparticles-loaded plga microcapsule for the enhanced encapsulation efficiency and controlled release of hydrophilic drug.Int. J. Mol. Sci.2021226279210.3390/ijms2206279233801871
    [Google Scholar]
  162. ChungJ.H. LeeJ.S. LeeH.G. Resveratrol-loaded chitosan–γ-poly(glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity.Colloids Surf. B Biointerfaces202018611070210.1016/j.colsurfb.2019.11070231862561
    [Google Scholar]
  163. ShariffA. MannaP.K. ParanjothyK.L.K. AsadM. Hepatoprotectant activity of alcoholic extract of Andrographis paniculata entrapped in calcium alginate micropellets.J. Nat. Rem.20077283288
    [Google Scholar]
  164. AnirudhanT.S. SuriyaR. AnoopS.N. Polymeric micelle/nano hydrogel composite matrix as a novel multi-drug carrier.J. Mol. Struct.2022126413326510.1016/j.molstruc.2022.133265
    [Google Scholar]
  165. SimoneE.A. DziublaT.D. MuzykantovV.R. Polymeric carriers: role of geometry in drug delivery.Expert Opin. Drug Deliv.20085121283130010.1517/1742524080256784619040392
    [Google Scholar]
  166. SarafS. GuptaA. AlexanderA. KhanJ. JangdeM. SarafS. Advancements and avenues in nanophytomedicines for better pharmacological responses.J. Nanosci. Nanotechnol.20151564070407910.1166/jnn.2015.1033326369014
    [Google Scholar]
  167. JainN. GuptaB.P. ThakurN. JainR. BanweerJ. JainD.K. JainS.J. Phytosome: A novel drug delivery system for herbal medicine.Int. J. Pharm. Sci. Drug Res.20102224228
    [Google Scholar]
  168. MatiasD. RijoP. Pinto ReisC. Phytosomes as biocompatible carriers of natural drugs.Curr. Med. Chem.201724656858910.2174/092986732366616102816085527804877
    [Google Scholar]
  169. FahmyS.A. SedkyN.K. RamzyA. AbdelhadyM.M.M. AlabrahimO.A.A. ShammaS.N. AzzazyH.M.E.S. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells.J. Drug Deliv. Sci. Technol.20238710482010.1016/j.jddst.2023.104820
    [Google Scholar]
  170. ShahriarS.M.S. AndrabiS.M. IslamF. AnJ.M. SchindlerS.J. MatisM.P. LeeD.Y. LeeY. Next-generation 3d scaffolds for nano-based chemotherapeutics delivery and cancer treatment.Pharmaceutics20221412271210.3390/pharmaceutics1412271236559206
    [Google Scholar]
  171. StuparP. Podolski-RenićA. VillalbaM.I. DragojM. Jovanović StojanovS. PešićM. KasasS. Nano-motion analysis for rapid and label free assessing of cancer cell sensitivity to chemotherapeutics.Medicina202157544610.3390/medicina5705044634064439
    [Google Scholar]
  172. PootE. MagureguiA. BruntonV.G. SiegerD. HulmeA.N. Targeting glioblastoma through nano- and micro-particle-mediated immune modulation.Bioorg. Med. Chem.20227211691310.1016/j.bmc.2022.11691336007293
    [Google Scholar]
  173. AraldiR.P. DelvalleD.A. da CostaV.R. AlieviA.L. TeixeiraM.R. Dias PintoJ.R. KerkisI. Exosomes as a nano-carrier for chemotherapeutics: A new era of oncology.Cells20231217214410.3390/cells1217214437681875
    [Google Scholar]
  174. GargA. ChaturvediS. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects.Curr. Drug Targets202223442043610.2174/138945012266621082414104434431464
    [Google Scholar]
  175. GuptaJ. Saquib abullaisS. AlthomaliR.H. Margoth Guanga ChunataD. Shukhratovich AbdullaevS. YeslamH.E. SarsembenovaO. RamadanM.F. AlsalamyA. AlkhayyatS. Portable biosensors based on the CRISPR/Cas system for detection of pathogen bacteria: Up-to-date technology and future prospects.Microchem. J.202319410926810.1016/j.microc.2023.109268
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873305117240627172050
Loading
/content/journals/cnanom/10.2174/0124681873305117240627172050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test