Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The review article highlights the development of nano-formulations like solid lipid nanocarriers and nanostructured lipid carriers and their applicability in different drug delivery systems. In order to get around some of the drawbacks of traditional formulations, lipid base delivery save received increased interest in recent years. These lipidic carriers are created to get around the drawbacks of other colloidal carriers, including polymeric nanoparticles, emulsions, and liposomes, which have the advantages of great physical stability, a favorable release profile, and tailored drug delivery. Nanostructured lipid carriers are an up-and-coming type of nano-carrier that can be used to develop highly effective and customized treatments for cancer chemotherapy. Changing their surface can help target specific areas and make them work better while lowering the side effects of high doses, which is essential for dealing with drug resistance in cancer chemotherapy.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873299903240723112436
2024-08-08
2025-10-11
Loading full text...

Full text loading...

References

  1. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  2. MazayenZM GhoneimAM ElbatanonyRS BasaliousEB BendasER Pharmaceutical nanotechnology: From the bench to the market.Futur J Pharm Sci2022811210.1186/s43094‑022‑00400‑0
    [Google Scholar]
  3. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  4. HashidaM. KawakamiS. YamashitaF. Lipid carrier systems for targeted drug and gene delivery.Chem. Pharm. Bull.200553887188010.1248/cpb.53.87116079512
    [Google Scholar]
  5. SelvamuthukumarS. VelmuruganR. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy.Lipids Health Dis.201211115910.1186/1476‑511X‑11‑15923167765
    [Google Scholar]
  6. Plaza-OliverM. Santander-OrtegaM.J. LozanoM.V. Current approaches in lipid-based nanocarriers for oral drug delivery.Drug Deliv. Transl. Res.202111247149710.1007/s13346‑021‑00908‑733528830
    [Google Scholar]
  7. SureshC. AbhishekS. pH sensitive in situ ocular gel: A review.J Pharmaceut Sci Biosci Res.201665684694
    [Google Scholar]
  8. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  9. HalwaniA.A. Development of pharmaceutical nanomedicines: From the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics1401010635057002
    [Google Scholar]
  10. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.2021878383110.3389/fnut.2021.78383134926557
    [Google Scholar]
  11. ShadeC.W. Liposomes as advanced delivery systems for nutraceuticals.Integr. Med.2016151333627053934
    [Google Scholar]
  12. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  13. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  14. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine20061329731517717971
    [Google Scholar]
  15. SharmaA. SinghA.P. HarikumarS.L. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design.Drug Dev. Ind. Pharm.202046232934210.1080/03639045.2020.172152731976777
    [Google Scholar]
  16. TapeinosC. BattagliniM. CiofaniG. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases.J. Control. Release201726430633210.1016/j.jconrel.2017.08.03328844756
    [Google Scholar]
  17. EffiongD.E. UwahT.O. JumboE.U. AkpabioA.E. Nanotechnology in cosmetics: Basics, current trends and safety concerns—A review.Adv. Nanopart.201991122
    [Google Scholar]
  18. SubramanianP. Lipid-based nanocarrier system for the effective delivery of nutraceuticals.Molecules20212618551010.3390/molecules2618551034576981
    [Google Scholar]
  19. SawantR.R. TorchilinV.P. Challenges in development of targeted liposomal therapeutics.AAPS J.201214230331510.1208/s12248‑012‑9330‑022415612
    [Google Scholar]
  20. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  21. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  22. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  23. KhatakS. DurejaH. Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery.Curr. Nanomater.20182312915310.2174/2405461503666180413160954
    [Google Scholar]
  24. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑712460720
    [Google Scholar]
  25. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  26. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  27. ReddyA. ParthibanS. VikneswariA. SenthilkumarG. A modern review on solid lipid nanoparticles as novel controlled drug delivery system.Int. J. Res. Pharm. Nano Sci.201434313325
    [Google Scholar]
  28. MehnertW. MäderK. Solid lipid nanoparticles: Production, characterization and applications.Adv Drug Deliv Rev.20126483101
    [Google Scholar]
  29. GarudA. SinghD. GarudN. Solid lipid nanoparticles (SLN): Method, characterization and applications.Int. Curr. Pharm. J.201211138439310.3329/icpj.v1i11.12065
    [Google Scholar]
  30. MahmoudK. SwidanS. El-NabarawiM. TeaimaM. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances.J. Nanobiotechnology202220110910.1186/s12951‑022‑01309‑935248080
    [Google Scholar]
  31. Rodrigues da SilvaG.H. MouraL.D. CarvalhoF.V. GeronimoG. MendonçaT.C. LimaF.F. de PaulaE. Antineoplastics encapsulated in nanostructured lipid carriers.Molecules20212622692910.3390/molecules2622692934834022
    [Google Scholar]
  32. Syed AzharS.N.A. AshariS.E. ZainuddinN. HassanM. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective.Molecules202227128910.3390/molecules2701028935011520
    [Google Scholar]
  33. SharmaG. SharmaA. Recent insights on drug delivery system in hypertension: From bench to market.Curr. Hypertens. Rev.20231929310510.2174/157340211966623070712084637550916
    [Google Scholar]
  34. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑112176234
    [Google Scholar]
  35. FangC.L. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/18722101380448482722946628
    [Google Scholar]
  36. MendesI.T. RuelaA.L.M. CarvalhoF.C. FreitasJ.T.J. BonfilioR. PereiraG.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil.Colloids Surf. B Biointerfaces201917727428110.1016/j.colsurfb.2019.02.00730763792
    [Google Scholar]
  37. MathureD. RanpiseH. AwasthiR. PawarA. Formulation and characterization of nanostructured lipid carriers of rizatriptan benzoate-loaded in situ nasal gel for brain targeting.Assay Drug Dev. Technol.202220521122410.1089/adt.2022.04435771865
    [Google Scholar]
  38. Noori SiahdashtF. FarhadianN. KarimiM. HafiziL. Enhanced delivery of melatonin loaded nanostructured lipid carriers during in vitro fertilization: NLC formulation, optimization and IVF efficacy.RSC Adv202010169462947510.1039/C9RA10867J35497203
    [Google Scholar]
  39. HanD.E. XinY.F. WeiH.C. ZhuX.L. LiuY.M. TianP. [Formulation optimization of emodin nanostructured lipid carriers by Box-Behnken response surface method and in vitro quality evaluation].Zhongguo Zhongyao Zazhi202247491392135285190
    [Google Scholar]
  40. JittaS.R. BhaskaranN.A. Salwa KumarL. Anti-oxidant containing nanostructured lipid carriers of ritonavir: Development, optimization, and in vitro and in vivo evaluations.AAPS PharmSciTech20222348810.1208/s12249‑022‑02240‑w35296970
    [Google Scholar]
  41. GulM. ShahF.A. SaharN. MalikI. DinF. KhanS.A. AmanW. ChoiH.I. LimC.W. NohH.Y. NohJ.S. ZebA. KimJ.K. Formulation optimization, in vitro and in vivo evaluation of agomelatine-loaded nanostructured lipid carriers for augmented antidepressant effects.Colloids Surf. B Biointerfaces202221611253710.1016/j.colsurfb.2022.11253735561634
    [Google Scholar]
  42. WeiQ. YangQ. WangQ. SunC. ZhuY. NiuY. YuJ. XuX. Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers.AAPS PharmSciTech20181983661366910.1208/s12249‑018‑1165‑230324361
    [Google Scholar]
  43. Ahmad NasrollahiS. KoohestaniF. NaeimifarA. SamadiA. VatanaraA. FiroozA. Preparation and evaluation of adapalene nanostructured lipid carriers for targeted drug delivery in acne.Dermatol. Ther.2021342e1477710.1111/dth.1477733433054
    [Google Scholar]
  44. MadanJ.R. KhobaragadeS. DuaK. AwasthiR. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast.Dermatol. Ther.2020333e1337010.1111/dth.1337032250507
    [Google Scholar]
  45. SaghafiZ. MohammadiM. MahboobianM.M. DerakhshandehK. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement.Drug Dev. Ind. Pharm.202147350952010.1080/03639045.2021.189274533650445
    [Google Scholar]
  46. MittalP. VrdhanH. AjmalG. BondeG. KapoorR. MishraB. Formulation and characterization of genistein-loaded nanostructured lipid carriers: Pharmacokinetic, biodistribution and in vitro cytotoxicity studies.Curr. Drug Deliv.201916321522510.2174/156720181666618112017013730465502
    [Google Scholar]
  47. ZafarA. Awad AlsaidanO. AlruwailiN.K. Sarim ImamS. YasirM. Saad AlharbiK. SinghL. Muqtader AhmedM. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.Int. J. Pharm.202262712223210.1016/j.ijpharm.2022.12223236155794
    [Google Scholar]
  48. LakhaniP. PatilA. WuK.W. SweeneyC. TripathiS. AvulaB. TaskarP. KhanS. MajumdarS. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery.Int. J. Pharm.201957211877110.1016/j.ijpharm.2019.11877131669555
    [Google Scholar]
  49. MasjediM. AzadiA. HeidariR. Mohammadi-SamaniS. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation.J. Pharm. Pharmacol.202072101341135110.1111/jphp.1331632579251
    [Google Scholar]
  50. RamzanM. Gourion-ArsiquaudS. HussainA. GulatiJ.S. ZhangQ. TrehanS. PuriV. Michniak-KohnB. KaurI.P. in vitro release, Ex-vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery.Drug Deliv. Transl. Res.20221271659168310.1007/s13346‑021‑01058‑634993923
    [Google Scholar]
  51. GulatiP. DewanganH.K. Aceclofenac loaded solid lipid nanoparticles: Optimization, in vitro and Ex-vivo evaluation.Int J Appl Pharmaceut20231518419010.22159/ijap.2023v15i4.48047
    [Google Scholar]
  52. ZhaoW. ZengM. LiK. PiC. LiuZ. ZhanC. YuanJ. SuZ. WeiY. WenJ. PiF. SongX. LeeR.J. WeiY. ZhaoL. Solid lipid nanoparticle as an effective drug delivery system of a novel curcumin derivative: Formulation, release in vitro and pharmacokinetics in vivo.Pharm. Biol.20226012300230710.1080/13880209.2022.213620536606719
    [Google Scholar]
  53. CreteanuA. LisaG. VasileC. PopescuM.C. SpacA.F. TantaruG. Development of solid lipid nanoparticles for controlled amiodarone delivery.Methods Protoc.2023659710.3390/mps605009737888029
    [Google Scholar]
  54. EkambaramP SathaliAA Formulation and evaluation of solid lipid nanoparticles of Ramipril.J Young Pharm.20113321622010.4103/0975‑1483.83765
    [Google Scholar]
  55. AljaeidB. HosnyK.M. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity.Int. J. Nanomedicine20161144144710.2147/IJN.S10062526869787
    [Google Scholar]
  56. PandianS.R.K. PavadaiP. VellaisamyS. RavishankarV. PalanisamyP. SundarL.M. ChandramohanV. SankaranarayananM. PanneerselvamT. KunjiappanS. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor.Naunyn Schmiedebergs Arch. Pharmacol.2021394473574910.1007/s00210‑020‑02015‑933156389
    [Google Scholar]
  57. NairR. KumarA.C.K. PriyaV.K. YadavC.M. RajuP.Y. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine.Lipids Health Dis.20121117210.1186/1476‑511X‑11‑7222695222
    [Google Scholar]
  58. KesharwaniR. SachanA. SinghS. PatelD. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib.J. Appl. Pharm. Sci.201661012413110.7324/JAPS.2016.601017
    [Google Scholar]
  59. BegumM. ShaikN.B. Formulation and evaluation of linezolid loaded solid lipid nanoparticles as topical gel.Int. J. Pharm. Sci. Res.2020111049244933
    [Google Scholar]
  60. KumarYG AnushaV AfzalK SreeharshiniM SravaniN AnzerK ArbazS International Journal of Farmacia.
    [Google Scholar]
  61. BhanusriG. Tripura SundariP. Formulation and evaluation of metoprolol loaded solid lipid nanoparticles.Int. J. Pharm. Sci. Res.20211210543910.13040/IJPSR.0975‑8232.12(10).5439‑45
    [Google Scholar]
  62. PanduranganD. BodagalaP. PalanirajanV. GovindarajS. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel.Int. J. Pharm. Investig.201661566210.4103/2230‑973X.17648827014620
    [Google Scholar]
  63. BandgarS.A. DhavaleP. PatilP. ShelakeS. PatilS. Formulation and evaluation of prazosin hydrochloride loaded solid lipid nanoparticles.J. Drug Deliv. Ther.201886-s636910.22270/jddt.v8i6‑s.2170
    [Google Scholar]
  64. BotreP.P. Formulation and evaluation of solid lipid nanoparticles of bifonazole.Int. J. Sci. Res. Sci. Technol.2020Sep10512010.32628/IJSRST207522
    [Google Scholar]
  65. KharwadeR.S. MahajanN.M. Formulation and evaluation of nanostructured lipid carriers based anti-inflammatory gel for topical drug delivery system.Asian J. Pharm. Clin. Res.20191228629110.22159/ajpcr.2019.v12i4.32000
    [Google Scholar]
  66. Brito RajS. ChandrasekharK.B. ReddyK.B. Formulation, in-vitro and in-vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system.Future J Pharmaceut Sci201951910.1186/s43094‑019‑0008‑7
    [Google Scholar]
  67. ChenY. ZhouL. YuanL. ZhangZ.H. LiuX. WuQ. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers.Int. J. Nanomedicine201273023303222787398
    [Google Scholar]
  68. ShirishaS. SaraswathiA. SahooS.K. RaoY.M. Formulation and evaluation of nisoldipine loaded solid lipid nanoparticles and nanostructured lipid carriers: Application to transdermal delivery.Indian J Pharmaceut Edu Res2020542ss117s12710.5530/ijper.54.2s.68
    [Google Scholar]
  69. PraveenS. GowdaD.V. SrivastavaA. OsmaniR.A. Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride.Pharm. Lett.201686251256
    [Google Scholar]
  70. JoshiM. PatravaleV. Formulation and evaluation of Nanostructured Lipid Carrier (NLC)-based gel of Valdecoxib.Drug Dev. Ind. Pharm.200632891191810.1080/0363904060081467616954103
    [Google Scholar]
  71. PhatakAA ChaudhariPD Development and evaluation of nanostructured lipid carrier (NLC) based topical delivery of an anti-inflammatory drug.J Pharm Res.20137867785
    [Google Scholar]
  72. YangG. WuF. ChenM. JinJ. WangR. YuanY. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides.Int. J. Nanomedicine2019142267228010.2147/IJN.S19493431015758
    [Google Scholar]
  73. YMERSynthesis, formulation, and characterization of gabapentin-phosphatidylcholine conjugate loaded nanostructured lipid carriers.2023Available From: http://ymerdigital.com
  74. SindhoorSM Formulation and evaluation of clarithromycin loaded nanostructured lipid carriers for the treatment of acne.J Pharmaceut Res Int20213340B3083
    [Google Scholar]
  75. BhatiaM. SrivastavM. DeviS. SharmaS.K. KakkarV. SainiK. Optimization and Evaluation of Ketoconazole Loaded Nanostructured Lipid Carriers Employing Microwave-Assisted Technique.Indian J. Pharm. Sci.2022841
    [Google Scholar]
  76. DashS.K. PatraC.N. AcharjyaS.K. JenaG.K. PanigrahiK.C. KumarN.K. DasP.S. Development and characterization of paliperidone loaded nanostructured lipid carrier.Indian Journal of Pharmaceutical Education and Research20225641003101210.5530/ijper.56.4.181
    [Google Scholar]
  77. GilaniS.J. JumahM.N. ZafarA. ImamS.S. YasirM. KhalidM. AlshehriS. GhuneimM.M. AlbohairyF.M. Formulation and evaluation of nano lipid carrier-based ocular gel system: Optimization to antibacterial activity.Gels20228525510.3390/gels805025535621552
    [Google Scholar]
  78. KhanS. ShaharyarM. FazilM. BabootaS. AliJ. Tacrolimus-loaded nanostructured lipid carriers for oral delivery – Optimization of production and characterization.Eur. J. Pharm. Biopharm.201610827728810.1016/j.ejpb.2016.07.01727449630
    [Google Scholar]
  79. SharmaA. HarikumarS.L. Quality by design approach for development and optimization of nitrendipine-loaded niosomal gel for accentuated transdermal delivery.Int J Appl Pharmaceut202012518118910.22159/ijap.2020v12i5.38639
    [Google Scholar]
  80. HanumanaikM. PatelS.K. SreeK.R. Solid lipid nanoparticles: A review.Int. J. Pharm. Sci. Res.20136928940
    [Google Scholar]
  81. SwathiG PrasanthiNL ManikiranSS RamaraoN Solid lipid nanoparticles: Colloidal carrier systems for drug delivery.Int J Pharmacuet Sci Res20101120116
    [Google Scholar]
  82. MadkhaliO.A. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems.Molecules2022275154310.3390/molecules2705154335268643
    [Google Scholar]
  83. ShirodkarR.K. KumarL. MutalikS. LewisS. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems.Pharm. Chem. J.201953544045310.1007/s11094‑019‑02017‑9
    [Google Scholar]
  84. CarvalhoP.M. FelícioM.R. SantosN.C. GonçalvesS. DominguesM.M. Application of light scattering techniques to nanoparticle characterization and development.Front Chem.2018623710.3389/fchem.2018.0023729988578
    [Google Scholar]
  85. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.02111311991
    [Google Scholar]
  86. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  87. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  88. KhairnarS.V. PagareP. ThakreA. NambiarA.R. JunnuthulaV. AbrahamM.C. KolimiP. NyavanandiD. DyawanapellyS. Review on the scale-up methods for the preparation of solid lipid nanoparticles.Pharmaceutics2022149188610.3390/pharmaceutics1409188636145632
    [Google Scholar]
  89. SharmaA. SharmaR.B. VermaA. ThakurR. Insight on nanoparticles, green synthesis and applications in drug delivery system: A comprehensive review.(2022).Int. J. Life Sci. Pharma Res.20221256884
    [Google Scholar]
  90. YouJ. WanF. DecuiF. SunY. DuY. HuF. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles.Int. J. Pharm.20073431-227027610.1016/j.ijpharm.2007.07.00317706383
    [Google Scholar]
  91. PardeshiC. Nanonosačinabazičvrstihlipida: Pregled.Acta Pharm.201262443347223333884
    [Google Scholar]
  92. HeydenreichA. WestmeierR. PedersenN. PoulsenH.S. KristensenH.G. Preparation and purification of cationic solid lipid nanospheres—effects on particle size, physical stability and cell toxicity.Int. J. Pharm.20032541838710.1016/S0378‑5173(02)00688‑912615415
    [Google Scholar]
  93. AnurakL. ChansiriG. PeankitD. SomlakK. Griseofulvin solid lipid nanoparticles based on microemulsion technique.Adv. Mat. Res.2011197-198475010.4028/www.scientific.net/AMR.197‑198.47
    [Google Scholar]
  94. KambojS. BalaS. NairA.B. Solid lipid nanoparticles: An effective lipid based technology for poorly water soluble drugs.Int. J. Pharm. Sci. Rev. Res.2010527890
    [Google Scholar]
  95. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  96. SiekmannB. WestesenK. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions.Eur. J. Pharm. Biopharm.1996422104109
    [Google Scholar]
  97. KaiserC.S. RömppH. SchmidtP.C. Pharmaceutical applications of supercritical carbon dioxide.Pharmazie2001561290792611802652
    [Google Scholar]
  98. GosselinP. ThibertR. PredaM. McMullenJ.N. Polymorphic properties of micronized carbamazepine produced by RESS.Int. J. Pharm.20032521-222523310.1016/S0378‑5173(02)00649‑X12550798
    [Google Scholar]
  99. El-EmamG.A. GirgisG.N.S. HamedM.F. El-Azeem SolimanO.A. Abd El GawadA.e.g.H. Formulation and pathohistological study of mizolastine–solid lipid nanoparticles–loaded ocular hydrogels.Int. J. Nanomedicine2021167775779910.2147/IJN.S33548234853513
    [Google Scholar]
  100. El-TelbanyD.F.A. El-TelbanyR.F.A. ZakariaS. AhmedK.A. El-FekyY.A. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery.Biomed. Pharmacother.202114311213010.1016/j.biopha.2021.11213034560549
    [Google Scholar]
  101. DugadT. KanugoA. Design optimization and evaluation of solid lipid nanoparticles of azelnidipine for the treatment of hypertension.Recent Pat. Nanotechnol.2024181223210.2174/1872210517666221019102543
    [Google Scholar]
  102. FarsaniP.A. MahjubR. MohammadiM. OliaeiS.S. MahboobianM.M. Development of perphenazine-loaded solid lipid nanoparticles: Statistical optimization and cytotoxicity studies.BioMed Res. Int.2021202111410.1155/2021/661919533997026
    [Google Scholar]
  103. RautP. GambhireM. PanchalD. GambhireV. Development and optimization of mirabegron solid lipid nanoparticles as an oral drug delivery for overactive bladder.Pharm. Nanotechnol.20219212012910.2174/221173850966621012714310733504321
    [Google Scholar]
  104. El-GizawyS.A. El-MaghrabyG.M. HedayaA.A. Formulation of acyclovir-loaded solid lipid nanoparticles: Design, optimization, and in-vitro characterization.Pharm. Dev. Technol.201924101287129810.1080/10837450.2019.166738531507232
    [Google Scholar]
  105. AsifA. DesuP. AlavalaR. RaoG. SreeharshaN. MeravanigeG. Development, statistical optimization and characterization of fluvastatin loaded solid lipid nanoparticles: A 32 factorial design approach.Pharmaceutics202214358410.3390/pharmaceutics1403058435335960
    [Google Scholar]
  106. AlajamiH.N. FouadE.A. AshourA.E. KumarA. YassinA.E.B. Celecoxib-loaded solid lipid nanoparticles for colon delivery: Formulation optimization and in vitro assessment of anti-cancer activity.Pharmaceutics202214113110.3390/pharmaceutics1401013135057027
    [Google Scholar]
  107. HoH.N. LeH.H. LeT.G. DuongT.H.A. NgoV.Q.T. DangC.T. NguyenV.M. TranT.H. NguyenC.N. Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery.Int. J. Biol. Macromol.20221941010101810.1016/j.ijbiomac.2021.11.16134843817
    [Google Scholar]
  108. NasiriF. FaghfouriL. HamidiM. Preparation, optimization, and in-vitro characterization of α-tocopherol-loaded solid lipid nanoparticles (SLNs).Drug Dev. Ind. Pharm.202046115917110.1080/03639045.2019.171138831894713
    [Google Scholar]
  109. LiK. PiC. WenJ. HeY. YuanJ. ShenH. ZhaoW. ZengM. SongX. LeeR.J. WeiY. ZhaoL. Formulation of the novel structure curcumin derivative–loaded solid lipid nanoparticles: Synthesis, optimization, characterization and anti-tumor activity screening in vitro.Drug Deliv.20222912044205710.1080/10717544.2022.209223535775475
    [Google Scholar]
  110. SharmaA. SharmaR. Singh BoraK. HarikumarS.L. Pharmacokinetic investigation of nitrendipine encapsulated niosomal gel in rat plasma by RP-HPLC method.Mater. Today Proc.20226865365710.1016/j.matpr.2022.05.301
    [Google Scholar]
  111. HarishV. TewariD. MohdS. GovindaiahP. BabuM.R. KumarR. GulatiM. GowthamarajanK. MadhunapantulaS.V. ChellappanD.K. GuptaG. DuaK. DallavalasaS. SinghS.K. Quality by design based formulation of xanthohumol loaded solid lipid nanoparticles with improved bioavailability and anticancer effect against PC-3 cells.Pharmaceutics20221411240310.3390/pharmaceutics1411240336365221
    [Google Scholar]
  112. SaifullahQ. SharmaA. KabraA. AlshammariA. AlbekairiT.H. AlharbiM. AbdallaM. Development and optimization of film forming non-pressurized liquid bandage for wound healing by Box-Behnken statistical design.Saudi Pharm. J.2023311210186410.1016/j.jsps.2023.10186438028211
    [Google Scholar]
  113. AgrawalY.O. HusainM. PatilK.D. SodgirV. PatilT.S. AgnihotriV.V. MahajanH.S. SharmaC. OjhaS. GoyalS.N. Verapamil hydrochloride loaded solid lipid nanoparticles: Preparation, optimization, characterisation, and assessment of cardioprotective effect in experimental model of myocardial infarcted rats.Biomed. Pharmacother.202215411342910.1016/j.biopha.2022.11342936007280
    [Google Scholar]
  114. NairA.T. DeshkarS.S. BorasteS.S. SharmaR.M. Solid lipid nanoparticles a potential approach for delivery of lipophilic drugs: A review.J. Pharm. Pharm. Sci.2016522382253
    [Google Scholar]
  115. ZupančičO. Bernkop-SchnürchA. Lipophilic peptide character – What oral barriers fear the most.J. Control. Release201725524225710.1016/j.jconrel.2017.04.03828457894
    [Google Scholar]
  116. MasiiwaWL GadagaLL Intestinal permeability of artesunate-loaded solid lipid nanoparticles using the everted gut method.J Drug Deliv20182018302173810.1155/2018/3021738
    [Google Scholar]
  117. WangJ.X. SunX. ZhangZ.R. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles.Eur. J. Pharm. Biopharm.200254328529010.1016/S0939‑6411(02)00083‑812445558
    [Google Scholar]
  118. BuzyurovaD.N. PashirovaT.N. ZuevaI.V. BurilovaE.A. ShaihutdinovaZ.M. RizvanovI.K. BabaevV.M. PetrovK.A. SoutoE.B. Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat.Toxicology202044415257810.1016/j.tox.2020.15257832898602
    [Google Scholar]
  119. MengF. LiS. LinH. JiaB. HuangX. Topology optimization of photonic structures for all-angle negative refraction.Finite Elem. Anal. Des.2016117-118465610.1016/j.finel.2016.04.005
    [Google Scholar]
  120. TsaiM.J. WuP.C. HuangY.B. ChangJ.S. LinC.L. TsaiY.H. FangJ.Y. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting.Int. J. Pharm.2012423246147010.1016/j.ijpharm.2011.12.00922193056
    [Google Scholar]
  121. NsairatH. KhaterD. OdehF. Al-AdailehF. Al-TaherS. JaberA.M. AlshaerW. Al BawabA. MubarakM.S. Lipid nanostructures for targeting brain cancer.Heliyon202179e0799410.1016/j.heliyon.2021.e0799434632135
    [Google Scholar]
  122. IbrahimA. NasrM. El-SherbinyI.M. Baicalin as an emerging magical nutraceutical molecule: Emphasis on pharmacological properties and advances in pharmaceutical delivery.J. Drug Deliv. Sci. Technol.20227010326910.1016/j.jddst.2022.103269
    [Google Scholar]
  123. SoodS. JawaharN. JainK. GowthamarajanK. Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability.Curr. Nanosci.2013912634
    [Google Scholar]
  124. HirtzA. RechF. Dubois-Pot-SchneiderH. DumondH. Astrocytoma: A hormone-sensitive tumor?Int. J. Mol. Sci.20202123911410.3390/ijms2123911433266110
    [Google Scholar]
  125. Bou ZerdanM. AssiH.I. Oligodendroglioma: A review of management and pathways.Front. Mol. Neurosci.20211472239610.3389/fnmol.2021.72239634675774
    [Google Scholar]
  126. HaoJ. WangF. WangX. ZhangD. BiY. GaoY. ZhaoX. ZhangQ. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design.Eur. J. Pharm. Sci.201247249750510.1016/j.ejps.2012.07.00622820033
    [Google Scholar]
  127. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A recent update: Solid lipid nanoparticles for effective drug delivery.Adv. Pharm. Bull.2022121173335517874
    [Google Scholar]
  128. SadkinV. SкuridinV. NesterovE. StasyukE. RogovA. VarlamovaN. ZelchanR. 99mTc-labeled nanocolloid drugs: Development methods.Sci. Rep.20201011401310.1038/s41598‑020‑70991‑232814811
    [Google Scholar]
  129. German-CortésJ. Vilar-HernándezM. RafaelD. AbasoloI. AndradeF. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment.Pharmaceutics202315383110.3390/pharmaceutics1503083136986692
    [Google Scholar]
  130. UnnisaA. ChettupalliA.K. Al HagbaniT. KhalidM. JandrajupalliS.B. ChandoluS. HussainT. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: Statistical design, optimization, in-vitro and in-vivo characterization, and evaluation.Pharmaceuticals202215556810.3390/ph1505056835631394
    [Google Scholar]
  131. SharmaA. ThakurR. SharmaR. Development and optimization of candesartan cilexetil nasal gel for accentuated intranasal delivery using central composite design.Mater. Today Proc.202210.1016/j.matpr.2022.11.221
    [Google Scholar]
  132. WangF. ChenL. JiangS. HeJ. ZhangX. PengJ. XuQ. LiR. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design.J. Liposome Res.201424317118110.3109/08982104.2014.89123124611687
    [Google Scholar]
  133. CamposJ.R. FernandesA.R. SousaR. FangueiroJ.F. BoonmeP. GarciaM.L. SilvaA.M. NaverosB.C. SoutoE.B. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line.Pharm. Dev. Technol.201924561662210.1080/10837450.2018.154907530477410
    [Google Scholar]
  134. MaddiboyinaB. JhawatV. NakkalaR.K. DesuP.K. GandhiS. Design expert assisted formulation, characterization and optimization of microemulsion based solid lipid nanoparticles of repaglinide.Prog. Biomater.202110430932010.1007/s40204‑021‑00174‑334813041
    [Google Scholar]
  135. RahmanM. AlmalkiW.H. AfzalO. Alfawaz AltamimiA.S. KazmiI. Al-AbbasiF.A. ChoudhryH. AleneziS. BarkatM.A. BegS. KumarV. AlhalmiA. Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: Systematic optimization, in vitro characterization and preclinical investigation.Int. J. Nanomedicine2020159283929910.2147/IJN.S27754533262588
    [Google Scholar]
  136. AboudH.M. El komyM.H. AliA.A. El MenshaweS.F. Abd ElbaryA. Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery.AAPS PharmSciTech20161761353136510.1208/s12249‑015‑0440‑826743643
    [Google Scholar]
  137. KelidariH.R. SaeediM. AkbariJ. Morteza-SemnaniK. GillP. ValizadehH. NokhodchiA. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles.Colloids Surf. B Biointerfaces201512847347910.1016/j.colsurfb.2015.02.04625797482
    [Google Scholar]
  138. OmwoyoW.N. OgutuB. OlooF. SwaiH. KalomboL. MelaririP. MahangaG.M. GathirwaJ.W. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles.Int. J. Nanomedicine201493865387425143734
    [Google Scholar]
  139. ShazlyG.A. AlshehriS. IbrahimM.A. TawfeekH.M. RazikJ.A. HassanY.A. ShakeelF. Development of domperidone solid lipid nanoparticles: in vitro and in vivo characterization.AAPS PharmSciTech20181941712171910.1208/s12249‑018‑0987‑229532427
    [Google Scholar]
  140. SaifullahQ. SharmaA. Current trends on innovative technologies in topical wound care for advanced healing and management.Curr. Drug Res. Rev.202320233780741737807417
    [Google Scholar]
  141. BhiseK. KashawS.K. SauS. IyerA.K. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.Int. J. Pharm.20175261-250651510.1016/j.ijpharm.2017.04.07828502895
    [Google Scholar]
  142. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles— from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  143. ChutoprapatR. KopongpanichP. ChanL.W. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: Topical delivery of phytochemicals for the treatment of acne vulgaris.Molecules20222711346010.3390/molecules2711346035684396
    [Google Scholar]
  144. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  145. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics1203028832210127
    [Google Scholar]
  146. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.05529677547
    [Google Scholar]
  147. VitorinoC. AlmeidaA. SousaJ. LamarcheI. GobinP. MarchandS. CouetW. OlivierJ.C. PaisA. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies.Eur. J. Pharm. Biopharm.201486213314410.1016/j.ejpb.2013.12.00424333401
    [Google Scholar]
  148. SoutoE.B. MüllerR.H. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization.J. Microencapsul.200623437738810.1080/0265204050043529516854814
    [Google Scholar]
  149. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.71684522931500
    [Google Scholar]
  150. WongHL LiY BendayanR RauthMA WuXY Solid lipid nanoparticles for anti-tumor drug delivery.Nanotechnology for cancer therapy.Boca Raton, FloridaCRC Press200610.1201/9781420006636‑36
    [Google Scholar]
  151. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  152. TekadeA.R. MitthaP.S. PisalC.S. Nanostructured lipid carriers for nose to brain delivery targeting CNS: Diversified role of liquid lipids for synergistic action.Adv. Pharm. Bull.202212476377136415627
    [Google Scholar]
  153. DoktorovováS. AraújoJ. GarciaM.L. RakovskýE. SoutoE.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC).Colloids Surf. B Biointerfaces201075253854210.1016/j.colsurfb.2009.09.03319879736
    [Google Scholar]
  154. KimS. AbdellaS. AbidF. AfinjuomoF. YoussefS.H. HolmesA. SongY. VaidyaS. GargS. Development and optimization of imiquimod-loaded nanostructured lipid carriers using a hybrid design of experiments approach.Int. J. Nanomedicine2023181007102910.2147/IJN.S40061036855538
    [Google Scholar]
  155. JafarifarZ. RezaieM. SharifanP. JahaniV. DaneshmandS. GhazizadehH. FernsG.A. GolmohammadzadehS. Ghayour-MobarhanM. Preparation and characterization of nanostructured lipid carrier (NLC) and nanoemulsion containing vitamin D3.Appl. Biochem. Biotechnol.2022194291492910.1007/s12010‑021‑03656‑z34581963
    [Google Scholar]
  156. WangW. ChenL. HuangX. ShaoA. Preparation and characterization of minoxidil loaded nanostructured lipid carriers.AAPS PharmSciTech201718250951610.1208/s12249‑016‑0519‑x27120090
    [Google Scholar]
  157. KhanS. BabootaS. AliJ. NarangR.S. NarangJ.K. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: Formulation, design and in vivo evaluation.Drug Dev. Ind. Pharm.201642220922010.3109/03639045.2015.104041426016780
    [Google Scholar]
  158. CavalcantiS.M.T. NunesC. Costa LimaS.A. Soares-SobrinhoJ.L. ReisS. Optimization of nanostructured lipid carriers for Zidovudine delivery using a microwave-assisted production method.Eur. J. Pharm. Sci.2018122223010.1016/j.ejps.2018.06.01729933076
    [Google Scholar]
  159. KaithwasV. DoraC.P. KushwahV. JainS. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability.Colloids Surf. B Biointerfaces2017154102010.1016/j.colsurfb.2017.03.00628284054
    [Google Scholar]
  160. FathiH.A. AllamA. ElsabahyM. FetihG. El-BadryM. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin.Colloids Surf. B Biointerfaces201816223624510.1016/j.colsurfb.2017.11.06429197789
    [Google Scholar]
  161. BahramiM.A. FarhadianN. KarimiM. ForouzanA. MasoumiK. Improvement of pain relief of fentanyl citrate drug encapsulated in nanostructured lipid carrier: Drug formulation, parameter optimization, in vitro and in vivo studies.Drug Des. Devel. Ther.2020142033204510.2147/DDDT.S23547432546968
    [Google Scholar]
  162. EbrahimiS. FarhadianN. KarimiM. EbrahimiM. Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: Drug formulation, optimization, and cell culture study.Antimicrob. Resist. Infect. Control2020912810.1186/s13756‑020‑0690‑432041660
    [Google Scholar]
  163. NiezgodaN Solid lipid nanoparticles stabilized with phosphatidylcholine and methods of their preparation.PL Patent 240300B12022
  164. MalikA A solid lipid nanoparticle (slns) composition for drugs and a method of preparation thereof field of invention.AU Patent 2021102992A42022
  165. DeepakE. Methods, compositions, and devices for making solid lipid nanoparticles and nanostructured lipid carriers.WO Patent 2023023492A12023
  166. CordeiroA.P. Beeswax solid lipid nanoparticles with simultaneous encapsulation of hydrophilic and lipophilic drugs via double solvent free emulsion, pharmaceutical composition for synergic treatment of cutaneous melanoma and process of obtainement technical field.BR Patent 102020010675A22021
    [Google Scholar]
  167. RicardoN.M.P.S. DeyseD.S.M. Dermatological and cosmetic preparation containing anacardic acid encapsulated in solid lipid nanoparticles as nanostructured lipid nanocarrier.BR Patent 102018004137B12023
    [Google Scholar]
  168. Al MalkiW.H. Felodipine solid lipid nanoparticle formulation system for effective anti-hypertensive treatment.DE Patent 202022100260U12022
    [Google Scholar]
  169. RicardoN.M.P.S. LouchardB.O. Solid lipid composition for production of nanostructured lipid carriers.BR Patent 102019013856A22021
  170. Madhulika PradhanK.K. A method of preparation of Triamcinolone Acetonide encapsulated nanostructured lipid carriers for psoriasis treatment.AU Patent 2021106678A42021
  171. FatmaB KumarV KushwahaS.K.S. Desvenlafaxine succinate loaded nanostructured lipid carrier (NLC) for brain targeting via nasal route.AU Patent 2021104270A42021
  172. ChristopherG. Encapsulated cannabinoid formulations for transdermal delivery.LU Patent 101384B12020
  173. Curo MeloK.J. Nanostructured lipid carrier, use of nanostructured lipid carrier, photoprotective composition and method for skin photoprotection.WO Patent 2023137532A12020
  174. OzturkC. Semisolid nanostructured lipid carrier (NLC) formulation for cosmetic products.WO Patent 2022005431A12022
  175. ChinC.M. Nanostructured lipid carrier comprising Hydroxymethylnitrofural and its use for the preparation of a drug to treat Leishmaniasis.BR Patent 102020015184A22023
  176. GoulartG.A.D.C. PintoC.M SoareA.P LagesE.B. Pharmaceutical composition for treatment of cancer and prevention of mucositis containing nanostructured lipid carriers loaded with doxorubicin, process for obtaining and use.BR Patent 102021018033A22023
  177. De CastroS.R. De PaulaE. Composition of natural nanostructured lipid carriers with intrinsic anaestheric, bactericidal, antifungal and biopesticide action.WO Patent 2020227796A12020
  178. NiezgodaN Nanostructured lipid carriers with conjugated linoleic acid preparation and method of their preparation.PL Patent 239569B12021
  179. PantubK. WongtrakulP. JanwitayanuchitW. Preparation of salicylic acid loaded nanostructured lipid carriers using box-behnken design: Optimization, characterization and physicochemical stability.J. Oleo Sci.201766121311131910.5650/jos.ess1705129199206
    [Google Scholar]
  180. MoghddamS.M.M. AhadA. AqilM. ImamS.S. SultanaY. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach.Artif. Cells Nanomed. Biotechnol.201745361762410.3109/21691401.2016.116769927050533
    [Google Scholar]
  181. YaghmurA. MuH. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles.Acta Pharm. Sin. B202111487188510.1016/j.apsb.2021.02.01333996404
    [Google Scholar]
  182. Mendoza-MuñozN. Urbán-MorlánZ. Leyva-GómezG. Zambrano-ZaragozaM.L. ¨Piñón-SegundoE. Quintanar-GuerreroD. Solid lipid nanoparticles: An approach to improve oral drug delivery.J. Pharm. Pharm. Sci.20212450953210.18433/jpps3178834644523
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873299903240723112436
Loading
/content/journals/cnanom/10.2174/0124681873299903240723112436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test