Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Background

Iloperidone is a second-generation antipsychotic drug approved by USFDA for the treatment of acute schizophrenia in adults. Iloperidone shows poor oral bioavailability of about 36% as it undergoes extensive presystemic elimination. Benefits of nasal delivery, as an alternative approach, include non-invasiveness, accessibility, ease of administration and better compliance as compared to intravenous route. Delivery in small nasal volumes can be strengthened using drug nanosuspensions.

Objective

The objective of this study is to develop and evaluate Iloperidone nanosuspensions for nasal delivery to improve effectiveness in treating schizophrenia.

Methods

Iloperidone nanosuspensions containing Poloxamer 188 as stabilizer, Methocel K15M as mucoadhesive polymer and Gellan gum as gelling agent were prepared by wet milling. Process parameters such as the number of zirconium beads and rotations per minute were optimized to prepare nanosuspensions. The nanosuspensions were evaluated for particle size distribution, polydispersity, zeta potential, release, permeation and motor activity using animal models.

Results

The developed Iloperidone nanosuspensions showed average particle size and polydispersity index of 268.1 ± 2 nm and 0.362 ± 0.2, respectively and zeta potential of -19.2 ± 0.2 mV. release studies exhibited more than 80% drug release at the end of 6 hours, while studies indicated a greater percentage of drug from the nanosuspensions permeating across excised goat nasal mucosa. Studies in animal models depicted significant activity with improved motor response for Iloperidone nasal nanosupensions as compared to oral suspensions.

Conclusion

The present study demonstrated the successful development of Iloperidone nanosuspensions for nasal delivery in the management of schizophrenia and proposed to have commercial potential.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873298851240702094437
2024-07-26
2025-10-26
Loading full text...

Full text loading...

References

  1. American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders.5th edArlington, VAAmerican Psychiatric Association2013
    [Google Scholar]
  2. McGrathJ. SahaS. WelhamJ. El SaadiO. MacCauleyC. ChantD. A systematic review of the incidence of schizophrenia: The distribution of rates and the influence of sex, urbanicity, migrant status and methodology.BMC Med.2004211310.1186/1741‑7015‑2‑1315115547
    [Google Scholar]
  3. PatelK. CherianJ. GohilK. AtkinsonD. Schizophrenia: Overview and treatment options.Pharm & Ther J2014399638645
    [Google Scholar]
  4. JauharS. McKennaP.J. RaduaJ. FungE. SalvadorR. LawsK.R. Cognitive–behavioural therapy for the symptoms of schizophrenia: Systematic review and meta-analysis with examination of potential bias.Br. J. Psychiatry20142041202910.1192/bjp.bp.112.11628524385461
    [Google Scholar]
  5. BrischR. SaniotisA. WolfR. BielauH. BernsteinH.G. SteinerJ. BogertsB. BraunK. JankowskiZ. KumaratilakeJ. HennebergM. GosT. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue.Front. Psychiatry201454724904434
    [Google Scholar]
  6. MueserK. JesteD. Clinical Handbook of Schizophrenia.New YorkGuilford Press2008312
    [Google Scholar]
  7. RahmanT. LaurielloJ. Schizophrenia: An overview.Focus Am. Psychiatr. Publ.201614330030710.1176/appi.focus.2016000631975810
    [Google Scholar]
  8. LiebermanJ.A. Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia.J. Clin. Psychiatry199960Suppl. 1291210372603
    [Google Scholar]
  9. ChokhawalaK. Antipsychotic Medications.Treasure Island (FL)StatPearls Publishing
    [Google Scholar]
  10. ToninF.S. WiensA. Fernandez-LlimosF. PontaroloR. Iloperidone in the treatment of schizophrenia: An evidence-based review of its place in therapy.Core Evid.201611496110.2147/CE.S11409428008301
    [Google Scholar]
  11. SuramD. NaralaA. VeerabrahmaK. Development, characterization, comparative pharmacokinetic and pharmacodynamic studies of iloperidone solid SMEDDS and liquisolid compact.Drug Dev. Ind. Pharm.202046458759610.1080/03639045.2020.174214232162981
    [Google Scholar]
  12. Iloperidone.2023Available From: https://go.drugbank.com/drugs/DB04946 (Accessed on 6 Nov 2023).
  13. IgeP.P. AgrawalK. PatilU. Enhanced in vitro dissolution of iloperidone using caesalpinia pulcherrima mucoadhesive microspheres.Beni. Suef Univ. J. Basic Appl. Sci.201541263210.1016/j.bjbas.2015.02.004
    [Google Scholar]
  14. DanekP.J. WójcikowskiJ. DanielW.A. The atypical neuroleptics iloperidone and lurasidone inhibit human cytochrome P450 enzymes in vitro . Evaluation of potential metabolic interactions.Pharmacol. Rep.20207261685169410.1007/s43440‑020‑00102‑532279279
    [Google Scholar]
  15. NaralaA. SuramD. VeerabrahmaK. Pharmacokinetic and pharmacodynamic studies of iloperidone-loaded lipid nanoemulsions via oral route of administration.Drug Dev. Ind. Pharm.202147461862510.1080/03639045.2021.190833233784221
    [Google Scholar]
  16. CacciaS. PasinaL. NobiliA. New atypical antipsychotics for schizophrenia: iloperidone.Drug Des. Devel. Ther.20104334810.2147/DDDT.S644320368905
    [Google Scholar]
  17. LondheV. ShirsatR. Formulation and characterization of fast-dissolving sublingual film of Iloperidone using Box-Behnken design for enhancement of oral bioavailability.AAPS PharmSciTech20181931392140010.1208/s12249‑018‑0954‑y29396734
    [Google Scholar]
  18. LondheV.Y. BhasinB. Transdermal lipid vesicular delivery of iloperidone: Formulation, in vitro and in vivo evaluation.Colloids Surf. B Biointerfaces201918311040910.1016/j.colsurfb.2019.11040931386933
    [Google Scholar]
  19. SinghM. KaurR. RajputR. SinghS. Intranasal drug delivery- new concept of therapeutic implications for effective treatment of CNS disorders.Int. J. Pharm. Sci. Res.20178831943205
    [Google Scholar]
  20. LiY. WangC. ZongS. QiJ. DongX. ZhaoW. WuW. FuQ. LuY. ChenZ. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: Evidence from aggregation-caused quenching probes.J. Biomed. Nanotechnol.201915468670210.1166/jbn.2019.272430841963
    [Google Scholar]
  21. SelvarajK. GowthamarajanK. KarriV.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting.Artif. Cells Nanomed. Biotechnol.20184682088209529282995
    [Google Scholar]
  22. AkitaT. OdaY. KimuraR. NagaiM. TezukaA. ShimamuraM. WashizuK. OkaJ.I. YamashitaC. Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative.J. Control. Release202235157358010.1016/j.jconrel.2022.09.04736179766
    [Google Scholar]
  23. Grassin-DelyleS. BuenestadoA. NalineE. FaisyC. Blouquit-LayeS. CoudercL.J. Le GuenM. FischlerM. DevillierP. Intranasal drug delivery: An efficient and non-invasive route for systemic administration.Pharmacol. Ther.2012134336637910.1016/j.pharmthera.2012.03.00322465159
    [Google Scholar]
  24. BhavnaM.S. AliM. AliR. BhatnagarA. BabootaS. Donepazil nanosuspension intended for nose to brain targeting: In vitro and in vivo safety evaluation.Int. J. Biol. Macromol.20146741842510.1016/j.ijbiomac.2014.03.02224705169
    [Google Scholar]
  25. GaoM. ShenX. MaoS. Factors influencing drug deposition in the nasal cavity upon delivery via nasal sprays.J. Pharm. Investig.202050325125910.1007/s40005‑020‑00482‑z
    [Google Scholar]
  26. TaiJ. HanM. LeeD. ParkI.H. LeeS.H. KimT.H. Different methods and formulations of drugs and vaccines for nasal administration.Pharmaceutics2022145107310.3390/pharmaceutics1405107335631663
    [Google Scholar]
  27. PınarS.G. OktayA.N. KaraküçükA.E. ÇelebiN. Formulation strategies of nanosuspensions for various administration routes.Pharmaceutics2023155152010.3390/pharmaceutics1505152037242763
    [Google Scholar]
  28. HimanshuA. SitasharanP. SinghaiA.K. Liposomes as drug carriers.IJPLS201127945951
    [Google Scholar]
  29. LuY. ZhangE. YangJ. CaoZ. Strategies to improve micelle stability for drug delivery.Nano Res.201811104985499810.1007/s12274‑018‑2152‑330370014
    [Google Scholar]
  30. JaiswalM. DudheR. SharmaP.K. Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155212312710.1007/s13205‑014‑0214‑028324579
    [Google Scholar]
  31. JaniR.K. PatelN. PatelZ. ChakraborthyG.S. UpadhyeV. Nanosponges as a biocatalyst carrier — An innovative drug delivery technology for enzymes, proteins, vaccines, and antibodies.Biocatal. Agric. Biotechnol.20224210232910.1016/j.bcab.2022.102329
    [Google Scholar]
  32. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  33. AgrawalY.K. PatelV.R. Nanosuspension: An approach to enhance solubility of drugs.J. Adv. Pharm. Technol. Res.201122818710.4103/2231‑4040.8295022171298
    [Google Scholar]
  34. YadollahiR. VasilevK. SimovicS. Nanosuspension technologies for delivery of poorly soluble drugs.J Nanomat20152015113
    [Google Scholar]
  35. JacobS. NairA.B. ShahJ. Emerging role of nanosuspensions in drug delivery systems.Biomater. Res.2020241310.1186/s40824‑020‑0184‑831969986
    [Google Scholar]
  36. SandeepS. RajeshP. PiyushG. RajasekharJ. Assessment of nanosuspension formulation for intranasal administration.Pharm. Technol.20204493643
    [Google Scholar]
  37. JunyaprasertV.B. MorakulB. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs.Asian J. Pharm.2015101323
    [Google Scholar]
  38. MöschwitzerJ.P. Drug nanocrystals in the commercial pharmaceutical development process.Int. J. Pharm.2013453114215610.1016/j.ijpharm.2012.09.03423000841
    [Google Scholar]
  39. GoelS. SachdevaM. AgarwalV. Nanosuspension Technology: Recent patents on drug delivery and their characterizations.Recent Pat. Drug Deliv. Formul.20191329110410.2174/187221131366619061415161531203813
    [Google Scholar]
  40. AnilH. Nanosuspensions.Int. J. Pharm. Res. Appl.202381579598
    [Google Scholar]
  41. VenkateshT. KumarA. UmaR.J. DeenaM.M. DalithK.C. Nanosuspensions: Ideal approach for the drug delivery of poorly water soluble drugs.Pharm. Lett.201132203213
    [Google Scholar]
  42. PatravaleV.B. DateA.A. KulkarniR.M. Nanosuspensions: A promising drug delivery strategy.J. Pharm. Pharmacol.201056782784010.1211/002235702369115233860
    [Google Scholar]
  43. SinghS. VaidyaY. GulatiM. BhattacharyaS. GargV. PandeyN. Nanosuspension: Principles, perspectives and practices.Curr. Drug Deliv.20161381222124610.2174/156720181366616010112045226721266
    [Google Scholar]
  44. TianY. WangS. YuY. SunW. FanR. ShiJ. GuW. WangZ. ZhangH. ZhengA. Review of nanosuspension formulation and process analysis in wet media milling using microhydrodynamic model and emerging characterization methods.Int. J. Pharm.202262312186210.1016/j.ijpharm.2022.12186235671851
    [Google Scholar]
  45. RabinowB.E. Nanosuspensions in drug delivery.Nat. Rev. Drug Discov.20043978579610.1038/nrd149415340388
    [Google Scholar]
  46. ShaghlilL. AlshishaniA. Sa’aleekA.A. AbdelkaderH. Al-ebiniY. Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate.J. Drug Deliv. Sci. Technol.20227610373610.1016/j.jddst.2022.103736
    [Google Scholar]
  47. GeorgeM. GhoshI. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAS) of nanosuspension formulation prepared by wet media milling technology.Eur J Pharm Sci.201348142e152
    [Google Scholar]
  48. GhoshI. SchenckD. BoseS Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: Effect of vitamin E TPGS and nanocrystal particle size on oral absorption.Eur J Pharm Sci.201247718e72810.1016/j.ejps.2012.08.011
    [Google Scholar]
  49. GhoshI. Michniak-KohnB. Design and characterization of submicron formulation for a poorly soluble drug: The effect of vitamin E TPGS and other solubilizers on skin permeability enhancement.Int J Pharm201243490e9810.1016/j.ijpharm.2012.05.031
    [Google Scholar]
  50. LaaksonenT. LiuP. RahikkalaA. Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods.Pharm Res2011282403e241110.1007/s11095‑011‑0456‑z
    [Google Scholar]
  51. WavikarP.R. VaviaP.R. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery.J. Liposome Res.201525214114910.3109/08982104.2014.95412925203610
    [Google Scholar]
  52. FaridR.M. EtmanM.A. NadaA.H. EbianA.E.A.R. Formulation and in vitro evaluation of salbutamol sulphate in situ gelling nasal inserts.AAPS PharmSciTech201314271271810.1208/s12249‑013‑9956‑y23516112
    [Google Scholar]
  53. AlshoraD.H. IbrahimM.A. ElzayatE. AlmeanazelO.T. AlanaziF. Rosuvastatin calcium nanoparticles: Improving bioavailability by formulation and stabilization codesign.PLoS One2018137e020021810.1371/journal.pone.020021829985967
    [Google Scholar]
  54. AlshoraD. IbrahimM. ElzayatE. AlmeanazelO.T. AlanaziF. Defining the process parameters affecting the fabrication of rosuvastatin calcium nanoparticles by planetary ball mill.Int. J. Nanomedicine2019144625463610.2147/IJN.S20730131303752
    [Google Scholar]
  55. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  56. KaszubaM. CorbettJ. WatsonF.M. JonesA. High-concentration zeta potential measurements using light-scattering techniques.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201036819274439445110.1098/rsta.2010.017520732896
    [Google Scholar]
  57. Vida-SimitiI. JumateN. ChicinasI. Applications of scanning electron microscopy (SEM) in nanotechnology and nanoscience.Rom. J. Phys.2004499–10955965
    [Google Scholar]
  58. ThakkarH. PatelB. ThakkarS. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement.J. Pharm. Bioallied Sci.20113342643410.4103/0975‑7406.8445921966165
    [Google Scholar]
  59. VenkatamaheshR. PerumalV. GnanaB. Development and validation of UV spectrophotometric method for quantitative estimation of Iloperidone in bulk and pharmaceutical dosage form.J. Pharm. Res.201223198202
    [Google Scholar]
  60. SherafudeenS.P. VasanthaP.V. Development and evaluation of in situ nasal gel formulations of loratadine.Res. Pharm. Sci.201510646647626779266
    [Google Scholar]
  61. ChenY. LiuY. XieJ. ZhengQ. YueP. ChenL. HuP. YangM. Nose-to-brain delivery by nanosuspensions based in situ gel for breviscapine.Int. J. Nanomedicine202015104351045110.2147/IJN.S26565933380794
    [Google Scholar]
  62. KakadS.P. GangurdeT.D. KshirsagarS.J. MundheV.G. Nose to brain delivery of nanosuspensions with first line antiviral agents is alternative treatment option to Neuro-AIDS treatment.Heliyon202287e0992510.1016/j.heliyon.2022.e0992535879999
    [Google Scholar]
  63. MdS. BhavnaM. AliS. BabootaJ.K. SahniA. BhatnagarJ. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezilloaded PLGA nanoparticles for brain targeting.Drug Dev. Ind. Pharm.201440227828710.3109/03639045.2012.75813023369094
    [Google Scholar]
  64. SinhaS. AliM. BabootaS. AhujaA. KumarA. AliJ. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir.AAPS PharmSciTech201011251852710.1208/s12249‑010‑9404‑120238187
    [Google Scholar]
  65. DaillyE. RaffiF. JollietP. Determination of atazanavir and other antiretroviral drugs (indinavir, amprenavir, nelfinavir and its active metabolite M8, saquinavir, ritonavir, lopinavir, nevirapine and efavirenz) plasma levels by high performance liquid chromatography with UV detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20048131-235335810.1016/j.jchromb.2004.10.00515556553
    [Google Scholar]
  66. PathakR. Prasad DashR. MisraM. NivsarkarM. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route.Acta Pharm. Sin. B20144215116010.1016/j.apsb.2014.02.00226579378
    [Google Scholar]
  67. BhosaleV.A. SrivastavaV. ValamlaB. YadavR. SinghS.B. MehraN.K. Preparation and evaluation of modified chitosan nanoparticles using anionic sodium alginate polymer for treatment of ocular disease.Pharmaceutics20221412280210.3390/pharmaceutics1412280236559295
    [Google Scholar]
  68. ICCVAM-recommended test method protocol: Hen’s egg test—chorioallantoic membrane (HET-CAM) test method.2010Available From: https://ntp.niehs.nih.gov/iccvam/docs/ocutox_docs/invitro-2010/tmer-vol1.pdf (accessed on 8 July 2022).
  69. WangX. DingS. LuY. JiaoZ. ZhangL. ZhangY. YangY. ZhangY. LiW. LvL. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia.Brain Res. Bull.201914714014710.1016/j.brainresbull.2019.02.00830772438
    [Google Scholar]
  70. BertramU. BodmeierR. Parameters affecting the drug release from in situ gelling nasal inserts.Eur. J. Pharm. Biopharm.200663331031910.1016/j.ejpb.2005.11.00816513333
    [Google Scholar]
  71. JelkmannM. LeichnerC. ZaichikS. LaffleurF. Bernkop-SchnürchA. A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery.Int. J. Biol. Macromol.20201581037104610.1016/j.ijbiomac.2020.04.11432380110
    [Google Scholar]
  72. ShegokarR. Wet media milling: an effective way to solve drug solubility issue.Handbook of Nanoparticles. AliofkhazraeiM. ChamSpringer201610.1007/978‑3‑319‑15338‑4_20
    [Google Scholar]
  73. JelvehgariM. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. KiafarF. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles.Res. Pharm. Sci.201712111410.4103/1735‑5362.19904128255308
    [Google Scholar]
  74. LoftsA. Abu-HijlehF. RiggN. MishraR.K. HoareT. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs.CNS Drugs202236773977010.1007/s40263‑022‑00930‑435759210
    [Google Scholar]
  75. SaindaneN.S. PagarK.P. VaviaP.R. Nanosuspension based in situ gelling nasal spray of carvedilol: Development, in vitro and in vivo characterization.AAPS PharmSciTech201314118919910.1208/s12249‑012‑9896‑y23255198
    [Google Scholar]
  76. NamjoshiS. DabbaghiM. RobertsM.S. GriceJ.E. MohammedY. Quality by Design: Development of the quality target product profile (QTPP) for semisolid topical products.Pharmaceutics202012328710.3390/pharmaceutics1203028732210126
    [Google Scholar]
  77. SoheylaH. ForuheZ. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2).Trop. J. Pharm. Res.2013122265273
    [Google Scholar]
  78. LiJ. WangZ. ZhangH. GaoJ. ZhengA. Progress in the development of stabilization strategies for nanocrystal preparations.Drug Deliv.2021281193610.1080/10717544.2020.185622433336609
    [Google Scholar]
  79. ShegokarR. MüllerR.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives.Int. J. Pharm.20103991-212913910.1016/j.ijpharm.2010.07.04420674732
    [Google Scholar]
  80. MdS. KitB. JagdishS. DavidD. PandeyM. ChatterjeeL. Development and in vitro evaluation of a zerumbone loaded nanosuspension drug delivery system.Crystals20188728610.3390/cryst8070286
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873298851240702094437
Loading
/content/journals/cnanom/10.2174/0124681873298851240702094437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test