Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Viruses are highly infectious pathogens responsible for widespread diseases, making the study of their infection mechanisms crucial for developing targeted therapeutic interventions. Single-virus particle tracking (SVT) has become a valuable technique for visualizing viral behavior in real-time, providing insights into virus-host interactions. Fluorescent probes, including fluorescent proteins, organic dyes, and nanomaterials like quantum dots, are widely used in SVT to label and track individual viral particles. This review provides an overview of commonly used fluorescent probes and their applications in viral tracking, highlighting their advantages and limitations. The development of new fluorescent probes offers the potential for more precise and long-term tracking of viral particles, contributing to a deeper understanding of viral infections. Finally, we offer our perspectives on the future possibilities and challenges associated with single-virus tracking.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137372835250421073214
2025-04-30
2026-01-08
Loading full text...

Full text loading...

References

  1. ToK.K.W. SridharS. ChiuK.H.Y. HungD.L.L. LiX. HungI.F.N. TamA.R. ChungT.W.H. ChanJ.F.W. ZhangA.J.X. ChengV.C.C. YuenK.Y. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic.Emerg. Microbes Infect.202110150753510.1080/22221751.2021.1898291 33666147
    [Google Scholar]
  2. LiuS.L. WangZ.G. XieH.Y. LiuA.A. LambD.C. PangD.W. Single-virus tracking: From imaging methodologies to virological applications.Chem. Rev.202012031936197910.1021/acs.chemrev.9b00692 31951121
    [Google Scholar]
  3. ParveenN. BorrenberghsD. RochaS. HendrixJ. Single viruses on the fluorescence microscope: Imaging molecular mobility, interactions and structure sheds new light on viral replication.Viruses201810525010.3390/v10050250 29748498
    [Google Scholar]
  4. ChalfieM. TuY. EuskirchenG. WardW.W. PrasherD.C. Green fluorescent protein as a marker for gene expression.Science1994263514880280510.1126/science.8303295 8303295
    [Google Scholar]
  5. ShkrobM.A. YanushevichY.G. ChudakovD.M. GurskayaN.G. LabasY.A. PoponovS.Y. MudrikN.N. LukyanovS. LukyanovK.A. Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina.Biochem. J.2005392364965410.1042/BJ20051314 16164420
    [Google Scholar]
  6. NienhausK. NienhausU.G. Fluorescent proteins for live-cell imaging with super-resolution.Chem. Soc. Rev.20144341088110610.1039/C3CS60171D 24056711
    [Google Scholar]
  7. ShcherbakovaD.M. VerkhushaV.V. Near-infrared fluorescent proteins for multicolor in vivo imaging.Nat. Methods201310875175410.1038/nmeth.2521 23770755
    [Google Scholar]
  8. ShcherbakovaD.M. SubachO.M. VerkhushaV.V. Red fluorescent proteins: Advanced imaging applications and future design.Angew. Chem. Int. Ed.20125143107241073810.1002/anie.201200408 22851529
    [Google Scholar]
  9. SongK. XueY. WangX. WanY. DengX. LinJ. A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis.J. Plant Physiol.201721312913310.1016/j.jplph.2017.03.009 28380405
    [Google Scholar]
  10. RodriguezE.A. CampbellR.E. LinJ.Y. LinM.Z. MiyawakiA. PalmerA.E. ShuX. ZhangJ. TsienR.Y. The growing and glowing toolbox of fluorescent and photoactive proteins.Trends Biochem. Sci.201742211112910.1016/j.tibs.2016.09.010 27814948
    [Google Scholar]
  11. QianC. FlemmingA. MüllerB. LambD.C. Dynamics of HIV-1 gag processing as revealed by fluorescence lifetime imaging microscopy and single virus tracking.Viruses202214234010.3390/v14020340 35215933
    [Google Scholar]
  12. JohnsonC. ExellJ. LinY. AguilarJ. WelsherK.D. Capturing the start point of the virus–cell interaction with high-speed 3D single-virus tracking.Nat. Methods202219121642165210.1038/s41592‑022‑01672‑3 36357694
    [Google Scholar]
  13. YuC. WangZ.G. MaA.X. LiuS.L. PangD.W. Uncovering the F-actin-based nuclear egress mechanism of newly synthesized influenza a virus ribonucleoprotein complexes by single-particle tracking.Anal. Chem.202294145624563310.1021/acs.analchem.1c05387 35357801
    [Google Scholar]
  14. CosentinoG. MarougkaK. DesquesnesA. WeltiN. SitterlinD. GaultE. Rameix-WeltiM.A. Respiratory syncytial virus ribonucleoproteins hijack microtubule Rab11 dependent transport for intracellular trafficking.PLoS Pathog.2022187e101061910.1371/journal.ppat.1010619 35797399
    [Google Scholar]
  15. GestA.M.M. SahanA.Z. ZhongY. LinW. MehtaS. ZhangJ. Molecular spies in action: Genetically encoded fluorescent biosensors light up cellular signals.Chem. Rev.202412422125731266010.1021/acs.chemrev.4c00293 39535501
    [Google Scholar]
  16. ZachariasD.A. TsienR.Y. Molecular biology and mutation of green fluorescent protein.Methods Biochem. Anal.2005478312010.1002/0471739499.ch5 16335711
    [Google Scholar]
  17. ShcherbakovaD.M. StepanenkoO.V. TuroverovK.K. VerkhushaV.V. Near-infrared fluorescent proteins: Multiplexing and optogenetics across scales.Trends Biotechnol.201836121230124310.1016/j.tibtech.2018.06.011 30041828
    [Google Scholar]
  18. KlingenY. ConzelmannK.K. FinkeS. Double-labeled rabies virus: Live tracking of enveloped virus transport.J. Virol.200882123724510.1128/JVI.01342‑07 17928343
    [Google Scholar]
  19. LiescheJ. ZiomkiewiczI. SchulzA. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.BMC Plant Biol.201313122610.1186/1471‑2229‑13‑226 24373117
    [Google Scholar]
  20. Adu-GyamfiE. DigmanM.A. GrattonE. StahelinR.V. Single-particle tracking demonstrates that actin coordinates the movement of the Ebola virus matrix protein.Biophys. J.20121039L41L4310.1016/j.bpj.2012.09.026 23199932
    [Google Scholar]
  21. Padilla-ParraS. MarinM. KondoN. MelikyanG.B. Pinpointing retrovirus entry sites in cells expressing alternatively spliced receptor isoforms by single virus imaging.Retrovirology20141114710.1186/1742‑4690‑11‑47 24935247
    [Google Scholar]
  22. ZhangJ. LiH. LinB. LuoX. YinP. YiT. XueB. ZhangX.L. ZhuH. NieZ. Development of near-infrared nucleic acid mimics of fluorescent proteins for in vivo imaging of viral RNA with turn-on fluorescence.J. Am. Chem. Soc.202114346193171932910.1021/jacs.1c04577 34762804
    [Google Scholar]
  23. DayR.N. DavidsonM.W. The fluorescent protein palette: Tools for cellular imaging.Chem. Soc. Rev.200938102887292110.1039/b901966a 19771335
    [Google Scholar]
  24. BenčinaM. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors.Sensors20131312167361675810.3390/s131216736 24316570
    [Google Scholar]
  25. HogueI.B. BosseJ.B. HuJ.R. ThibergeS.Y. EnquistL.W. Cellular mechanisms of alpha herpesvirus egress: Live cell fluorescence microscopy of pseudorabies virus exocytosis.PLoS Pathog.20141012e100453510.1371/journal.ppat.1004535 25474634
    [Google Scholar]
  26. MiyauchiK. MarinM. MelikyanG.B. Visualization of retrovirus uptake and delivery into acidic endosomes.Biochem. J.2011434355956910.1042/BJ20101588 21175427
    [Google Scholar]
  27. PattersonG.H. Lippincott-SchwartzJ. A photoactivatable GFP for selective photolabeling of proteins and cells.Science200229755881873187710.1126/science.1074952 12228718
    [Google Scholar]
  28. NemetI. RopelewskiP. ImanishiY. Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components.Photochem. Photobiol. Sci.201514101787180610.1039/c5pp00174a
    [Google Scholar]
  29. ZhouX.X. LinM.Z. Photoswitchable fluorescent proteins: Ten years of colorful chemistry and exciting applications.Curr. Opin. Chem. Biol.201317468269010.1016/j.cbpa.2013.05.031 23876529
    [Google Scholar]
  30. LiuQ.T. WangQ. ZhangY. KliemkeV. LiuQ. ChouK.C. The nanoscale organization of Nipah virus matrix protein revealed by super-resolution microscopy.Biophys. J.2022121122290229610.1016/j.bpj.2022.05.026 35614854
    [Google Scholar]
  31. LiuQ. ChenL. AguilarH.C. ChouK.C. A stochastic assembly model for Nipah virus revealed by super-resolution microscopy.Nat. Commun.201891305010.1038/s41467‑018‑05480‑2 30076303
    [Google Scholar]
  32. MuranyiW. MalkuschS. MüllerB. HeilemannM. KräusslichH.G. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail.PLoS Pathog.201392e100319810.1371/journal.ppat.1003198 23468635
    [Google Scholar]
  33. YangY. ZhaoQ. FengW. LiF. Luminescent chemodosimeters for bioimaging.Chem. Rev.2013113119227010.1021/cr2004103 22702347
    [Google Scholar]
  34. EscobedoJ.O. RusinO. LimS. StronginR.M. NIR dyes for bioimaging applications.Curr. Opin. Chem. Biol.2010141647010.1016/j.cbpa.2009.10.022 19926332
    [Google Scholar]
  35. GrimmJ.B. SungA.J. LegantW.R. HulammP. MatloszS.M. BetzigE. LavisL.D. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.ACS Chem. Biol.2013861303131010.1021/cb4000822 23557713
    [Google Scholar]
  36. MaoZ. RhaH. KimJ. YouX. ZhangF. TaoW. KimJ.S. THQ-xanthene: An emerging strategy to create next-generation NIR-I/II fluorophores.Adv. Sci.20231018230117710.1002/advs.202301177 37114796
    [Google Scholar]
  37. HanapiU.F. YongC.Y. GohZ.H. AlitheenN.B. YeapS.K. TanW.S. Tracking the virus-like particles of Macrobrachium rosenbergii nodavirus in insect cells.PeerJ20175e294710.7717/peerj.2947 28194311
    [Google Scholar]
  38. GruberH.J. HahnC.D. KadaG. RienerC.K. HarmsG.S. AhrerW. DaxT.G. KnausH.G. Anomalous fluorescence enhancement of Cy3 and cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin.Bioconjug. Chem.200011569670410.1021/bc000015m 10995214
    [Google Scholar]
  39. LeeH. AkersW. BhushanK. BlochS. SudlowG. TangR. AchilefuS. Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors.Bioconjug. Chem.201122477778410.1021/bc100584d 21388195
    [Google Scholar]
  40. ZhangJ. MaK. WangX. JiangY. ZhaoS. OuJ. LanW. GuanW. WuX. ZhengH. YangB. WanC. ZhaoW. WuJ. ZhangQ. Desmoglein 2 (DSG2) is a receptor of human adenovirus type 55 causing adult severe community-acquired pneumonia.Virol. Sin.20213661400141010.1007/s12250‑021‑00414‑7 34224109
    [Google Scholar]
  41. XuH. HaoX. WangS. WangZ. CaiM. JiangJ. QinQ. ZhangM. WangH. Real-time imaging of rabies virus entry into living vero cells.Sci. Rep.2015511175310.1038/srep11753 26148807
    [Google Scholar]
  42. UlrichG. ZiesselR. HarrimanA. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed.Angew. Chem. Int. Ed.20084771184120110.1002/anie.200702070 18092309
    [Google Scholar]
  43. AwuahS.G. PolreisJ. BiradarV. YouY. Singlet oxygen generation by novel NIR BODIPY dyes.Org. Lett.201113153884388710.1021/ol2014076 21732590
    [Google Scholar]
  44. JiangX.D. GaoR. YueY. SunG.T. ZhaoW. A NIR BODIPY dye bearing 3,4,4a-trihydroxanthene moieties.Org. Biomol. Chem.201210346861686510.1039/c2ob26218e 22829188
    [Google Scholar]
  45. YangY. GuoQ. ChenH. ZhouZ. GuoZ. ShenZ. Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy.Chem. Commun.201349383940394210.1039/c3cc40746b 23536148
    [Google Scholar]
  46. StarrC.A. NairS. HuangS.Y. HaganM.F. JacobsonS.C. ZlotnickA. Engineering metastability into a virus-like particle to enable triggered dissociation.J. Am. Chem. Soc.202314542322233110.1021/jacs.2c10937 36651799
    [Google Scholar]
  47. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.002 23088862
    [Google Scholar]
  48. CantonI. BattagliaG. Endocytosis at the nanoscale.Chem. Soc. Rev.20124172718273910.1039/c2cs15309b 22389111
    [Google Scholar]
  49. ChenG. RoyI. YangC. PrasadP.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy.Chem. Rev.201611652826288510.1021/acs.chemrev.5b00148 26799741
    [Google Scholar]
  50. ZrazhevskiyP. SenaM. GaoX. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery.Chem. Soc. Rev.201039114326435410.1039/b915139g 20697629
    [Google Scholar]
  51. BijuV. ItohT. IshikawaM. Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging.Chem. Soc. Rev.20103983031305610.1039/b926512k 20508886
    [Google Scholar]
  52. JaiswalJ.K. MattoussiH. MauroJ.M. SimonS.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates.Nat. Biotechnol.2003211475110.1038/nbt767 12459736
    [Google Scholar]
  53. GreccoH.E. LidkeK.A. HeintzmannR. LidkeD.S. SpagnuoloC. MartinezO.E. Jares-ErijmanE.A. JovinT.M. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.Microsc. Res. Tech.2004654-516917910.1002/jemt.20129 15630694
    [Google Scholar]
  54. ZhuL. AngS. LiuW.T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia.Appl. Environ. Microbiol.200470159759810.1128/AEM.70.1.597‑598.2004 14711692
    [Google Scholar]
  55. WangZ.G. LiuS.L. PangD.W. Quantum dots: A promising fluorescent label for probing virus trafficking.Acc. Chem. Res.202154142991300210.1021/acs.accounts.1c00276 34180662
    [Google Scholar]
  56. AlivisatosA.P. GuW. LarabellC. Quantum dots as cellular probes.Annu. Rev. Biomed. Eng.200571557610.1146/annurev.bioeng.7.060804.100432 16004566
    [Google Scholar]
  57. MichaletX. PinaudF.F. BentolilaL.A. TsayJ.M. DooseS. LiJ.J. SundaresanG. WuA.M. GambhirS.S. WeissS. Quantum dots for live cells, in vivo imaging, and diagnostics.Science2005307570953854410.1126/science.1104274 15681376
    [Google Scholar]
  58. MedintzI.L. UyedaH.T. GoldmanE.R. MattoussiH. Quantum dot bioconjugates for imaging, labelling and sensing.Nat. Mater.20054643544610.1038/nmat1390 15928695
    [Google Scholar]
  59. AlivisatosP. The use of nanocrystals in biological detection.Nat. Biotechnol.2004221475210.1038/nbt927 14704706
    [Google Scholar]
  60. BorderudS.B. LiY. BurkhalterJ.E. Electronic cigarette use among patients with cancer: Characteristics of electronic cigarette users and their smoking cessation outcomes.Cancer2015120223527353510.1002/cncr.28811
    [Google Scholar]
  61. WuX. LiuH. LiuJ. HaleyK.N. TreadwayJ.A. LarsonJ.P. GeN. PealeF. BruchezM.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat. Biotechnol.2003211414610.1038/nbt764 12459735
    [Google Scholar]
  62. ClappA.R. PonsT. MedintzI.L. DelehantyJ.B. MelingerJ.S. TiefenbrunnT. DawsonP.E. FisherB.R. O’RourkeB. MattoussiH. Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications.Adv. Mater.200719151921192610.1002/adma.200602036
    [Google Scholar]
  63. LeveneM.J. DombeckD.A. KasischkeK.A. MolloyR.P. WebbW.W. In vivo multiphoton microscopy of deep brain tissue.J. Neurophysiol.20049141908191210.1152/jn.01007.2003 14668300
    [Google Scholar]
  64. WangT. ChenJ.Y. ZhenS. WangP.N. WangC.C. YangW.L. PengQ. Thiol-capped CdTe quantum dots with two-photon excitation for imaging high autofluorescence background living cells.J. Fluoresc.200919461562110.1007/s10895‑008‑0452‑9 19104920
    [Google Scholar]
  65. JooK.I. LeiY. LeeC.L. LoJ. XieJ. Hamm-AlvarezS.F. WangP. Site-specific labeling of enveloped viruses with quantum dots for single virus tracking.ACS Nano2008281553156210.1021/nn8002136 19079775
    [Google Scholar]
  66. FuD.D. ZhangL.J. TangB. DuL. LiJ. AoJ. ZhangZ.L. WangZ.G. LiuS.L. PangD.W. Quantitatively dissecting triple roles of dynactin in dynein-driven transport of influenza virus by quantum dot-based single-virus tracking.ACS Nano20241837258932590510.1021/acsnano.4c10564 39214619
    [Google Scholar]
  67. LiuJ. GuoZ. LiW. ZhangX. LiangC. CuiZ. Packaging quantum dots in viral particles via a strep-tag II/streptavidin system for single-virus tracking.Nano Lett.20242492821283010.1021/acs.nanolett.3c04570 38407052
    [Google Scholar]
  68. YangY.B. TangY.D. HuY. YuF. XiongJ.Y. SunM.X. LyuC. PengJ.M. TianZ.J. CaiX.H. AnT.Q. Single virus tracking with quantum dots packaged into enveloped viruses using CRISPR.Nano Lett.20202021417142710.1021/acs.nanolett.9b05103 31930919
    [Google Scholar]
  69. ZhangL.J. WangS. XiaL. LvC. TangH.W. LiangZ. XiaoG. PangD.W. Lipid-specific labeling of enveloped viruses with quantum dots for single-virus tracking.MBio2020113e00135e2010.1128/mBio.00135‑20 32430465
    [Google Scholar]
  70. XuX. LiuR. LiL. Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications.Chem. Commun.20155194167331674910.1039/C5CC06439B 26427025
    [Google Scholar]
  71. MascalchiP. LamortA.S. SaloméL. DumasF. Single particle tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes.Biochem. Biophys. Res. Commun.2012417140941310.1016/j.bbrc.2011.11.129 22166195
    [Google Scholar]
  72. WuC. ChiuD.T. Highly fluorescent semiconducting polymer dots for biology and medicine.Angew. Chem. Int. Ed.201352113086310910.1002/anie.201205133 23307291
    [Google Scholar]
  73. ZhangZ. WuY. XuJ. MengZ. ChenQ. YinS. Quantitative analysis of hepatitis D virus using gRNA-sensitive semiconducting polymer dots.Anal. Chem.20259731575158310.1021/acs.analchem.4c04147 39807540
    [Google Scholar]
  74. BaruaS. RegeK. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots.Small200953370376
    [Google Scholar]
  75. PonsT. MedintzI.L. SapsfordK.E. HigashiyaS. GrimesA.F. EnglishD.S. MattoussiH. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles.Nano Lett.20077103157316410.1021/nl071729+ 17845066
    [Google Scholar]
  76. DengW. XieF. BaltarH.T.M.C.M. GoldysE.M. Metal-enhanced fluorescence in the life sciences: Here, now and beyond.Phys. Chem. Chem. Phys.20131538156951570810.1039/c3cp50206f 23552881
    [Google Scholar]
  77. DrazM.S. ShafieeH. Applications of gold nanoparticles in virus detection.Theranostics2018871985201710.7150/thno.23856 29556369
    [Google Scholar]
  78. WanX.Y. ZhengL.L. GaoP.F. YangX.X. LiC.M. LiY.F. HuangC.Z. Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells.Sci. Rep.201441452910.1038/srep04529 24681709
    [Google Scholar]
  79. NitzscheB. RuhnowF. DiezS. Quantum-dot-assisted characterization of microtubule rotations during cargo transport.Nat. Nanotechnol.20083955255610.1038/nnano.2008.216 18772917
    [Google Scholar]
  80. PierobonP. AchouriS. CourtyS. DunnA.R. SpudichJ.A. DahanM. CappelloG. Velocity, processivity, and individual steps of single myosin V molecules in live cells.Biophys. J.200996104268427510.1016/j.bpj.2009.02.045 19450497
    [Google Scholar]
  81. NelsonS.R. AliM.Y. TrybusK.M. WarshawD.M. Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells.Biophys. J.200997250951810.1016/j.bpj.2009.04.052 19619465
    [Google Scholar]
  82. WangY. AjtaiK. BurghardtT.P. The Qdot-labeled actin super-resolution motility assay measures low-duty cycle muscle myosin step size.Biochemistry20135291611162110.1021/bi301702p 23383646
    [Google Scholar]
  83. LiR.S. YuanB. LiuJ.H. LiuM.L. GaoP.F. LiY.F. LiM. HuangC.Z. Boron and nitrogen co-doped single-layered graphene quantum dots: A high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer.J. Mater. Chem. B Mater. Biol. Med.20175448719872410.1039/C7TB02356A 32264265
    [Google Scholar]
  84. HanS. DengR. GuQ. NiL. HuynhU. ZhangJ. YiZ. ZhaoB. TamuraH. PershinA. XuH. HuangZ. AhmadS. Abdi-JalebiM. SadhanalaA. TangM.L. BakulinA. BeljonneD. LiuX. RaoA. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright.Nature2020587783559459910.1038/s41586‑020‑2932‑2 33239799
    [Google Scholar]
  85. FanY. ZhangF. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing.Adv. Opt. Mater.201977180141710.1002/adom.201801417
    [Google Scholar]
  86. LiD. LiuQ. QiQ. ShiH. HsuE.C. ChenW. YuanW. WuY. LinS. ZengY. XiaoZ. XuL. ZhangY. StoyanovaT. JiaW. ChengZ. Gold nanoclusters for NIR-II fluorescence imaging of bones.Small20201643e200385110.1002/smll.202003851
    [Google Scholar]
  87. MaD. XuX. HuM. WangJ. ZhangZ. YangJ. MengL. Rare-earth-based nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (VIS) and NIR-NIR dual-conversion luminescence for multimodal imaging.Chem. Asian J.20161171050105810.1002/asia.201501456 26788691
    [Google Scholar]
  88. MahataM. BaeH. LeeK. Upconversion luminescence sensitized ph-nanoprobes.Molecules20172212206410.3390/molecules22122064 29186844
    [Google Scholar]
  89. HilderbrandS.A. WeisslederR. Near-infrared fluorescence: Application to in vivo molecular imaging.Curr. Opin. Chem. Biol.2010141717910.1016/j.cbpa.2009.09.029 19879798
    [Google Scholar]
  90. IdrisN.M. GnanasammandhanM.K. ZhangJ. HoP.C. MahendranR. ZhangY. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers.Nat. Med.201218101580158510.1038/nm.2933 22983397
    [Google Scholar]
  91. ShinK. JungT. LeeE. LeeG. GohY. HeoJ. JungM. JoE.J. LeeH. KimM.G. LeeK.T. Distinct mechanisms for the upconversion of NaYF4:Yb3+, Er3+ nanoparticles revealed by stimulated emission depletion.Phys. Chem. Chem. Phys.201719159739974410.1039/C7CP00918F 28367577
    [Google Scholar]
  92. BaeY.M. ParkY.I. NamS.H. KimJ.H. LeeK. KimH.M. YooB. ChoiJ.S. LeeK.T. HyeonT. SuhY.D. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells.Biomaterials201233359080908610.1016/j.biomaterials.2012.08.039 22981077
    [Google Scholar]
  93. ChengS. LiuQ. ZhouX. GuY. YuanW. FengW. LiF. Reversible ratiometric probe combined with the time-gated method for accurate in vivo gastrointestinal pH sensing.ACS Appl. Mater. Interfaces20201223255572556410.1021/acsami.0c04237 32329996
    [Google Scholar]
  94. PangG. ZhangY. WangX. PanH. ZhangX. LiY. ZhangS. YanC. SunL. WangH. ChangJ. In vivo high-contrast visualization of upconversion nanoparticle labeled virus using time-resolved approach.Nano Today20214010126410.1016/j.nantod.2021.101264
    [Google Scholar]
  95. OliveiraD.A.P. GlauserD.L. LaimbacherA.S. StrasserR. SchranerE.M. WildP. ZieglerU. BreakefieldX.O. AckermannM. FraefelC. Live visualization of herpes simplex virus type 1 compartment dynamics.J. Virol.200882104974499010.1128/JVI.02431‑07 18337577
    [Google Scholar]
  96. IshidaK. NoguchiT. KimuraS. SuzukiH. EbinaH. MoritaE. Tracking of human parvovirus b19 virus-like particles using short peptide tags reveals a membrane-associated extracellular release of these particles.J. Virol.2023972e01631e2210.1128/jvi.01631‑22 36749078
    [Google Scholar]
  97. LampeM. BriggsJ.A.G. EndressT. GlassB. RiegelsbergerS. KräusslichH.G. LambD.C. BräuchleC. MüllerB. Double-labelled HIV-1 particles for study of virus–cell interaction.Virology200736019210410.1016/j.virol.2006.10.005 17097708
    [Google Scholar]
  98. Wojta-StremayrD. PicklW. Fluorosomes: Fluorescent virus-like nanoparticles that represent a convenient tool to visualize receptor-ligand interactions.Sensors20131378722874910.3390/s130708722 23881135
    [Google Scholar]
  99. MetznerC. KochanF. DangerfieldJ.A. Fluorescence molecular painting of enveloped viruses.Mol. Biotechnol.201353191810.1007/s12033‑012‑9616‑6 23104232
    [Google Scholar]
  100. SivaramanD. BiswasP. CellaL.N. YatesM.V. ChenW. Detecting RNA viruses in living mammalian cells by fluorescence microscopy.Trends Biotechnol.201129730731310.1016/j.tibtech.2011.02.006 21529975
    [Google Scholar]
  101. BaumgärtelV. MüllerB. LambD.C. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.Viruses20124577779910.3390/v4050777 22754649
    [Google Scholar]
  102. DasS.C. PandaD. NayakD. PattnaikA.K. Biarsenical labeling of vesicular stomatitis virus encoding tetracysteine-tagged M protein allows dynamic imaging of m protein and virus uncoating in infected cells.J. Virol.20098362611262210.1128/JVI.01668‑08 19153240
    [Google Scholar]
  103. SunX. ZhangA. BakerB. SunL. HowardA. BuswellJ. MaurelD. MasharinaA. JohnssonK. NorenC.J. XuM.Q. CorrêaI.R. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.ChemBioChem201112142217222610.1002/cbic.201100173 21793150
    [Google Scholar]
  104. LiS. WangD. GhulamA. LiX. LiM. LiQ. MaY. WangL. WuH. CuiZ. ZhangX.E. Tracking the replication-competent zika virus with tetracysteine-tagged capsid protein in living cells.J. Virol.2022967e01846e2110.1128/jvi.01846‑21 35285687
    [Google Scholar]
  105. van der SchaarH.M. RustM.J. WaartsB.L. van der Ende-MetselaarH. KuhnR.J. WilschutJ. ZhuangX. SmitJ.M. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking.J. Virol.20078121120191202810.1128/JVI.00300‑07 17728239
    [Google Scholar]
  106. Ayala-NuñezN.V. WilschutJ. SmitJ.M. Monitoring virus entry into living cells using DiD-labeled dengue virus particles.Methods201155213714310.1016/j.ymeth.2011.07.009 21855634
    [Google Scholar]
  107. CollerK.E. BergerK.L. HeatonN.S. CooperJ.D. YoonR. RandallG. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis.PLoS Pathog.2009512e100070210.1371/journal.ppat.1000702 20041214
    [Google Scholar]
  108. SeisenbergerG. RiedM.U. EndreßT. BüningH. HallekM. BräuchleC. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus.Science200129455481929193210.1126/science.1064103 11729319
    [Google Scholar]
  109. Washington-HughesC.L. ChengY. DuanX. CaiL. LeeL.A. WangQ. In vivo virus-based macrofluorogenic probes target azide-labeled surface glycans in MCF-7 breast cancer cells.Mol. Pharm.2013101435010.1021/mp3002528 22998503
    [Google Scholar]
  110. RosenkeK. FortunatoE.A. Bromodeoxyuridine-labeled viral particles as a tool for visualization of the immediate-early events of human cytomegalovirus infection.J. Virol.200478147818782210.1128/JVI.78.14.7818‑7822.2004 15220456
    [Google Scholar]
  111. BrandenburgB. LeeL.Y. LakadamyaliM. RustM.J. ZhuangX. HogleJ.M. Imaging poliovirus entry in live cells.PLoS Biol.200757e18310.1371/journal.pbio.0050183 17622193
    [Google Scholar]
  112. LiuS.L. TianZ.Q. ZhangZ.L. WuQ.M. ZhaoH.S. RenB. PangD.W. High-efficiency dual labeling of influenza virus for single-virus imaging.Biomaterials201233317828783310.1016/j.biomaterials.2012.07.026 22854679
    [Google Scholar]
  113. HuangL.L. ZhouP. WangH.Z. ZhangR. HaoJ. XieH.Y. HeZ.K. A new stable and reliable method for labeling nucleic acids of fully replicative viruses.Chem. Commun.201248182424242610.1039/c2cc17069h 22273842
    [Google Scholar]
  114. DrummenG.P.C. Quantum dots-from synthesis to applications in biomedicine and life sciences.Int. J. Mol. Sci.201011115416310.3390/ijms11010154 20162007
    [Google Scholar]
  115. JinZ. HildebrandtN. Semiconductor quantum dots for in vitro diagnostics and cellular imaging.Trends Biotechnol.201230739440310.1016/j.tibtech.2012.04.005 22608980
    [Google Scholar]
  116. JooK.I. FangY. LiuY. XiaoL. GuZ. TaiA. LeeC.L. TangY. WangP. Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates.ACS Nano2011553523353510.1021/nn102651p 21473596
    [Google Scholar]
  117. HaoJ. HuangL.L. ZhangR. WangH.Z. XieH.Y. A mild and reliable method to label enveloped virus with quantum dots by copper-free click chemistry.Anal. Chem.201284198364837010.1021/ac301918t 22946933
    [Google Scholar]
  118. ZhangF. ZhengZ. LiuS.L. LuW. ZhangZ. ZhangC. ZhouP. ZhangY. LongG. HeZ. PangD.W. HuQ. WangH. Self-biotinylation and site-specific double labeling of baculovirus using quantum dots for single-virus in-situ tracking.Biomaterials201334307506751810.1016/j.biomaterials.2013.06.030 23831187
    [Google Scholar]
  119. ChenY.H. WangC.H. ChangC.W. PengC.A. In situ formation of viruses tagged with quantum dots.Integr. Biol.201025-625826410.1039/b926852a 20532319
    [Google Scholar]
  120. LiuS.L. ZhangZ.L. TianZ.Q. ZhaoH.S. LiuH. SunE.Z. XiaoG.F. ZhangW. WangH.Z. PangD.W. Effectively and efficiently dissecting the infection of influenza virus by quantum-dot-based single-particle tracking.ACS Nano20126114115010.1021/nn2031353 22117089
    [Google Scholar]
  121. LiuH. LiuY. LiuS. PangD.W. XiaoG. Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus.J. Virol.201185136252626210.1128/JVI.00109‑11 21525360
    [Google Scholar]
  122. DepienneS. BouzelhaM. CourtoisE. PavageauK. LalysP.A. MarchandM. Alvarez-DortaD. NedellecS. Marín-FernándezL. GrandjeanC. BoujtitaM. DeniaudD. MévelM. GouinS.G. Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces.Nat. Commun.2023141512210.1038/s41467‑023‑40534‑0 37612288
    [Google Scholar]
  123. MüllerT.G. SakinV. MüllerB. A spotlight on viruses—application of click chemistry to visualize virus-cell interactions.Molecules201924348110.3390/molecules24030481 30700005
    [Google Scholar]
  124. HuangL.L. LuG.H. HaoJ. WangH. YinD.L. XieH.Y. Enveloped virus labeling via both intrinsic biosynthesis and metabolic incorporation of phospholipids in host cells.Anal. Chem.201385105263527010.1021/ac4008144 23600895
    [Google Scholar]
  125. YooL. ParkJ.S. KwonK.C. KimS.E. JinX. KimH. LeeJ. Fluorescent viral nanoparticles with stable in vitro and in vivo activity.Biomaterials201233266194620010.1016/j.biomaterials.2012.05.028 22677189
    [Google Scholar]
  126. Cadena-NavaR.D. HuY. GarmannR.F. NgB. ZelikinA.N. KnoblerC.M. GelbartW.M. Exploiting fluorescent polymers to probe the self-assembly of virus-like particles.J. Phys. Chem. B2011115102386239110.1021/jp1094118 21338131
    [Google Scholar]
  127. MintenI.J. HendriksL.J.A. NolteR.J.M. CornelissenJ.J.L.M. Controlled encapsulation of multiple proteins in virus capsids.J. Am. Chem. Soc.200913149177711777310.1021/ja907843s 19995072
    [Google Scholar]
  128. ZhangY. KeX. ZhengZ. ZhangC. ZhangZ. ZhangF. HuQ. HeZ. WangH. Encapsulating quantum dots into enveloped virus in living cells for tracking virus infection.ACS Nano2013753896390410.1021/nn305189n 23560365
    [Google Scholar]
  129. LiF. GaoD. ZhaiX. ChenY. FuT. WuD. ZhangZ.P. ZhangX.E. WangQ. Tunable, discrete, three-dimensional hybrid nanoarchitectures.Angew. Chem. Int. Ed.201150184202420510.1002/anie.201007433 21472923
    [Google Scholar]
  130. MaA.X. YuC. ZhangM.Y. AoJ. LiuH.Y. ZhangM.Q. SunQ.Q. FuD.D. DuL. LiJ. LiuS.L. WangZ.G. PangD.W. One-step dual-color labeling of viral envelope and intraviral genome with quantum dots harnessing virus infection.Nano Lett.20242482544255210.1021/acs.nanolett.3c04600 38349341
    [Google Scholar]
  131. NienhausK. NienhausG.U. Genetically encodable fluorescent protein markers in advanced optical imaging.Methods Appl. Fluoresc.202210404200210.1088/2050‑6120/ac7d3f 35767981
    [Google Scholar]
  132. KimD.H. TrietH.M. LeeS.H. JazaniS. JangS. AbediS.A.A. LiuX. SeoJ. HaT. ChangY.T. RyuS.H. Super-photostable organic dye for long-term live-cell single-protein imaging.Nat. Methods20251910.1038/s41592‑024‑02584‑0 39815105
    [Google Scholar]
  133. BillintonN. KnightA.W. Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence.Anal. Biochem.2001291217519710.1006/abio.2000.5006 11401292
    [Google Scholar]
  134. IsomuraM. YamadaK. NoguchiK. NishizonoA. Near-infrared fluorescent protein iRFP720 is optimal for in vivo fluorescence imaging of rabies virus infection.J. Gen. Virol.201798112689269810.1099/jgv.0.000950 29039733
    [Google Scholar]
  135. ChiemK. LorenzoM.M. Rangel-MorenoJ. Garcia-HernandezM.D.L.L. ParkJ.G. NogalesA. BlascoR. Martínez-SobridoL. Bi-reporter vaccinia virus for tracking viral infections in vitro and in vivo.Microbiol. Spectr.202193e01601e0162110.1128/Spectrum.01601‑21 34817228
    [Google Scholar]
  136. KimJ.H. BryantH. FiedlerE. CaoT. RaynerJ.O. Real-time tracking of bioluminescent influenza A virus infection in mice.Sci. Rep.2022121315210.1038/s41598‑022‑06667‑w 35210462
    [Google Scholar]
  137. KarasevM.M. StepanenkoO.V. RumyantsevK.A. TuroverovK.K. VerkhushaV.V. Near-infrared fluorescent proteins and their applications.Biochemistry201984S1325010.1134/S0006297919140037 31213194
    [Google Scholar]
  138. KommidiS.S.R. AtkinsonK.M. SmithB.D. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging.J. Mater. Chem. B Mater. Biol. Med.202412348310832010.1039/D4TB01281J 39101969
    [Google Scholar]
  139. ChinnathambiS. ShirahataN. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging.Sci. Technol. Adv. Mater.201920133735510.1080/14686996.2019.1590731 31068983
    [Google Scholar]
  140. LamonS. YuH. ZhangQ. GuM. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications.Light Sci. Appl.202413125210.1038/s41377‑024‑01547‑6 39277593
    [Google Scholar]
  141. LeeA. TsekourasK. CalderonC. BustamanteC. PresséS. Unraveling the thousand word picture: An introduction to super-resolution data analysis.Chem. Rev.2017117117276733010.1021/acs.chemrev.6b00729 28414216
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137372835250421073214
Loading
/content/journals/cnano/10.2174/0115734137372835250421073214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test