Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Biomaterials and tissue engineering have undergone significant advances, particularly with the integration of nanoscience technology. Recent progress in nanostructured scaffolds and nanoparticle-based delivery systems has provided novel opportunities for tissue regeneration. However, the key challenges remain and must be addressed. These include the optimization of the long-term stability of nanoengineered constructs and addressing the concerns regarding nanotoxicity. Fine-tuned mechanical properties enable the adoption of vehicle-based targeted approaches to drug and gene delivery. However, much remains to be learned regarding the interactions between nanomaterials and tissues. Comprehensive safety assessments and standardized toxicity evaluations are essential for clinical translation. These emerging technologies combine the three-dimensional bioprinting of induced pluripotent stem cells with nanomaterials and new pathways for personalized medicine. Nanoengineered smart materials and biosensors have the potential to enable real-time monitoring of engineered tissues, which can pave the way for unparalleled advances in personalized therapies, particularly for chronic diseases. The bioactivity of nanomaterials offers new avenues for tissue regeneration. This review explores the status, successes, challenges, and future directions of biomaterials and tissue engineering, with a specific focus on nanoscience applications. Key areas for future research include nano-bio-interfaces, tissue remodeling, and biofabrication techniques. These insights can guide researchers to navigate the rapidly evolving landscape of nanoscience, related biomaterials, and tissue engineering. The integration of nanomaterials into tissue engineering is an emerging and advanced field that has significant implications for regenerative medicine.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137337233250106115802
2025-01-17
2026-01-07
Loading full text...

Full text loading...

/deliver/fulltext/cnano/22/1/CNANO-22-1-04.html?itemId=/content/journals/cnano/10.2174/0115734137337233250106115802&mimeType=html&fmt=ahah

References

  1. MasonC. DunnillP. A brief definition of regenerative medicine.Regen. Med.2008311510.2217/17460751.3.1.1
    [Google Scholar]
  2. EsmaeiliY. BidramE. BighamA. AtariM. Nasr AzadaniR. TavakoliM. SalehiS. MirhajM. BasiriA. MirzavandiZ. BoshtamM. RafieniaM. Zargar KharaziA. KarbasiS. ShariatiL. ZarrabiA. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix.Alex. Eng. J.20238113716910.1016/j.aej.2023.08.080
    [Google Scholar]
  3. Van BelleghemS.M. MahadikB. SnodderlyK.L. FisherJ.P. Overview of Tissue Engineering Concepts and Applications.Biomaterials Science, 4th ed.; Wagner, D.; Sakiyama Elbert, S.; Zhang, G.; Yaszemski, M. E., Eds.; Elsevier: Waltham, MA.20201289131610.1016/B978‑0‑12‑816137‑1.00081‑7
    [Google Scholar]
  4. KhanM.U.A. AslamM.A. Bin AbdullahM.F. HasanA. ShahS.A. StojanovićG.M. Recent perspective of polymeric biomaterial in tissue engineering– A review.Mater. Today Chem.20233410181810.1016/j.mtchem.2023.101818
    [Google Scholar]
  5. YuJ. ParkS.A. KimW.D. HaT. XinY.Z. LeeJ. LeeD. Current advances in 3D bioprinting technology and its applications for tissue engineering.Polymers 20201212295810.3390/polym12122958 33322291
    [Google Scholar]
  6. ScottT.G. BlackburnG. AshleyM. BayerI.S. GhoshA. BirisA.S. BiswasA. Advances in bionanomaterials for bone tissue engineering.J. Nanosci. Nanotechnol.201313112210.1166/jnn.2013.6733 23646693
    [Google Scholar]
  7. RatnerB.D. ZhangG. A History of Biomaterials.Biomaterials Science (Fourth Edition), Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press20202134
    [Google Scholar]
  8. VacantiC.A. History of tissue engineering and a glimpse into its future.Tissue Eng.20061251137114210.1089/ten.2006.12.1137 16771629
    [Google Scholar]
  9. LangerR. VacantiJ.P. Tissue engineering.Science1993260511092092610.1126/science.8493529 8493529
    [Google Scholar]
  10. HunyadiJ. FarkasB. BertényiC. OláhJ. DobozyA. Keratinocyte grafting: Covering of skin defects by separated autologous keratinocytes in a fibrin net.J. Invest. Dermatol.198789111912010.1111/1523‑1747.ep12580469 2439603
    [Google Scholar]
  11. BarretJ.P. DziewulskiP. WolfS.E. DesaiM.H. NicholsR.J.II HerndonD.N. Effect of topical and subcutaneous epinephrine in combination with topical thrombin in blood loss during immediate near-total burn wound excision in pediatric burned patients.Burns199925650951310.1016/S0305‑4179(99)00038‑8 10498359
    [Google Scholar]
  12. LitowczenkoJ. Woźniak-BudychM.J. StaszakK. WieszczyckaK. JurgaS. TylkowskiB. Milestones and current achievements in development of multifunctional bioscaffolds for medical application.Bioact. Mater.2021682412243810.1016/j.bioactmat.2021.01.007 33553825
    [Google Scholar]
  13. O’BrienF. J. Biomaterials & scaffolds for tissue engineering.Mater. Today2011143889510.1016/S1369‑7021(11)70058‑X
    [Google Scholar]
  14. AjmalS. Athar HashmiF. ImranI. Recent progress in development and applications of biomaterials.Mater. Today Proc.20226238539110.1016/j.matpr.2022.04.233
    [Google Scholar]
  15. YeJ. XieC. WangC. HuangJ. YinZ. HengB.C. ChenX. ShenW. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization.Bioact. Mater.20216114096410910.1016/j.bioactmat.2021.04.017 33997496
    [Google Scholar]
  16. KumarS.S.D. AbrahamseH. Advancement of nanobiomaterials to deliver natural compounds for tissue engineering applications.Int. J. Mol. Sci.20202118675210.3390/ijms21186752 32942542
    [Google Scholar]
  17. GaharwarA.K. SinghI. KhademhosseiniA. Engineered biomaterials for in situ tissue regeneration.Nat. Rev. Mater.20205968670510.1038/s41578‑020‑0209‑x
    [Google Scholar]
  18. KwonS.G. KwonY.W. LeeT.W. ParkG.T. KimJ.H. Recent advances in stem cell therapeutics and tissue engineering strategies.Biomater. Res.20182213610.1186/s40824‑018‑0148‑4 30598836
    [Google Scholar]
  19. WertG. MummeryC. Human embryonic stem cells: Research, ethics and policy.Hum. Reprod.200318467268210.1093/humrep/deg143 12660256
    [Google Scholar]
  20. AssenL.S. JongsmaK.R. IsasiR. TryfonidouM.A. BredenoordA.L. Recognizing the ethical implications of stem cell research: A call for broadening the scope.Stem Cell Reports20211671656166110.1016/j.stemcr.2021.05.021 34214488
    [Google Scholar]
  21. FaragM.M. Recent trends on biomaterials for tissue regeneration applications.: ReviewJ. Mater. Sci.2023582527558[review]10.1007/s10853‑022‑08102‑x
    [Google Scholar]
  22. EldeebA.E. SalahS. ElkasabgyN.A. Biomaterials for tissue engineering applications and current updates in the field: A comprehensive review.AAPS PharmSciTech202223726710.1208/s12249‑022‑02419‑1 36163568
    [Google Scholar]
  23. ChenX.B. Fazel Anvari-YazdiA. DuanX. ZimmerlingA. GharraeiR. SharmaN.K. SweilemS. NingL. Biomaterials / bioinks and extrusion bioprinting.Bioact. Mater.20232851153610.1016/j.bioactmat.2023.06.006 37435177
    [Google Scholar]
  24. KaramchandL. MakeiffD. GaoY. AzyatK. SerpeM.J. KulkaM. Biomaterial inks and bioinks for fabricating 3D biomimetic lung tissue: A delicate balancing act between biocompatibility and mechanical printability.Bioprinting202329e0025510.1016/j.bprint.2022.e00255
    [Google Scholar]
  25. Roberto de BarrosN. WangC. MaityS. PeirsmanA. NasiriR. HerlandA. ErmisM. KawakitaS. Gregatti CarvalhoB. Hosseinzadeh KouchehbaghiN. Donizetti HerculanoR. TirpákováZ. Mohammad Hossein DabiriS. Lucas TanakaJ. FalconeN. ChoroomiA. ChenR. HuangS. ZisblattE. HuangY. RashadA. KhorsandiD. GangradeA. VoskanianL. ZhuY. LiB. AkbariM. LeeJ. Remzi DokmeciM. KimH.J. KhademhosseiniA. Engineered organoids for biomedical applications.Adv. Drug Deliv. Rev.202320311514210.1016/j.addr.2023.115142 37967768
    [Google Scholar]
  26. HoferM. LutolfM.P. Engineering organoids.Nat. Rev. Mater.20216540242010.1038/s41578‑021‑00279‑y 33623712
    [Google Scholar]
  27. BrovoldM. AlmeidaJ.I. Pla-PalacínI. Sainz-ArnalP. Sánchez-RomeroN. RivasJ.J. AlmeidaH. DacharyP.R. Serrano-AullóT. SokerS. BaptistaP.M. Naturally-derived biomaterials for tissue engineering applications.Adv. Exp. Med. Biol.2018107742144910.1007/978‑981‑13‑0947‑2_23 30357702
    [Google Scholar]
  28. TroyE. TilburyM.A. PowerA.M. WallJ.G. Nature-based biomaterials and their application in biomedicine.Polymers20211319332110.3390/polym13193321 34641137
    [Google Scholar]
  29. CacopardoL. Biomaterials and biocompatibility.Human Orthopaedic Biomechanics. InnocentiB. GalbuseraF. Academic Press202234135910.1016/B978‑0‑12‑824481‑4.00038‑X
    [Google Scholar]
  30. AzevedoH.S. MataA. Embracing complexity in biomaterials design.Biomater. Biosyst.2022610003910.1016/j.bbiosy.2022.100039 36824165
    [Google Scholar]
  31. NaikH.S. SahP.M. RautR.W. Biomaterials in Drug Delivery Systems.Advanced Drug Delivery: Methods and Applications. SantraT.S. ShindeA.U.S. SingaporeSpringer Nature Singapore202329133210.1007/978‑981‑99‑6564‑9_12
    [Google Scholar]
  32. DuncanE. Regulatory Constraints for Medical Products Using Biomaterials.Academic Press2020
    [Google Scholar]
  33. PiresJ.R.A. SouzaV.G.L. FuciñosP. PastranaL. FernandoA.L. Methodologies to assess the biodegradability of bio-based polymers—current knowledge and existing gaps.Polymers2022147135910.3390/polym14071359 35406232
    [Google Scholar]
  34. SpechtA. CrowstonK. Interdisciplinary collaboration from diverse science teams can produce significant outcomes.PLoS One20221711e027804310.1371/journal.pone.0278043 36445918
    [Google Scholar]
  35. SabatiniM.T. ChalmersM. The cost of biotech innovation: Exploring research and development costs of cell and gene therapies.Pharmaceut. Med.202337536537510.1007/s40290‑023‑00480‑0 37286928
    [Google Scholar]
  36. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.12884 32961010
    [Google Scholar]
  37. ZaszczyńskaA. Moczulska-HeljakM. GradysA. SajkiewiczP. Advances in 3D printing for tissue engineering.Materials20211412314910.3390/ma14123149 34201163
    [Google Scholar]
  38. LiY. LiN. De OliveiraN. WangS. Implantable bioelectronics toward long-term stability and sustainability.Matter2021441125114110.1016/j.matt.2021.02.001
    [Google Scholar]
  39. HasanA. MorshedM. MemicA. HassanS. WebsterT. MareiH. Nanoparticles in tissue engineering: Applications, challenges and prospects.Int. J. Nanomedicine2018135637565510.2147/IJN.S153758 30288038
    [Google Scholar]
  40. BlancF. OttimofioreG. Regulatory Compliance in a Global Perspective: Developing Countries, Emerging Markets and the Role of International Development Institutions.CambridgeCambridge University Press2021
    [Google Scholar]
  41. LiuS. YuJ.M. GanY.C. QiuX.Z. GaoZ.C. WangH. ChenS.X. XiongY. LiuG.H. LinS.E. McCarthyA. JohnJ.V. WeiD.X. HouH.H. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications.Mil. Med. Res.20231011610.1186/s40779‑023‑00448‑w 36978167
    [Google Scholar]
  42. MarshallG. ParraÁ. Innovation and competition: The role of the product market.Int. J. Ind. Organ.20196522124710.1016/j.ijindorg.2019.04.001
    [Google Scholar]
  43. ReddyM.S.B. PonnammaD. ChoudharyR. SadasivuniK.K. A comparative review of natural and synthetic biopolymer composite scaffolds.Polymers2021137110510.3390/polym13071105 33808492
    [Google Scholar]
  44. BasakS. Is 4D printing at the forefront of transformations in tissue engineering and beyond?Biomed. Mater. Devices20242258760010.1007/s44174‑024‑00161‑9
    [Google Scholar]
  45. CaoD. DingJ. Recent advances in regenerative biomaterials.Regen. Biomater.20229rbac09810.1093/rb/rbac098 36518879
    [Google Scholar]
  46. AhmedA. AryaS. GuptaV. FurukawaH. KhoslaA. 4D printing: Fundamentals, materials, applications and challenges.Polymer (Guildf.)202122812392610.1016/j.polymer.2021.123926
    [Google Scholar]
  47. SpoialăA. IlieC-I. FicaiD. FicaiA. Biomaterials.Biomaterials and Tissue Engineering. GunduzO. EglesC. PérezR.A. FicaiD. UstundagC.B. ChamSpringer International Publishing20239712910.1007/978‑3‑031‑35832‑6_4
    [Google Scholar]
  48. PunjS. SinghJ. SinghK. Ceramic biomaterials: Properties, state of the art and future prospectives.Ceram. Int.20214720280592807410.1016/j.ceramint.2021.06.238
    [Google Scholar]
  49. LalzawmlianaV. MukherjeeP. RoyS. RoyM. NandiS.K. Ceramic Biomaterials in Advanced Biomedical Applications.Functional Biomaterials: Drug Delivery and Biomedical Applications. JanaS. JanaS. Springer Singapore202237140810.1007/978‑981‑16‑7152‑4_14
    [Google Scholar]
  50. QiY. LvH. HuangQ. PanG. The synergetic effect of 3D printing and electrospinning techniques in the fabrication of bone scaffolds.Ann. Biomed. Eng.20245261518153310.1007/s10439‑024‑03500‑5 38530536
    [Google Scholar]
  51. AbdelazizA.G. NagehH. AbdoS.M. AbdallaM.S. AmerA.A. Abdal-hayA. BarhoumA. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges.Bioengineering202310220410.3390/bioengineering10020204 36829698
    [Google Scholar]
  52. DeyM. OzbolatI.T. 3D bioprinting of cells, tissues and organs.Sci. Rep.20201011402310.1038/s41598‑020‑70086‑y 32811864
    [Google Scholar]
  53. Muskan; Gupta, D.; Negi, N.P. 3D bioprinting: Printing the future and recent advances.Bioprinting202227e0021110.1016/j.bprint.2022.e00211
    [Google Scholar]
  54. Mendoza-CerezoL. JesúsM.R. Macías-GarcíaA. Marcos-RomeroA.C. Díaz-ParralejoA. Evolution of bioprinting and current applications.Int. J. Bioprint.20239474210.18063/ijb.742 37323489
    [Google Scholar]
  55. WangX. Bioartificial organ manufacturing technologies.Cell Transplant.201928151710.1177/0963689718809918 30477315
    [Google Scholar]
  56. SongD. XuY. LiuS. WenL. WangX. Progress of 3D bioprinting in organ manufacturing.Polymers20211318317810.3390/polym13183178 34578079
    [Google Scholar]
  57. ZhouT. YuanZ. WengJ. PeiD. DuX. HeC. LaiP. Challenges and advances in clinical applications of mesenchymal stromal cells.J. Hematol. Oncol.20211412410.1186/s13045‑021‑01037‑x 33579329
    [Google Scholar]
  58. KimH.S. KumbarS.G. NukavarapuS.P. Biomaterial-directed cell behavior for tissue engineering.Curr. Opin. Biomed. Eng.20211710026010.1016/j.cobme.2020.100260 33521410
    [Google Scholar]
  59. ChangE.A. JinS.W. NamM.H. KimS.D. Human induced pluripotent stem cells: Clinical significance and applications in neurologic diseases.J. Korean Neurosurg. Soc.201962549350110.3340/jkns.2018.0222 31392877
    [Google Scholar]
  60. WangL. CaoJ. WangY. LanT. LiuL. WangW. JinN. GongJ. ZhangC. TengF. YanG. LiC. LiJ. WanH. HuB. LiW. ZhaoX. QiZ. ZhaoT. ZhouQ. Immunogenicity and functional evaluation of iPSC-derived organs for transplantation.Cell Discov.2015111501510.1038/celldisc.2015.15 27462414
    [Google Scholar]
  61. DossM.X. SachinidisA. Current challenges of iPSC-based disease modeling and therapeutic implications.Cells20198540310.3390/cells8050403 31052294
    [Google Scholar]
  62. VelmuruganB.K. Bharathi PriyaL. PoornimaP. LeeL.J. BaskaranR. Biomaterial aided differentiation and maturation of induced pluripotent stem cells.J. Cell. Physiol.201923468443845410.1002/jcp.27769 30565686
    [Google Scholar]
  63. RamalingamM. RanaD. Impact of nanotechnology in induced pluripotent stem cells-driven tissue engineering and regenerative medicine.Journal of Bionanoscience201591132110.1166/jbns.2015.1277
    [Google Scholar]
  64. ShiY. InoueH. WuJ.C. YamanakaS. Induced pluripotent stem cell technology: A decade of progress.Nat. Rev. Drug Discov.201716211513010.1038/nrd.2016.245 27980341
    [Google Scholar]
  65. KalirajanC. DukleA. NathanaelA.J. OhT.H. ManivasagamG. A critical review on polymeric biomaterials for biomedical applications.Polymers20211317301510.3390/polym13173015 34503054
    [Google Scholar]
  66. NikolovaM.P. ChavaliM.S. Recent advances in biomaterials for 3D scaffolds: A review.Bioact. Mater.2019427129210.1016/j.bioactmat.2019.10.005 31709311
    [Google Scholar]
  67. PinaS. RibeiroV.P. MarquesC.F. MaiaF.R. SilvaT.H. ReisR.L. OliveiraJ.M. Scaffolding strategies for tissue engineering and regenerative medicine applications.Materials20191211182410.3390/ma12111824 31195642
    [Google Scholar]
  68. PattanayakI. AlexY. MohantyS. Advancing strategies towards the development of tissue engineering scaffolds: A review.J. Mater. Sci.20235832128471289810.1007/s10853‑023‑08798‑5
    [Google Scholar]
  69. ChenS. GilC.J. NingL. JinL. PerezL. KabboulG. TomovM.L. SerpooshanV. Adhesive tissue engineered scaffolds: Mechanisms and applications.Front. Bioeng. Biotechnol.2021968307910.3389/fbioe.2021.683079 34354985
    [Google Scholar]
  70. ChristyP.N. BashaS.K. KumariV.S. BashirA.K.H. MaazaM. KaviyarasuK. ArasuM.V. Al-DhabiN.A. IgnacimuthuS. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review.J. Drug Deliv. Sci. Technol.20205510145210.1016/j.jddst.2019.101452
    [Google Scholar]
  71. ZhengX. ZhangP. FuZ. MengS. DaiL. YangH. Applications of nanomaterials in tissue engineering.RSC Advances20211131190411905810.1039/D1RA01849C 35478636
    [Google Scholar]
  72. ZhangL. WebsterT.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration.Nano Today200941668010.1016/j.nantod.2008.10.014
    [Google Scholar]
  73. PadmanabhanJ. KyriakidesT.R. Nanomaterials, inflammation, and tissue engineering.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157335537010.1002/wnan.1320 25421333
    [Google Scholar]
  74. ParkH. CannizzaroC. Vunjak-NovakovicG. LangerR. VacantiC.A. FarokhzadO.C. Nanofabrication and microfabrication of functional materials for tissue engineering.Tissue Eng.20071381867187710.1089/ten.2006.0198 17518744
    [Google Scholar]
  75. ZhangZ. GaoS. HuY.N. ChenX. ChengC. FuX.L. ZhangS.S. WangX.L. CheY.W. ZhangC. ChaiR.J. Ti3C2TxMXene composite 3D hydrogel potentiates mTOR signaling to promote the generation of functional hair cells in cochlea organoids.Adv. Sci. (Weinh.)2022932220355710.1002/advs.202203557 36117048
    [Google Scholar]
  76. RenS. ZhouY. ZhengK. XuX. YangJ. WangX. MiaoL. WeiH. XuY. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering.Bioact. Mater.2022724225310.1016/j.bioactmat.2021.05.037 34466730
    [Google Scholar]
  77. XuC. XuY. YangM. ChangY. NieA. LiuZ. WangJ. LuoZ. Black‐phosphorus‐incorporated hydrogel as a conductive and biodegradable platform for enhancement of the neural differentiation of mesenchymal stem cells.Adv. Funct. Mater.20203039200017710.1002/adfm.202000177
    [Google Scholar]
  78. DhokeN.R. GeesalaR. DasA. Low oxidative stress-mediated proliferation via JNK-FOXO3a-catalase signaling in transplanted adult stem cells promotes wound tissue regeneration.Antioxid. Redox Signal.201828111047106510.1089/ars.2016.6974 28826225
    [Google Scholar]
  79. SunX. ZhuX. ZengY. ZhangH. ZengJ. FengW. LiJ. ZengY. The effect of posterior capsule repair in total hip arthroplasty: A systematic review and meta-analysis.BMC Musculoskelet. Disord.202021126310.1186/s12891‑020‑03244‑y 32316961
    [Google Scholar]
  80. GondaA. ZhaoN. ShahJ.V. CalvelliH.R. KantamneniH. FrancisN.L. GanapathyV. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine.Med One201944 31592196
    [Google Scholar]
  81. UrieR. GhoshD. RidhaI. RegeK. Inorganic nanomaterials for soft tissue repair and regeneration.Annu. Rev. Biomed. Eng.201820135337410.1146/annurev‑bioeng‑071516‑044457 29621404
    [Google Scholar]
  82. LiG. ZhouT. LinS. ShiS. LinY. Nanomaterials for craniofacial and dental tissue engineering.J. Dent. Res.201796772573210.1177/0022034517706678 28463533
    [Google Scholar]
  83. GroundsM.D. Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances.Clin. Exp. Pharmacol. Physiol.201845439040010.1111/1440‑1681.12899 29193254
    [Google Scholar]
  84. SchmidtT. XiangY. BaoX. SunT. A paradigm shift in tissue engineering: From a top–down to a bottom–up strategy.Processes20219693510.3390/pr9060935
    [Google Scholar]
  85. ConnonC.J. Approaches to corneal tissue engineering: Top-down or bottom-up?Procedia Eng.2015110152010.1016/j.proeng.2015.07.004
    [Google Scholar]
  86. ElbertD.L. Bottom-up tissue engineering.Curr. Opin. Biotechnol.201122567468010.1016/j.copbio.2011.04.001 21524904
    [Google Scholar]
  87. Gholipour-KananiA. DaneshiP. A review on centrifugal and electro-centrifugal spinning as new methods of nanofibers fabrication.J. Text. Polym.2022104155
    [Google Scholar]
  88. HuangL. ApkarianR.P. ChaikofE.L. High‐resolution analysis of engineered type I collagen nanofibers by electron microscopy.Scanning200123637237510.1002/sca.4950230603 11770932
    [Google Scholar]
  89. JinH. ChenJ. KarageorgiouV. AltmanG.H. KaplanD.L. Human bone marrow stromal cell responses on electrospun silk fibroin mats.Biomaterials20042561039104710.1016/S0142‑9612(03)00609‑4 14615169
    [Google Scholar]
  90. ShinM. IshiiO. SuedaT. VacantiJ.P. Contractile cardiac grafts using a novel nanofibrous mesh.Biomaterials200425173717372310.1016/j.biomaterials.2003.10.055 15020147
    [Google Scholar]
  91. SkoogS.A. GoeringP.L. NarayanR.J. Stereolithography in tissue engineering.J. Mater. Sci. Mater. Med.201425384585610.1007/s10856‑013‑5107‑y 24306145
    [Google Scholar]
  92. VozziG. MorelliI. VozziF. AndreoniC. SalsedoE. MorachioliA. GiustiP. CiardelliG. SOFT‐MI: A novel microfabrication technique integrating soft‐lithography and molecular imprinting for tissue engineering applications.Biotechnol. Bioeng.2010106580481710.1002/bit.22740 20564617
    [Google Scholar]
  93. LimongiT. SchipaniR. Di VitoA. GiugniA. FrancardiM. TorreB. AllioneM. MieleE. MalaraN. AlrasheedS. RaimondoR. CandeloroP. MollaceV. Di FabrizioE. Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications.Microelectron. Eng.201514113513910.1016/j.mee.2015.02.030
    [Google Scholar]
  94. ChungB.G. LeeK.H. KhademhosseiniA. LeeS.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.Lab Chip2012121455910.1039/C1LC20859D 22105780
    [Google Scholar]
  95. AljabaliA.A.A. ObeidM.A. MishraV. El-TananiM. TambuwalaM.M. Customizable microfluidic devices: Progress, constraints, and future advances.Curr. Drug Deliv.202421101285129910.2174/0115672018264064231017113813 39034714
    [Google Scholar]
  96. ObeidM.A. KhadraI. AljabaliA.A.A. AmawiH. FerroV.A. Characterisation of niosome nanoparticles prepared by microfluidic mixing for drug delivery.Int. J. Pharm. X2022410013710.1016/j.ijpx.2022.100137 36386005
    [Google Scholar]
  97. AlrifaiyA. LindahlO.A. RamserK. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering.Polymers2012431349139810.3390/polym4031349
    [Google Scholar]
  98. NormanJ.J. DesaiT.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds.Ann. Biomed. Eng.20063418910110.1007/s10439‑005‑9005‑4 16525765
    [Google Scholar]
  99. FieldsG.B. LauerJ.L. DoriY. FornsP. YuY.C. TirrellM. Proteinlike molecular architecture: Biomaterial applications for inducing cellular receptor binding and signal transduction.Biopolymers199847214315110.1002/(SICI)1097‑0282(1998)47:2<143::AID‑BIP3>3.0.CO;2‑U 9703769
    [Google Scholar]
  100. TangZ. WangY. PodsiadloP. KotovN.A. Biomedical applications of layer‐by‐layer assembly: From biomimetics to tissue engineering.Adv. Mater.200618243203322410.1002/adma.200600113
    [Google Scholar]
  101. AlzoubiL. AljabaliA.A.A. TambuwalaM.M. Empowering precision medicine: The impact of 3D printing on personalized therapeutic.AAPS PharmSciTech202324822810.1208/s12249‑023‑02682‑w 37964180
    [Google Scholar]
  102. LangW. HuangH. YangL. LuoR. WangY. XueB. YangS. Polymer complex multilayers for drug delivery and medical devices.ACS Appl. Bio Mater.2023693555356510.1021/acsabm.3c00404 37589742
    [Google Scholar]
  103. VermaM. SarkarC. SahaS. Surface Modification of Biodegradable Polymers.Biodegradable Polymers and Their Emerging Applications.Springer2023496810.1007/978‑981‑99‑3307‑5_3
    [Google Scholar]
  104. ShabankhahM. MoghaddaszadehA. NajmoddinN. 3D printed conductive PCL/GO scaffold immobilized with gelatin/CuO accelerates H9C2 cells attachment and proliferation.Prog. Org. Coat.202418610801310.1016/j.porgcoat.2023.108013
    [Google Scholar]
  105. BarthèsJ. ÖzçelikH. HindiéM. Ndreu-HaliliA. HasanA. VranaN.E. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: The recent advances.BioMed Res. Int.2014201411810.1155/2014/921905 25143954
    [Google Scholar]
  106. DubeyA. VahabiH. KumaravelV. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections.ACS Biomater. Sci. Eng.2023974020404410.1021/acsbiomaterials.3c00115 37339247
    [Google Scholar]
  107. ZhangJ. ZhaoS. ZhuM. ZhuY. ZhangY. LiuZ. ZhangC. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia.J. Mater. Chem. B Mater. Biol. Med.20142437583759510.1039/C4TB01063A 32261896
    [Google Scholar]
  108. WuY. Electrohydrodynamic jet 3D printing in biomedical applications.Acta Biomater.2021128214110.1016/j.actbio.2021.04.036 33905945
    [Google Scholar]
  109. RameshS. HarryssonO.L.A. RaoP.K. TamayolA. CormierD.R. ZhangY. RiveroI.V. Extrusion bioprinting: Recent progress, challenges, and future opportunities.Bioprinting202121e0011610.1016/j.bprint.2020.e00116
    [Google Scholar]
  110. MabroukM. BehereiH.H. DasD.B. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering.Mater. Sci. Eng. C202011011071610.1016/j.msec.2020.110716 32204028
    [Google Scholar]
  111. BetancourtN. ChenX. Review of extrusion-based multi-material bioprinting processes.Bioprinting202225e0018910.1016/j.bprint.2021.e00189
    [Google Scholar]
  112. DavoodiE. SarikhaniE. MontazerianH. AhadianS. CostantiniM. SwieszkowskiW. WillerthS.M. WalusK. MofidfarM. ToyserkaniE. KhademhosseiniA. AshammakhiN. Extrusion and microfluidic‐based bioprinting to fabricate biomimetic tissues and organs.Adv. Mater. Technol.202058190104410.1002/admt.201901044 33072855
    [Google Scholar]
  113. AttallaR. PuerstenE. JainN. SelvaganapathyP.R. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.Biofabrication201811101501210.1088/1758‑5090/aaf7c7 30537688
    [Google Scholar]
  114. SaidyN.T. Fernández-ColinoA. HeidariB.S. KentR. VernonM. BasO. MulderrigS. LubigA. Rodríguez-CabelloJ.C. DoyleB. HutmacherD.W. De-Juan-PardoE.M. MelaP. Spatially heterogeneous tubular scaffolds for in situ heart valve tissue engineering using melt electrowriting.Adv. Funct. Mater.20223221211071610.1002/adfm.202110716
    [Google Scholar]
  115. McCoskerA.B. SnowdonM.E. LamontR. WoodruffM.A. PaxtonN.C. Exploiting nonlinear fiber patterning to control tubular scaffold mechanical behavior.Adv. Mater. Technol.2022711220025910.1002/admt.202200259
    [Google Scholar]
  116. FanS. LiS. WuY. LeiH. QinY. FanH. LinY. ZhouC. Customized 3D-printed heterogeneous porous titanium scaffolds for bone tissue engineering.MedComm – Biomaterials and Applications202432e8010.1002/mba2.80
    [Google Scholar]
  117. BeranM. BerkovaE. MusilkovaJ. SedlářA. SlepičkaP. FajstavrD. Mineralised polylactide and polycaprolactone soft foams with hierarchical micro-macro porous structure for tissue engineering.NANOCON 2021 Conference Proeedings, Brno, Czech Republic2021
    [Google Scholar]
  118. XueD. ZhangJ. WangY. MeiD. Digital light processing-based 3d printing of cell-seeding hydrogel scaffolds with regionally varied stiffness.ACS Biomater. Sci. Eng.2019594825483310.1021/acsbiomaterials.9b00696 33448825
    [Google Scholar]
  119. ZhaoC. TanA. PastorinG. HoH.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.Biotechnol. Adv.201331565466810.1016/j.biotechadv.2012.08.001 22902273
    [Google Scholar]
  120. YeG. BaoF. ZhangX. SongZ. LiaoY. FeiY. BunpetchV. HengB.C. ShenW. LiuH. ZhouJ. OuyangH. Nanomaterial-based scaffolds for bone tissue engineering and regeneration.Nanomedicine202015201995201710.2217/nnm‑2020‑0112 32812486
    [Google Scholar]
  121. LyonsJ.G. PlantzM.A. HsuW.K. HsuE.L. MinardiS. Nanostructured biomaterials for bone regeneration.Front. Bioeng. Biotechnol.2020892210.3389/fbioe.2020.00922 32974298
    [Google Scholar]
  122. LopesH.B. FreitasG.P. FantaciniD.M.C. Picanço-CastroV. CovasD.T. RosaA.L. BelotiM.M. Titanium with nanotopography induces osteoblast differentiation through regulation of integrin αV.J. Cell. Biochem.201912010167231673210.1002/jcb.28930 31090958
    [Google Scholar]
  123. KwonY.S. ParkJ.W. Osteogenic differentiation of mesenchymal stem cells modulated by a chemically modified super-hydrophilic titanium implant surface.J. Biomater. Appl.201833220521510.1177/0885328218786873 29984615
    [Google Scholar]
  124. MurphyC.M. HaughM.G. O’BrienF.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering.Biomaterials201031346146610.1016/j.biomaterials.2009.09.063 19819008
    [Google Scholar]
  125. LangenbachF. HandschelJ. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro.Stem Cell Res. Ther.20134511710.1186/scrt328 24073831
    [Google Scholar]
  126. MonteiroA, I. KollmetzT. MalmströmJ. Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review).Biointerphases201813606D30210.1116/1.504523130249098
    [Google Scholar]
  127. ZhengW. GuX. SunX. WuQ. DanH. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells.Artif. Cells Nanomed. Biotechnol.20194712641264910.1080/21691401.2019.1631838 31240956
    [Google Scholar]
  128. Ghasemi-MobarakehL. PrabhakaranM.P. TianL. Shamirzaei-JeshvaghaniE. DehghaniL. RamakrishnaS. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation.World J. Stem Cells20157472874410.4252/wjsc.v7.i4.728 26029344
    [Google Scholar]
  129. ChenY.C. LeeD.C. TaiN.H. ChiuI.M. 7 - Ultrananocrystalline diamond (UNCD) for neural applications.Diamond-Based Materials for Biomedical Applications. NarayanR. Woodhead Publishing201317118510.1533/9780857093516.2.171
    [Google Scholar]
  130. BrammerK.S. ChoiC. FrandsenC.J. OhS. JohnstonG. JinS. Comparative cell behavior on carbon-coated TiO2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells.Acta Biomater.2011762697270310.1016/j.actbio.2011.02.039 21382531
    [Google Scholar]
  131. MajhyB. PriyadarshiniP. SenA.K. Effect of surface energy and roughness on cell adhesion and growth – facile surface modification for enhanced cell culture.RSC Advances20211125154671547610.1039/D1RA02402G 35424027
    [Google Scholar]
  132. MassumiM. AbasiM. BabalooH. TerrafP. SafiM. SaeedM. BarzinJ. ZandiM. SoleimaniM. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds.Tissue Eng. Part A2012185-660962010.1089/ten.tea.2011.0368 21981309
    [Google Scholar]
  133. AhmadH. AryaA. AgrawalS. DwivediA.K. PLGA scaffolds: building blocks for new age therapeutics.Materials for Biomedical Engineering. HolbanA-M. GrumezescuA.M. Elsevier201915520110.1016/B978‑0‑12‑816901‑8.00006‑7
    [Google Scholar]
  134. XingF. LiL. ZhouC. LongC. WuL. LeiH. KongQ. FanY. XiangZ. ZhangX. Regulation and directing stem cell fate by tissue engineering functional microenvironments: Scaffold physical and chemical cues.Stem Cells Int.2019201911610.1155/2019/2180925 31949436
    [Google Scholar]
  135. AndalibN. KehtariM. SeyedjafariE. MotamedN. MatinM.M. Improved efficacy of bio‐mineralization of human mesenchymal stem cells on modified PLLA nanofibers coated with bioactive materials via enhanced expression of integrin α2β1.Polym. Adv. Technol.202031102325233810.1002/pat.4952
    [Google Scholar]
  136. ZhangL. XiongN. LiuY. GanL. Biomimetic cell-adhesive ligand-functionalized peptide composite hydrogels maintain stemness of human amniotic mesenchymal stem cells.Regen. Biomater.202182rbaa05710.1093/rb/rbaa057 33738111
    [Google Scholar]
  137. RasouliR. BarhoumA. UludagH. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance.Biomater. Sci.2018661312133810.1039/C8BM00021B 29744496
    [Google Scholar]
  138. LuL. MikosA.G. The importance of new processing techniques in tissue engineering.MRS Bull.19962111283210.1557/S088376940003181X 11541498
    [Google Scholar]
  139. BoscoR. Van Den BeuckenJ. LeeuwenburghS. JansenJ. Surface engineering for bone implants: A trend from passive to active surfaces.Coatings2012239511910.3390/coatings2030095
    [Google Scholar]
  140. BalaureP.C. Special Issue: Advances in engineered nanostructured antibacterial surfaces and coatings.Coatings2022128104110.3390/coatings12081041
    [Google Scholar]
  141. GranadosA. PleixatsR. VallriberaA. Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures.Molecules20212610300810.3390/molecules26103008 34070166
    [Google Scholar]
  142. WuD. ChenX. ChenT. DingC. WuW. LiJ. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials.Sci. Rep.2015511110510.1038/srep11105 26077243
    [Google Scholar]
  143. BagheriM. MohammadiM. SteeleT.W.J. RamezaniM. Nanomaterial coatings applied on stent surfaces.Nanomedicine201611101309132610.2217/nnm‑2015‑0007 27111467
    [Google Scholar]
  144. ZhangK. LiuT. LiJ.A. ChenJ.Y. WangJ. HuangN. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization.J. Biomed. Mater. Res. A2014102258860910.1002/jbm.a.34714 23520056
    [Google Scholar]
  145. XuT. ZhangN. NicholsH.L. ShiD. WenX. Modification of nanostructured materials for biomedical applications.Mater. Sci. Eng. C200727357959410.1016/j.msec.2006.05.029
    [Google Scholar]
  146. FauchaisP. MontavonG. Plasma spraying: From plasma generation to coating structure.Adv. Heat Transf.20074020534410.1016/S0065‑2717(07)40003‑X
    [Google Scholar]
  147. RathaI. DattaP. BallaV.K. NandiS.K. KunduB. Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: A review.Ceram. Int.20214744426444510.1016/j.ceramint.2020.10.112
    [Google Scholar]
  148. LevingstoneT.J. ArdhaouiM. BenyounisK. LooneyL. StokesJ.T. Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis.Surf. Coat. Tech.2015283293610.1016/j.surfcoat.2015.10.044
    [Google Scholar]
  149. BoccacciniA.R. KeimS. MaR. LiY. ZhitomirskyI. Electrophoretic deposition of biomaterials.J. R. Soc. Interface20107Suppl. 5S581S613 20504802
    [Google Scholar]
  150. Makurat-KasprolewiczB. OssowskaA. Electrophoretically deposited titanium and its alloys in biomedical engineering: Recent progress and remaining challenges.J. Biomed. Mater. Res. B Appl. Biomater.20241121e3534210.1002/jbm.b.35342 37905698
    [Google Scholar]
  151. ZielinskiA. BartmanskiM. Electrodeposited biocoatings, their properties and fabrication technologies: A review.Coatings202010878210.3390/coatings10080782
    [Google Scholar]
  152. Carrera-FigueirasC. Pérez-PadillaY. Estrella-GutiérrezM.A. Uc-CayetanoE.G. Juárez-MorenoJ.A. Avila-OrtegaA. Surface science engineering through sol-gel process.Appl. Surf. Sci.201910.5772/intechopen.83676
    [Google Scholar]
  153. RameshKumar, S.; Shaiju, P.; O’Connor, K.E.; P, R.B. Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends.Curr. Opin. Green Sustain. Chem.202021758110.1016/j.cogsc.2019.12.005
    [Google Scholar]
  154. OzdilD. WimpennyI. AydinH.M. YangY. 13 - Biocompatibility of biodegradable medical polymers.Science and Principles of Biodegradable and Bioresorbable Medical Polymers. ZhangX. Woodhead Publishing201737941410.1016/B978‑0‑08‑100372‑5.00013‑1
    [Google Scholar]
  155. KaymazS.V. NobarH.M. SarıgülH. SoylukanC. AkyüzL. YüceM. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications.Adv. Colloid Interface Sci.202332210303510.1016/j.cis.2023.103035 37931382
    [Google Scholar]
  156. KellerA.A. EhrensA. ZhengY. NowackB. Developing trends in nanomaterials and their environmental implications.Nat. Nanotechnol.202318883483710.1038/s41565‑023‑01409‑z 37280284
    [Google Scholar]
  157. AljabaliA.A.A. ObeidM.A. RezigueM.M. AlqudahA. CharbeN.B. ChellappanD.K. MishraV. PardhiD.M. DurejaH. GuptaG. Nanocelluloses as a novel vehicle for controlled drug delivery.Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications.Springer202113710.1007/978‑3‑030‑62976‑2_36‑1
    [Google Scholar]
  158. AljabaliA.A.A. ObeidM.A. Al ZoubiM.S. CharbeN.B. ChellappanD.K. MishraV. DurejaH. GuptaG. PrasherP. DuaK. Nanocelluloses in sensing technology: Design, preparation, and applications.Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications.Springer202113010.1007/978‑3‑030‑62976‑2_44‑1
    [Google Scholar]
  159. EnnabR.M. AljabaliA.A.A. CharbeN.B. BarhoumA. AlqudahA. TambuwalaM.M. Nanocelluloses in wound healing applications.Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications.Springer202212810.1007/978‑3‑030‑89621‑8_41
    [Google Scholar]
  160. KrauseK.D. The impact of resilience on health: Lessons learned and future directions.Behav. Med.2020463-437537810.1080/08964289.2020.1790975 32787731
    [Google Scholar]
  161. SongR. MurphyM. LiC. TingK. SooC. ZhengZ. Current development of biodegradable polymeric materials for biomedical applications.Drug Des. Devel. Ther.2018123117314510.2147/DDDT.S165440 30288019
    [Google Scholar]
  162. ZeinaliR. del ValleL.J. TorrasJ. PuiggalíJ. Recent progress on biodegradable tissue engineering scaffolds prepared by thermally-induced phase separation (TIPS).Int. J. Mol. Sci.2021227350410.3390/ijms22073504 33800709
    [Google Scholar]
  163. ZhangF. KingM.W. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds.Adv. Healthc. Mater.2020913190135810.1002/adhm.201901358 32424996
    [Google Scholar]
  164. ModrákM. TrebuňováM. BalogováA.F. HudákR. ŽivčákJ. Biodegradable materials for tissue engineering: Development, classification and current applications.J. Funct. Biomater.202314315910.3390/jfb14030159 36976083
    [Google Scholar]
  165. ZhangX. ChenX. HongH. HuR. LiuJ. LiuC. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering.Bioact. Mater.202210153110.1016/j.bioactmat.2021.09.014 34901526
    [Google Scholar]
  166. LiC. GuoC. FitzpatrickV. IbrahimA. ZwierstraM.J. HannaP. LechtigA. NazarianA. LinS.J. KaplanD.L. Design of biodegradable, implantable devices towards clinical translation.Nat. Rev. Mater.201951618110.1038/s41578‑019‑0150‑z
    [Google Scholar]
  167. WeiS. MaJ.X. XuL. GuX.S. MaX.L. Biodegradable materials for bone defect repair.Mil. Med. Res.2020715410.1186/s40779‑020‑00280‑6 33172503
    [Google Scholar]
  168. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  169. ChakrabartyG. VashishthaM. LeederD. Polyethylene in knee arthroplasty: A review.J. Clin. Orthop. Trauma20156210811210.1016/j.jcot.2015.01.096 25983517
    [Google Scholar]
  170. QuinnJ. McFaddenR. ChanC.W. CarsonL. Titanium for orthopedic applications: An overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation.iScience2020231110174510.1016/j.isci.2020.101745 33235984
    [Google Scholar]
  171. KassapidouM. StenportV.F. JohanssonC.B. SyverudM. Hammarström JohanssonP. BörjessonJ. HjalmarssonL. Cobalt chromium alloys in fixed prosthodontics: Investigations of mechanical properties and microstructure.J. Prosthet. Dent.20231302255.e1255.e1010.1016/j.prosdent.2023.05.005 37355405
    [Google Scholar]
  172. ArcosD. Vallet-RegíM. Substituted hydroxyapatite coatings of bone implants.J. Mater. Chem. B Mater. Biol. Med.2020891781180010.1039/C9TB02710F 32065184
    [Google Scholar]
  173. ZhaoR. YangR. CooperP.R. KhurshidZ. ShavandiA. RatnayakeJ. Bone grafts and substitutes in dentistry: A review of current trends and developments.Molecules20212610300710.3390/molecules26103007 34070157
    [Google Scholar]
  174. Farhan-AlanieO.M.H. HrycaiczukA. TinningC. JonesB. StarkA. BrycelandK. Alumina ceramic-on-ceramic hybrid total hip arthroplasty. A median of 15 years follow-up.Eur. J. Orthop. Surg. Traumatol.20223261127113610.1007/s00590‑021‑03087‑w 34357474
    [Google Scholar]
  175. Rico-LlanosG.A. Borrego-GonzálezS. Moncayo-DonosoM. BecerraJ. VisserR. Collagen type I biomaterials as scaffolds for bone tissue engineering.Polymers202113459910.3390/polym13040599 33671329
    [Google Scholar]
  176. JiM. LiJ. WangY. LiF. ManJ. LiJ. ZhangC. PengS. WangS. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects.Carbohydr. Polym.202229712005810.1016/j.carbpol.2022.120058 36184154
    [Google Scholar]
  177. ChuaC.Y.X. LiuH.C. Di TraniN. SusnjarA. HoJ. ScorranoG. RhudyJ. SizovsA. LolliG. HernandezN. NucciM.C. CicaloR. FerrariM. GrattoniA. Carbon fiber reinforced polymers for implantable medical devices.Biomaterials202127112071910.1016/j.biomaterials.2021.120719 33652266
    [Google Scholar]
  178. ZhangM. XuS. WangR. CheY. HanC. FengW. WangC. ZhaoW. Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications.J. Mater. Sci. Technol.202316215717810.1016/j.jmst.2023.04.015
    [Google Scholar]
  179. CannioM. BellucciD. RoetherJ.A. BoccacciniD.N. CannilloV. Bioactive glass applications: A literature review of human clinical trials.Materials20211418544010.3390/ma14185440 34576662
    [Google Scholar]
  180. McInnesA.D. MoserM.A.J. ChenX. Preparation and use of decellularized extracellular matrix for tissue engineering.J. Funct. Biomater.202213424010.3390/jfb13040240 36412881
    [Google Scholar]
  181. LehmannT. VaughnA.E. SealS. LiechtyK.W. ZgheibC. Silk fibroin-based therapeutics for impaired wound healing.Pharmaceutics202214365110.3390/pharmaceutics14030651 35336024
    [Google Scholar]
  182. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials20221224449410.3390/nano12244494 36558344
    [Google Scholar]
  183. RiveroG. Popov Pereira da CunhaM.D. CaraccioloP.C. AbrahamG.A. Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Applications.Tissue Engineering Using Ceramics and Polymers. BoccacciniA. MaP.X. RiveroG. Amsterdam, The NetherlandsElsevier2022Vol. 1764568110.1016/B978‑0‑12‑820508‑2.00020‑9
    [Google Scholar]
  184. WasyłeczkoM. SikorskaW. ChwojnowskiA. Review of synthetic and hybrid scaffolds in cartilage tissue engineering.Membranes2020101134810.3390/membranes10110348 33212901
    [Google Scholar]
  185. AykoraD. UzunM. Bone tissue engineering for Osseointegration: Where are we now?Polym. Bull.202481108595860510.1007/s00289‑024‑05153‑9
    [Google Scholar]
  186. CaoY. ChengP. SangS. XiangC. AnY. WeiX. ShenZ. ZhangY. LiP. Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering.Regen. Biomater.202183rbab01910.1093/rb/rbab01934211731PMC8240606
    [Google Scholar]
  187. ZhangJ. ZhouH. YangK. YuanY. LiuC. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.Biomaterials201334379381939210.1016/j.biomaterials.2013.08.059
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137337233250106115802
Loading
/content/journals/cnano/10.2174/0115734137337233250106115802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test