Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by loss of memory and cognitive impairment. The pathogenesis of AD is complex and involves a variety of processes, including receptor-ligand interaction and receptor-mediated endocytosis. Biofunctionalized metallic nanoparticles (MNPs) represent a cutting-edge technique that addresses significant limitations of existing therapies by precisely delivering therapeutic molecules to disease-specific locations. The review explores innovative therapeutic strategies for Alzheimer's disease (AD), focusing on the roles of amyloid precursor protein and metal nanoparticles. It discusses drug delivery systems, including functionalized metallic nanoparticles, highlighting their potential in enhancing drug efficacy and targeting amyloid plaques. These biofunctionalized MNPs not only help pass the blood-brain barrier (BBB), but also lessen off-target effects and increase medication absorption. Furthermore, they facilitate emerging treatments, such as monoclonal antibodies, aptamers, CRISPR/Cas9 gene therapy, and proteolysis-targeting chimeras (PROTACs), showcasing their mechanisms and benefits in mitigating AD pathology. This paper focuses on MNPs’ ability to control neuroinflammation, a hallmark of AD pathogenesis, and their novel function in improving therapy results. By integrating current findings and addressing limitations in clinical translation, this review sheds light on the future of MNPs-assisted AD treatment.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137361817250325071654
2025-05-08
2026-01-07
Loading full text...

Full text loading...

References

  1. BamfordR.A. WidagdoJ. TakamuraN. EveM. AnggonoV. Oguro-AndoA. The interaction between contactin and amyloid precursor protein and its role in Alzheimer’s disease.Neuroscience202042418420210.1016/j.neuroscience.2019.10.006 31705890
    [Google Scholar]
  2. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.201606210 27025652
    [Google Scholar]
  3. SpillantiniM.G. GoedertM. Tau pathology and neurodegeneration.Lancet Neurol.201312660962210.1016/S1474‑4422(13)70090‑5 23684085
    [Google Scholar]
  4. SharmaB. PervushinK. Magnetic nanoparticles as in vivo tracers for Alzheimer’s disease.Magnetochemistry2020611310.3390/magnetochemistry6010013
    [Google Scholar]
  5. LingD. HyeonT. Chemical design of biocompatible iron oxide nanoparticles for medical applications.Small201399-101450146610.1002/smll.201202111 23233377
    [Google Scholar]
  6. ChaparroC.I.P. LoureiroL.R. ValenteM.A. VideiraP.A. BorgesJ.P. SoaresP.I.P. Application of hyperthermia for cancer treatment: Synthesis and characterization of magnetic nanoparticles and their internalization on tumor cell lines. 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, Portugal. 22-23 Feb 20191410.1109/ENBENG.2019.8692485
    [Google Scholar]
  7. SoaresP.I.P. LaiaC.A.T. CarvalhoA. PereiraL.C.J. CoutinhoJ.T. FerreiraI.M.M. NovoC.M.M. BorgesJ.P. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications.Appl. Surf. Sci.201638324024710.1016/j.apsusc.2016.04.181
    [Google Scholar]
  8. SoaresP.I.P. RomãoJ. MatosR. SilvaJ.C. BorgesJ.P. Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective.Prog. Mater. Sci.202111610074210.1016/j.pmatsci.2020.100742
    [Google Scholar]
  9. Diez-PascualA.M. RahdarA. Functional nanomaterials in biomedicine: Current uses and potential applications.ChemMedChem20221716e20220014210.1002/cmdc.202200142 35729066
    [Google Scholar]
  10. FuZ. XiangJ. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy.Int. J. Mol. Sci.20202123912310.3390/ijms21239123 33266216
    [Google Scholar]
  11. ZhangR. QinX. KongF. ChenP. PanG. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane.Drug Deliv.201926132834210.1080/10717544.2019.1582730 30905189
    [Google Scholar]
  12. SanthoshP.B. UlrihN.P. Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics.Cancer Lett.2013336181710.1016/j.canlet.2013.04.032 23664890
    [Google Scholar]
  13. MittalA. RoyI. GandhiS. Magnetic nanoparticles: An overview for biomedical applications.Magnetochemistry20228910710.3390/magnetochemistry8090107
    [Google Scholar]
  14. XuJ. SunJ. WangY. ShengJ. WangF. SunM. Application of iron magnetic nanoparticles in protein immobilization.Molecules2014198114651148610.3390/molecules190811465 25093986
    [Google Scholar]
  15. WangJ. WangK. ZhuZ. HeY. ZhangC. GuoZ. WangX. Inhibition of metal-induced amyloid β-peptide aggregation by a blood–brain barrier permeable silica–cyclen nanochelator.RSC Advances2019925141261413110.1039/C9RA02358E 35519314
    [Google Scholar]
  16. RuffJ. HüwelS. KoganM.J. SimonU. GallaH.J. The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier.Nanomedicine20171351645165210.1016/j.nano.2017.02.013 28285163
    [Google Scholar]
  17. QinJ. GuanY. LiZ. GuoX. ZhangM. WangD. TangJ. Aptamer conjugated polydopamine-coated gold nanoparticles as a dual-action nanoplatform targeting β-amyloid peptide for Alzheimer’s disease therapy.J. Mater. Chem. B Mater. Biol. Med.202210418525853410.1039/D2TB01499H 36222089
    [Google Scholar]
  18. PerneczkyR. JessenF. GrimmerT. LevinJ. FlöelA. PetersO. FroelichL. Anti-amyloid antibody therapies in Alzheimer’s disease.Brain2023146384284910.1093/brain/awad005 36655336
    [Google Scholar]
  19. CummingsJ. Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics.Drugs202383756957610.1007/s40265‑023‑01858‑9 37060386
    [Google Scholar]
  20. Biogen.A phase 3 multicenter, randomized, double-blind, placebocontrolled, parallel-group study to evaluate the efficacy and safety of aducanumab (BIIB037) in subjects with early Alzheimer’s disease. Report No. NCT024845472021
    [Google Scholar]
  21. KnopmanD.S. HersheyL. Implications of the approval of Lecanemab for Alzheimer disease patient care.Neurol.20231011461062010.1212/WNL.0000000000207438
    [Google Scholar]
  22. MintunM.A. LoA.C. Duggan EvansC. WesselsA.M. ArdayfioP.A. AndersenS.W. ShcherbininS. SparksJ. SimsJ.R. BrysM. ApostolovaL.G. SallowayS.P. SkovronskyD.M. Donanemab in early Alzheimer’s disease.N. Engl. J. Med.2021384181691170410.1056/NEJMoa2100708 33720637
    [Google Scholar]
  23. Eli Lilly and CompanyLilly-News Release. Lilly’s Donanemab Significantly Slowed Cognitive and Functional Decline in Phase 3 Study of Early Alzheimer’s Disease.2023Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-donanemab-significantly-slowed-cognitive-and-functional
    [Google Scholar]
  24. van DyckC.H. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise.Biol. Psychiatry201883431131910.1016/j.biopsych.2017.08.010 28967385
    [Google Scholar]
  25. McDadeE. CummingsJ.L. DhaddaS. SwansonC.J. ReydermanL. KanekiyoM. KoyamaA. IrizarryM. KramerL.D. BatemanR.J. Lecanemab in patients with early Alzheimer’s disease: Detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study.Alzheimers Res. Ther.202214119110.1186/s13195‑022‑01124‑2 36544184
    [Google Scholar]
  26. CummingsJ. OsseA.M.L. CammannD. PowellJ. ChenJ. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.BioDrugs202438152210.1007/s40259‑023‑00633‑2 37955845
    [Google Scholar]
  27. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa2212948 36449413
    [Google Scholar]
  28. SimsJ.R. ZimmerJ.A. EvansC.D. LuM. ArdayfioP. SparksJ. WesselsA.M. ShcherbininS. WangH. Monkul NeryE.S. CollinsE.C. SolomonP. SallowayS. ApostolovaL.G. HanssonO. RitchieC. BrooksD.A. MintunM. SkovronskyD.M. AbreuR. AgarwalP. AggarwalP. AgroninM. AllenA. AltamiranoD. AlvaG. AndersenJ. AndersonA. AndersonD. ArnoldJ. AsadaT. AsoY. AtitV. AyalaR. BadruddojaM. Badzio-jagielloH. BajacekM. BartonD. BearD. BenjaminS. BergeronR. BhatiaP. BlackS. BlockA. BolouriM. BondW. BouthillierJ. BrangmanS. BrewB. BrisbinS. BriskenT. BrodtmannA. BrodyM. BroschJ. BrownC. BrownstoneP. BukowczanS. BurnsJ. CabreraA. CapoteH. CarrascoA. Cevallos YepezJ. ChavezE. ChertkowH. Chyrchel-paszkiewiczU. CiabarraA. ClemmonsE. CohenD. CohenR. CohenI. ConchaM. CostellB. CrimminsD. Cruz-paganY. CueliA. CupeloR. CzarneckiM. DarbyD. DautzenbergP. De DeynP. De La GandaraJ. DeckK. DibenedettoD. DibuonoM. DinnersteinE. DiricanA. DixitS. DobryniewskiJ. DrakeR. DrysdaleP. DuaraR. DuffyJ. EllenbogenA. FaradjiV. FeinbergM. FeldmanR. FishmanS. FlitmanS. ForchettiC. FragaI. FrankA. FrishbergB. FujigasakiH. FukaseH. FumeroI. FurihataK. GallowayC. GandhiR. GeorgeK. GermainM. GitelmanD. GoetschN. GoldfarbD. GoldsteinM. GoldstickL. Gonzalez RojasY. GoodmanI. GreeleyD. GriffinC. GrigsbyE. GroszD. HafnerK. HartD. HeneinS. HerskowitzB. HigashiS. HigashiY. HoG. HodgsonJ. HohenbergM. HollenbeckL. HolubR. HoriT. HortJ. IlkowskiJ. IngramK.J. IsaacM. IshikawaM. JanuL. JohnstonM. JulioW. JustizW. KagaT. KakigiT. KalaferM. KamijoM. KaplanJ. KarathanosM. KatayamaS. KaulS. KeeganA. KerwinD. KhanU. KhanA. KimuraN. KirkG. KlodowskaG. KowaH. KutzC. KwentusJ. LaiR. LallA. LawrenceM. LeeE. LeonR. LinkerG. LisewskiP. LissJ. LiuC. LoskS. LukaszykE. LynchJ. MacfarlaneS. MacsweeneyJ. ManneringN. MarkovicO. MarksD. MasdeuJ. MatsuiY. MatsuishiK. McallisterP. McconneheyB. McelveenA. McgillL. MeccaA. MegaM. MensahJ. MickielewiczA. MinaeianA. MocherlaB. MurphyC. MurphyP. NagashimaH. NairA. NairM. NardandreaJ. NashM. NasreddineZ. NishidaY. NortonJ. NunezL. OchiaiJ. OhkuboT. OkamuraY. OkorieE. OliveraE. O’mahonyJ. OmidvarO. Ortiz-CruzD. OsowaA. PapkaM. ParkerA. PatelP. PatelA. PatelM. PatryC. PeckhamE. PfefferM. PietrasA. PlopperM. PorsteinssonA. Poulin RobitailleR. PrinsN. PuenteO. RatajczakM. RheeM. RitterA. RodriguezR. Rodriguez AblesL. RojasJ. RossJ. RoyerP. RubinJ. RussellD. RutgersS.M. RutrickS. SadowskiM. SafirsteinB. SagisakaT. ScharreD. SchneiderL. SchreiberC. SchriftM. SchulzP. SchwartzH. SchwartzbardJ. ScottJ. SelemL. SethiP. ShaS. SharlinK. SharmaS. ShiovitzT. ShiwachR. SladekM. SloanB. SmithA. SolomonP. SorialE. SosaE. StedmanM. SteenS. SteinL. StolyarA. StoukidesJ. SudohS. SuttonJ. SyedJ. SzigetiK. TachibanaH. TakahashiY. TatenoA. TaylorJ.D. TaylorK. TcheremissineO. ThebaudA. TheinS. ThurmanL. ToenjesS. TojiH. TomaM. TranD. TruebaP. TsujimotoM. TurnerR. UchiyamaA. UssorowskaD. VaishnaviS. ValorE. VandersluisJ. VasquezA. VelezJ. VergheseC. Vodickova-borzovaK. WatsonD. WeidmanD. WeismanD. WhiteA. WillinghamK. WinkelI. WinnerP. WinstonJ. WolffA. YagiH. YamamotoH. YathirajS. YoshiyamaY. ZbochM. Donanemab in early symptomatic Alzheimer disease.JAMA2023330651252710.1001/jama.2023.13239 37459141
    [Google Scholar]
  29. KleinE.G. SchroederK. WesselsA.M. PhippsA. JaphaM. SchillingT. ZimmerJ.A. How donanemab data address the coverage with evidence development questions.Alzheimers Dement.20242043127314010.1002/alz.13700 38323738
    [Google Scholar]
  30. SimanR. ScottR.W. Strategies to alter the progression of Alzheimer’s disease.Curr. Opin. Biotechnol.19967660160710.1016/S0958‑1669(96)80070‑X 8939637
    [Google Scholar]
  31. BitencourtA.L.B. CamposR.M. ClineE.N. KleinW.L. SebollelaA. Antibody fragments as tools for elucidating structure-toxicity relationships and for diagnostic/therapeutic targeting of neurotoxic amyloid oligomers.Int. J. Mol. Sci.20202123892010.3390/ijms21238920 33255488
    [Google Scholar]
  32. LiuY. ChengX. LiH. HuiS. ZhangZ. XiaoY. PengW. Non-coding RNAs as novel regulators of neuroinflammation in Alzheimer’s disease.Front. Immunol.20221390807610.3389/fimmu.2022.908076 35720333
    [Google Scholar]
  33. ZhangY. ZhaoY. AoX. YuW. ZhangL. WangY. ChangW. The role of non-coding RNAs in Alzheimer’s disease: From regulated mechanism to therapeutic targets and diagnostic biomarkers.Front. Aging Neurosci.20211365497810.3389/fnagi.2021.654978 34276336
    [Google Scholar]
  34. SunH. ZhuX. LuP.Y. RosatoR.R. TanW. ZuY. Oligonucleotide aptamers: New tools for targeted cancer therapy.Mol. Ther. Nucleic Acids201438e18210.1038/mtna.2014.32 25093706
    [Google Scholar]
  35. YleraF. LurzR. ErdmannV.A. FürsteJ.P. Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide.Biochem. Biophys. Res. Commun.200229051583158810.1006/bbrc.2002.6354 11820803
    [Google Scholar]
  36. MengH.M. FuT. ZhangX.B. TanW. Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy.Natl. Sci. Rev.201521718410.1093/nsr/nwv001
    [Google Scholar]
  37. LauJ.L. DunnM.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions.Bioorg. Med. Chem.201826102700270710.1016/j.bmc.2017.06.052 28720325
    [Google Scholar]
  38. AileenF.S. WillboldD. Peptides for therapy and diagnosis of Alzheimer’s disease.Curr. Pharm. Des.201218675576710.2174/138161212799277752 22236121
    [Google Scholar]
  39. MinL.J. KobayashiY. MogiM. TsukudaK. YamadaA. YamauchiK. AbeF. IwanamiJ. XiaoJ.Z. HoriuchiM. Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice.PLoS One2017122e017151510.1371/journal.pone.0171515 28158298
    [Google Scholar]
  40. SanchisI. SpinelliR. AschemacherN. HumpolaM.V. SianoA. Acetylcholinesterase inhibitory activity of a naturally occurring peptide isolated from Boana pulchella (Anura: Hylidae) and its analogs.Amino Acids202052338739610.1007/s00726‑019‑02815‑1 31902008
    [Google Scholar]
  41. SpicerC.D. JumeauxC. GuptaB. StevensM.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications.Chem. Soc. Rev.201847103574362010.1039/C7CS00877E 29479622
    [Google Scholar]
  42. NevesA.R. QueirozJ.F. ReisS. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.J. Nanobiotechnology20161412710.1186/s12951‑016‑0177‑x 27061902
    [Google Scholar]
  43. LuoM. LewikG. RatcliffeJ.C. ChoiC.H.J. MäkiläE. TongW.Y. VoelckerN.H. Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma.ACS Appl. Mater. Interf.20191137336373364910.1021/acsami.9b10787 31433156
    [Google Scholar]
  44. LalaniJ. RaichandaniY. MathurR. LalanM. ChutaniK. MishraA.K. MisraA. Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles.J. Biomed. Nanotechnol.20128691892710.1166/jbn.2012.1462 23030000
    [Google Scholar]
  45. DemeuleM. PoirierJ. JodoinJ. BertrandY. DesrosiersR.R. DagenaisC. NguyenT. LanthierJ. GabathulerR. KennardM. JefferiesW.A. KarkanD. TsaiS. FenartL. CecchelliR. BéliveauR. High transcytosis of melanotransferrin (P97) across the blood–brain barrier.J. Neurochem.200283492493310.1046/j.1471‑4159.2002.01201.x 12421365
    [Google Scholar]
  46. LivnahO. BayerE.A. WilchekM. SussmanJ.L. Three-dimensional structures of avidin and the avidin-biotin complex.Proc. Natl. Acad. Sci. USA199390115076508010.1073/pnas.90.11.5076 8506353
    [Google Scholar]
  47. LyuY. MartínezÁ. D’IncàF. MancinF. ScriminP. The biotin–avidin interaction in biotinylated gold nanoparticles and the modulation of their aggregation.Nanomaterials (Basel)2021116155910.3390/nano11061559 34199307
    [Google Scholar]
  48. KhanN.H. MirM. NgowiE.E. ZafarU. KhakwaniM.M.A.K. KhattakS. ZhaiY.K. JiangE.S. ZhengM. DuanS.F. WeiJ.S. WuD.D. JiX.Y. Nanomedicine: A promising way to manage Alzheimer’s disease.Front. Bioeng. Biotechnol.2021963005510.3389/fbioe.2021.630055 33996777
    [Google Scholar]
  49. BondyS.C. KirsteinS. The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminum.Mol. Chem. Neuropathol.199627218519410.1007/BF02815093 8962602
    [Google Scholar]
  50. SalvadorG.A. Iron in neuronal function and dysfunction.Biofactors201036210311010.1002/biof.80 20232345
    [Google Scholar]
  51. BondaD.J. LeeH. BlairJ.A. ZhuX. PerryG. SmithM.A. Role of metal dyshomeostasis in Alzheimer’s disease.Metallomics20113326727010.1039/c0mt00074d 21298161
    [Google Scholar]
  52. ChoiM. RyuJ. VuH.D. KimD. YounY.J. ParkM.H. HuynhP.T. HwangG.B. YounS.W. JeongY.H. Transferrin-conjugated melittin-loaded l-arginine-coated iron oxide nanoparticles for mitigating beta-amyloid pathology of the 5XFAD mouse brain.Int. J. Mol. Sci.202324191495410.3390/ijms241914954 37834402
    [Google Scholar]
  53. PiemonteseL. VitucciG. CattoM. LaghezzaA. PernaF.M. RulloM. LoiodiceF. CapriatiV. SolfrizzoM. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease.Molecules2018239218210.3390/molecules23092182 30158491
    [Google Scholar]
  54. FrancisP.T. PalmerA.M. SnapeM. WilcockG.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress.J. Neurol. Neurosurg. Psychiatry199966213714710.1136/jnnp.66.2.137 10071091
    [Google Scholar]
  55. PilotazF. MassonP. HuperzineA. An acetylcholinesterase inhibitor with high pharmacological potential.Ann. Pharm. Fr.1999575363373 10520506
    [Google Scholar]
  56. ThakurG. MicicM. YangY. LiW. MoviaD. GiordaniS. ZhangH. LeblancR.M. Conjugated quantum dots inhibit the amyloid β (1–42) fibrillation process.Int. J. Alzheimers Dis.20112011150238610.4061/2011/502386 21423556
    [Google Scholar]
  57. LiuZ. JiangM. KangT. MiaoD. GuG. SongQ. YaoL. HuQ. TuY. PangZ. ChenH. JiangX. GaoX. ChenJ. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration.Biomaterials201334153870388110.1016/j.biomaterials.2013.02.003 23453061
    [Google Scholar]
  58. PradesR. GuerreroS. ArayaE. MolinaC. SalasE. ZuritaE. SelvaJ. EgeaG. López-IglesiasC. TeixidóM. KoganM.J. GiraltE. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor.Biomaterials201233297194720510.1016/j.biomaterials.2012.06.063 22795856
    [Google Scholar]
  59. NieY. SchaffertD. RödlW. OgrisM. WagnerE. GüntherM. Dual-targeted polyplexes: One step towards a synthetic virus for cancer gene therapy.J. Control. Release2011152112713410.1016/j.jconrel.2011.02.028 21392549
    [Google Scholar]
  60. StaquiciniF.I. OzawaM.G. MoyaC.A. DriessenW.H.P. BarbuE.M. NishimoriH. SoghomonyanS. FloresL.G.II LiangX. PaolilloV. AlauddinM.M. BasilionJ.P. FurnariF.B. BoglerO. LangF.F. AldapeK.D. FullerG.N. HöökM. GelovaniJ.G. SidmanR.L. CaveneeW.K. PasqualiniR. ArapW. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma.J. Clin. Invest.2011121116117310.1172/JCI44798 21183793
    [Google Scholar]
  61. LiuZ. GaoX. KangT. JiangM. MiaoD. GuG. HuQ. SongQ. YaoL. TuY. ChenH. JiangX. ChenJ. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.Bioconjug. Chem.2013246997100710.1021/bc400055h 23718945
    [Google Scholar]
  62. WangB. YuB. KarimM. HuH. SunY. McGreevyP. PetoczP. HeldS. Brand-MillerJ. Dietary sialic acid supplementation improves learning and memory in piglets.Am. J. Clin. Nutr.200785256156910.1093/ajcn/85.2.561 17284758
    [Google Scholar]
  63. YinT. YangL. LiuY. ZhouX. SunJ. LiuJ. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease.Acta Biomater.20152517218310.1016/j.actbio.2015.06.035 26143603
    [Google Scholar]
  64. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.86467 37650011
    [Google Scholar]
  65. RinaudoM. Main properties and current applications of some polysaccharides as biomaterials.Polym. Int.200857339743010.1002/pi.2378
    [Google Scholar]
  66. KangM.L. ChoC.S. YooH.S. Application of chitosan microspheres for nasal delivery of vaccines.Biotechnol. Adv.200927685786510.1016/j.biotechadv.2009.06.007 19583998
    [Google Scholar]
  67. RheeI. HongS. ChangY. Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging.J. Korean Phys. Soc.201056386887310.3938/jkps.56.868
    [Google Scholar]
  68. YaoX. QiC. SunC. HuoF. JiangX. Poly(ethylene glycol) alternatives in biomedical applications.Nano Today20234810173810.1016/j.nantod.2022.101738
    [Google Scholar]
  69. YuM. HuangS. YuK.J. ClyneA.M. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.Int. J. Mol. Sci.20121355554557010.3390/ijms13055554 22754315
    [Google Scholar]
  70. ColeA.J. DavidA.E. WangJ. GalbánC.J. HillH.L. YangV.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.Biomaterials20113282183219310.1016/j.biomaterials.2010.11.040 21176955
    [Google Scholar]
  71. TongS. HouS. ZhengZ. ZhouJ. BaoG. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity.Nano Lett.201010114607461310.1021/nl102623x 20939602
    [Google Scholar]
  72. MehvarR. Dextrans for targeted and sustained delivery of therapeutic and imaging agents.J. Cont. Rel.200069112510.1016/S0168‑3659(00)00302‑3 11018543
    [Google Scholar]
  73. Van TommeS.R. HenninkW.E. Biodegradable dextran hydrogels for protein delivery applications.Expert Rev. Med. Devices20074214716410.1586/17434440.4.2.147 17359222
    [Google Scholar]
  74. KhalikovaE. SusiP. KorpelaT. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications.Microbiol. Mol. Biol. Rev.200569230632510.1128/MMBR.69.2.306‑325.2005 15944458
    [Google Scholar]
  75. KouyoumdjianH. ZhuD.C. El-DakdoukiM.H. LorenzK. ChenJ. LiW. HuangX. Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity.ACS Chem. Neurosci.20134457558410.1021/cn3002015 23590250
    [Google Scholar]
  76. MartinsC. SousaF. AraújoF. SarmentoB. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications.Adv. Healthc. Mater.201871170103510.1002/adhm.201701035 29171928
    [Google Scholar]
  77. Toyos-RodríguezC. Llamedo-GonzálezA. PandoD. GarcíaS. GarcíaJ.A. García-AlonsoF.J. de la Escosura-MuñizA. Novel magnetic beads with improved performance for Alzheimer’s disease biomarker detection.Microchem. J.202217510721110.1016/j.microc.2022.107211
    [Google Scholar]
  78. RiccardiC. NapolitanoF. MontesarchioD. SampaoloS. MeloneM.A.B. Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases.Pharmaceutics20211311189710.3390/pharmaceutics13111897 34834311
    [Google Scholar]
  79. ZouK. GongJ.S. YanagisawaK. MichikawaM. A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage.J. Neurosci.200222124833484110.1523/JNEUROSCI.22‑12‑04833.2002 12077180
    [Google Scholar]
  80. LiuJ.L. FanY.G. YangZ.S. WangZ.Y. GuoC. Iron and Alzheimer’s disease: From pathogenesis to therapeutic implications.Front. Neurosci.20181263210.3389/fnins.2018.00632 30250423
    [Google Scholar]
  81. Rivas-ArancibiaS. Rodriguez-MartinezE. Méndez-GarcíaA. Moctezuma-SalgadoM. Jiménez-EspíndolaP. López-GonzalesU. Oxidative stress, inflammation, and formation of Beta‐Amyloid 1‐42 in brain. In: Free Radicals and Diseases.London, UKIntechopen201611010.5772/64709
    [Google Scholar]
  82. IslamF. ShohagS. AkhterS. IslamM.R. SultanaS. MitraS. ChandranD. KhandakerM.U. AshrafG.M. IdrisA.M. EmranT.B. CavaluS. Exposure of metal toxicity in Alzheimer’s disease: An extensive review.Front. Pharmacol.20221390309910.3389/fphar.2022.903099 36105221
    [Google Scholar]
  83. SoniaT.A. SharmaC.P. Lipids and inorganic nanoparticles in oral insulin delivery. In: Oral Delivery of Insulin.Amsterdam, NetherlandsElsevier201421925610.1533/9781908818683.219
    [Google Scholar]
  84. IlinskayaA.N. DobrovolskaiaM.A. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.Toxicol. Appl. Pharmacol.2016299707710.1016/j.taap.2016.01.005 26773813
    [Google Scholar]
  85. GravánP. Peña-MartínJ. de AndrésJ.L. PedrosaM. Villegas-MontoyaM. Galisteo-GonzálezF. MarchalJ.A. Sánchez-MorenoP. Exploring the impact of nanoparticle stealth coatings in cancer models: From pegylation to cell membrane-coating nanotechnology.ACS Appl. Mater. Interfaces20241622058207410.1021/acsami.3c13948 38159050
    [Google Scholar]
  86. AbbasM. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s patients.Polymers (Basel)2021137105110.3390/polym13071051 33801619
    [Google Scholar]
  87. ChiangM.C. YangY.P. NicolC.J.B. WangC.J. Gold nanoparticles in neurological diseases: A review of neuroprotection.Int. J. Mol. Sci.2024254236010.3390/ijms25042360 38397037
    [Google Scholar]
  88. FerragC. KermanK. Grand challenges in nanomaterial-based electrochemical sensors.Front. Sens.2020158382210.3389/fsens.2020.583822
    [Google Scholar]
  89. ThanhN.T.K. GreenL.A.W. Functionalisation of nanoparticles for biomedical applications.Nano Today20105321323010.1016/j.nantod.2010.05.003
    [Google Scholar]
  90. SrinoiP. ChenY.T. VitturV. MarquezM.D. LeeT.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications.Appl. Sci. (Basel)201887110610.3390/app8071106
    [Google Scholar]
  91. MicaeloA. RodriguezE. MillanA. GongoraR. FuentesM. Protein interactions and nanomaterials: A key role of the protein corona in nanobiocompatibility. In: Protein-Protein Interaction Assays.London, UKIntechopen20181910.5772/intechopen.75501
    [Google Scholar]
  92. GuerriniL. Alvarez-PueblaR.A. Pazos-PerezN. Surface modifications of nanoparticles for stability in biological fluids.Materials (Basel)2018117115410.3390/ma11071154 29986436
    [Google Scholar]
  93. AlexisF. PridgenE. MolnarL.K. FarokhzadO.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharm.20085450551510.1021/mp800051m 18672949
    [Google Scholar]
  94. TianM. DongB. LiW. WangL. YuH. Applications of novel microscale and nanoscale materials for theranostics: From design to clinical translation.Pharmaceutics20241610133910.3390/pharmaceutics16101339 39458667
    [Google Scholar]
  95. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.00790 30065653
    [Google Scholar]
  96. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.019 18035408
    [Google Scholar]
  97. Soza-RiedJ. FisherA.G. Reprogramming somatic cells towards pluripotency by cellular fusion.Curr. Opin. Genet. Dev.201222545946510.1016/j.gde.2012.07.005 22868176
    [Google Scholar]
  98. ChenJ. ZhouL. PanS. A brief review of recent advances in stem cell biology.Neural Regen. Res.20149768468710.4103/1673‑5374.131565 25206872
    [Google Scholar]
  99. ZhouH. WuS. JooJ.Y. ZhuS. HanD.W. LinT. TraugerS. BienG. YaoS. ZhuY. SiuzdakG. SchölerH.R. DuanL. DingS. Generation of induced pluripotent stem cells using recombinant proteins.Cell Stem Cell20094538138410.1016/j.stem.2009.04.005 19398399
    [Google Scholar]
  100. WernigM. MeissnerA. ForemanR. BrambrinkT. KuM. HochedlingerK. BernsteinB.E. JaenischR. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature2007448715131832410.1038/nature05944 17554336
    [Google Scholar]
  101. YuJ. VodyanikM.A. Smuga-OttoK. Induced pluripotent stem cell lines derived from human somatic cells.Science200731858581917192010.1126/science.1151526 18029452
    [Google Scholar]
  102. HaruiA. SuzukiS. KochanekS. MitaniK. Frequency and stability of chromosomal integration of adenovirus vectors.J. Virol.19997376141614610.1128/JVI.73.7.6141‑6146.1999 10364373
    [Google Scholar]
  103. OkitaK. IchisakaT. YamanakaS. Generation of germline-competent induced pluripotent stem cells.Nature2007448715131331710.1038/nature05934 17554338
    [Google Scholar]
  104. WarrenL. ManosP.D. AhfeldtT. LohY.H. LiH. LauF. EbinaW. MandalP.K. SmithZ.D. MeissnerA. DaleyG.Q. BrackA.S. CollinsJ.J. CowanC. SchlaegerT.M. RossiD.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.Cell Stem Cell20107561863010.1016/j.stem.2010.08.012 20888316
    [Google Scholar]
  105. YusaK. RadR. TakedaJ. BradleyA. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon.Nat. Methods20096536336910.1038/nmeth.1323 19337237
    [Google Scholar]
  106. SiZ. WangX. Stem cell therapies in Alzheimer’s disease: Applications for disease modeling.J. Pharmacol. Exp. Ther.2021377220721710.1124/jpet.120.000324 33558427
    [Google Scholar]
  107. HeidenreichM. ZhangF. Applications of CRISPR–Cas systems in neuroscience.Nat. Rev. Neurosci.2016171364410.1038/nrn.2015.2 26656253
    [Google Scholar]
  108. PenneyJ. RalveniusW.T. TsaiL.H. Modeling Alzheimer’s disease with iPSC-derived brain cells.Mol. Psychiatry202025114816710.1038/s41380‑019‑0468‑3 31391546
    [Google Scholar]
  109. OksanenM. PetersenA.J. NaumenkoN. PuttonenK. LehtonenŠ. Gubert OlivéM. ShakirzyanovaA. LeskeläS. SarajärviT. ViitanenM. RinneJ.O. HiltunenM. HaapasaloA. GiniatullinR. TaviP. ZhangS.C. KanninenK.M. HämäläinenR.H. KoistinahoJ. PSEN1 mutant ipsc-derived model reveals severe astrocyte pathology in Alzheimer’s disease.Stem Cell Reports2017961885189710.1016/j.stemcr.2017.10.016 29153989
    [Google Scholar]
  110. KondoT. AsaiM. TsukitaK. KutokuY. OhsawaY. SunadaY. ImamuraK. EgawaN. YahataN. OkitaK. TakahashiK. AsakaI. AoiT. WatanabeA. WatanabeK. KadoyaC. NakanoR. WatanabeD. MaruyamaK. HoriO. HibinoS. ChoshiT. NakahataT. HiokiH. KanekoT. NaitohM. YoshikawaK. YamawakiS. SuzukiS. HataR. UenoS. SekiT. KobayashiK. TodaT. MurakamiK. IrieK. KleinW.L. MoriH. AsadaT. TakahashiR. IwataN. YamanakaS. InoueH. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness.Cell Stem Cell201312448749610.1016/j.stem.2013.01.009 23434393
    [Google Scholar]
  111. ChangC.Y. TingH.C. LiuC.A. SuH.L. ChiouT.W. LinS.Z. HarnH.J. HoT.J. Induced pluripotent stem cell (ipsc)-based neurodegenerative disease models for phenotype recapitulation and drug screening.Molecules2020258200010.3390/molecules25082000 32344649
    [Google Scholar]
  112. GajT. EpsteinB.E. SchafferD.V. Genome engineering using adeno-associated virus: Basic and clinical research applications.Mol. Ther.201624345846410.1038/mt.2015.151 26373345
    [Google Scholar]
  113. IshinoY. ShinagawaH. MakinoK. AmemuraM. NakataA. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.J. Bacteriol.1987169125429543310.1128/jb.169.12.5429‑5433.1987 3316184
    [Google Scholar]
  114. MirA. EdrakiA. LeeJ. SontheimerE.J. Type II-C CRISPR-Cas9 biology, mechanism, and application.ACS Chem. Biol.201813235736510.1021/acschembio.7b00855 29202216
    [Google Scholar]
  115. LiaoH. WuJ. VanDusenN.J. LiY. ZhengY. CRISPR-Cas9-mediated homology-directed repair for precise gene editing.Mol. Ther. Nucleic Acids202435410234410.1016/j.omtn.2024.102344 39494147
    [Google Scholar]
  116. ParkH. OhJ. ShimG. ChoB. ChangY. KimS. BaekS. KimH. ShinJ. ChoiH. YooJ. KimJ. JunW. LeeM. LengnerC.J. OhY.K. KimJ. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑0 30858603
    [Google Scholar]
  117. DissenG.A. McBrideJ. LomnicziA. Using lentiviral vectors as delivery vehicles for gene therapy.In: Controlled Genetic Manipulations. Neuromethods; Humana Press: Totowa, NJ201265699610.1007/978‑1‑61779‑533‑6_4
    [Google Scholar]
  118. AnzaloneA.V. RandolphP.B. DavisJ.R. SousaA.A. KoblanL.W. LevyJ.M. ChenP.J. WilsonC. NewbyG.A. RaguramA. LiuD.R. Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019576778514915710.1038/s41586‑019‑1711‑4 31634902
    [Google Scholar]
  119. YangJ. LiY. AguilarA. LiuZ. YangC.Y. WangS. Simple structural modifications converting a bona fide MDM2 protac degrader into a molecular glue molecule: A cautionary tale in the design of protac degraders.J. Med. Chem.201962219471948710.1021/acs.jmedchem.9b00846 31560543
    [Google Scholar]
  120. InuzukaH. LiuJ. WeiW. RezaeianA.H. PROTAC technology for the treatment of Alzheimer’s disease: Advances and perspectives.Acta Materia Med.202211244110.15212/AMM‑2021‑0001 35237768
    [Google Scholar]
  121. FarnabyW. KoeglM. RoyM.J. WhitworthC. DiersE. TrainorN. ZollmanD. SteurerS. Karolyi-OezguerJ. RiedmuellerC. GmaschitzT. WachterJ. DankC. GalantM. SharpsB. RumpelK. TraxlerE. GerstbergerT. SchnitzerR. PetermannO. GrebP. WeinstablH. BaderG. ZoephelA. Weiss-PuxbaumA. Ehrenhöfer-WölferK. WöhrleS. BoehmeltG. RinnenthalJ. ArnhofH. WiechensN. WuM.Y. Owen-HughesT. EttmayerP. PearsonM. McConnellD.B. CiulliA. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design.Nat. Chem. Biol.201915767268010.1038/s41589‑019‑0294‑6 31178587
    [Google Scholar]
  122. SmithB.E. WangS.L. Jaime-FigueroaS. HarbinA. WangJ. HammanB.D. CrewsC.M. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase.Nat. Commun.201910113110.1038/s41467‑018‑08027‑7 30631068
    [Google Scholar]
  123. ChuT.T. GaoN. LiQ.Q. ChenP.G. YangX.F. ChenY.X. ZhaoY.F. LiY.M. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation.Cell Chem. Biol.201623445346110.1016/j.chembiol.2016.02.016 27105281
    [Google Scholar]
  124. WangW. ZhouQ. JiangT. LiS. YeJ. ZhengJ. WangX. LiuY. DengM. KeD. WangQ. WangY. WangJ.Z. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models.Theranostics202111115279529510.7150/thno.55680 33859747
    [Google Scholar]
  125. SwansonC.J. ZhangY. DhaddaS. WangJ. KaplowJ. LaiR.Y.K. LannfeltL. BradleyH. RabeM. KoyamaA. ReydermanL. BerryD.A. BerryS. GordonR. KramerL.D. CummingsJ.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  126. DorniedenS. Müller-SchiffmannA. StichtH. Characterization of a single-chain variable fragment recognizing a linear epitope of aβ: A biotechnical tool for studies on Alzheimer’s disease.PLoS One201383e5982010.1371/journal.pone.0059820 23555792
    [Google Scholar]
  127. ZhangY. HuaiY. ZhangX. SongC. CaiJ. ZhangY. The mode of action of an anti-oligomeric amyloid β-protein antibody affects its protective efficacy.Neurotox. Res.201935230431710.1007/s12640‑018‑9955‑6 30229545
    [Google Scholar]
  128. TamuraY. HamajimaK. MatsuiK. YanomaS. NaritaM. TajimaN. XinK.Q. KlinmanD. OkudaK. The F(ab′)2 fragment of an Aβ-specific monoclonal antibody reduces Aβ deposits in the brain.Neurobiol. Dis.200520254154910.1016/j.nbd.2005.04.007 15908227
    [Google Scholar]
  129. AntoniosG. BorgersH. RichardB.C. BraußA. MeißnerJ. WeggenS. PenaV. PillotT. DaviesS.L. BakraniaP. MatthewsD. BrownleesJ. BouterY. BayerT.A. Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X.Sci. Rep.2015511733810.1038/srep17338 26626428
    [Google Scholar]
  130. HuM. ZhangJ. YangJ. CaoY. QiJ. A novel scfv anti-aβ antibody reduces pathological impairments in APP/PS1 transgenic mice via modulation of inflammatory cytokines and AB-related enzymes.J. Mol. Neurosci.20186611910.1007/s12031‑018‑1139‑6 30062438
    [Google Scholar]
  131. LiuR. YuanB. EmadiS. ZameerA. SchulzP. McAllisterC. LyubchenkoY. GoudG. SierksM.R. Single chain variable fragments against β-amyloid (Aβ) can inhibit Aβ aggregation and prevent Aβ-induced neurotoxicity.Biochemistry200443226959696710.1021/bi049933o 15170333
    [Google Scholar]
  132. NisbetR.M. NigroJ. BreheneyK. CaineJ. HattarkiM.K. NuttallS.D. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity.Protein Eng. Des. Sel.2013261057158010.1093/protein/gzt025 23766374
    [Google Scholar]
  133. LafayeP. AchourI. EnglandP. DuyckaertsC. RougeonF. Single-domain antibodies recognize selectively small oligomeric forms of amyloid β, prevent Aβ-induced neurotoxicity and inhibit fibril formation.Mol. Immunol.200946469570410.1016/j.molimm.2008.09.008 18930548
    [Google Scholar]
  134. Martin-PeñaA. Rincon-LimasD.E. Fernandez-FunezP. Anti-Aβ single-chain variable fragment antibodies restore memory acquisition in a Drosophila model of Alzheimer’s disease.Sci. Rep.2017711126810.1038/s41598‑017‑11594‑2 28900185
    [Google Scholar]
  135. AhmedB.S. BaijalG. SomashekarR. IyerS. NayakV. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers.Radiat. Phys. Chem.202219410999010.1016/j.radphyschem.2022.109990
    [Google Scholar]
  136. CuiN. LuH. LiM. Magnetic nanoparticles associated peg/plga block copolymer targeted with anti-transferrin receptor antibodies for Alzheimer’s disease.J. Biomed. Nanotechnol.20181451017102410.1166/jbn.2018.2512 29883571
    [Google Scholar]
  137. YangL. SunJ. XieW. LiuY. LiuJ. Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer’s disease.J. Mater. Chem. B Mater. Biol. Med.20175305954596710.1039/C6TB02952C 32264352
    [Google Scholar]
  138. GeorgeD. MaheswariP.U. BegumK.M.M.S. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies.Carbohydr. Polym.202023611610110.1016/j.carbpol.2020.116101 32172900
    [Google Scholar]
  139. ZhaoF. YangH. GaoZ. LiuH. WuP. LiB. YuH. ShaoJ. Novel fabrication of Cu(II)-incorporated chiral d-penicillamine-chitosan nanocomposites enantio-selectively inhibit the induced amyloid β aggregation for Alzheimer’s disease therapy.Heliyon2024101e2356310.1016/j.heliyon.2023.e23563 38223723
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137361817250325071654
Loading
/content/journals/cnano/10.2174/0115734137361817250325071654
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test