Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

is the etiological agent of cystic echinococcosis (CE), a tropical disease that is widely distributed yet often overlooked. As a major zoonotic parasitic disease, it impacts both humans and animals. Given the lack of a viable vaccine, therapy remains the sole preventive option for CE. This systematic review aims to consolidate existing research on biosynthesized nanoparticles as potential drugs for treating hydatid cyst protoscoleces , , and .

Methods

This study was conducted following the PRISMA guidelines. A comprehensive global search was performed without date restrictions up to October 15th, 2024, using Google Scholar and six English-language databases, EMBASE, ProQuest, PubMed, Scopus, ScienceDirect, and Web of Science, to gather all relevant articles. The keywords used in the search were “protoscolicidal”, “scolicidal”, “protoscolex”, “scolex”, “nanoparticle”, “nanomedicine”, “nanomaterial”, “green synthesis”, “biosynthesis”, “hydatid cyst”, “cystic echinococcosis”, and “.

Results

Out of the 2185 studies considered, this systematic review included twenty. Of these, thirteen (65%) were conducted , three (15%) were , two (10%) were , one (5%) was , and one (5%) was . The results indicated that metal nanoparticles, including silver, gold, zinc, copper, and selenium (n = 13, 65%), were the most commonly used biosynthesized nanoparticles in the study. Metal oxide nanoparticles, such as zinc oxide, copper oxide, nickel oxide, and silver-zinc oxide, were the next most frequent (n = 6, 30%). Lastly, a single study (n = 1, 5%) utilized polymeric nanoparticles, specifically chitosan-based ones.

Conclusion

This systematic review highlights the promising potential of biosynthesized nanoparticles as protoscolicidal agents against . The analysis of 20 studies revealed a predominant focus on metal nanoparticles, particularly silver, gold, zinc, copper, and selenium, which exhibited notable efficacy across , and settings. The findings emphasize the necessity of exploring diverse nanoparticle types, such as metal oxides and polymeric nanoparticles, to enhance treatment strategies for this neglected zoonotic disease.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137341299250116152732
2025-02-07
2026-01-04
Loading full text...

Full text loading...

References

  1. McManusD.P. ZhangW. LiJ. BartleyP.B. Echinococcosis.Lancet200336293921295130410.1016/S0140‑6736(03)14573‑4 14575976
    [Google Scholar]
  2. MoroP. SchantzP.M. Echinococcosis: A review.Int. J. Infect. Dis.200913212513310.1016/j.ijid.2008.03.037 18938096
    [Google Scholar]
  3. EckertJ. ThompsonR.C.A. Historical aspects of echinococcosis.Adv. Parasitol.20179516410.1016/bs.apar.2016.07.003 28131361
    [Google Scholar]
  4. PalM. AlemuH.H. MaramiL.M. GaredoD.R. BodenaE.B. Cystic Echinococcosis: A comprehensive review on life cycle, epidemiology, pathogenesis, clinical Spectrum, diagnosis, public health and economic implications, treatment, and control.Int. J. Clini. Experi. Medi. Res.20226213114110.26855/ijcemr.2022.04.005
    [Google Scholar]
  5. VenukumarR. Clinical presentation of hydatid cyst of liver: Descriptive study.Int. Surg. J.201741214216
    [Google Scholar]
  6. KuzucuA. UlutasH. Reha CelikM. YekelerE. Hydatid cysts of the lung: Lesion size in relation to clinical presentation and therapeutic approach.Surg. Today201444113113610.1007/s00595‑012‑0484‑2 23334707
    [Google Scholar]
  7. MengY. RenQ. XiaoJ. SunH. HuangY. LiuY. WangS. WangS. Progress of research on the diagnosis and treatment of bone cystic echinococcosis.Front. Microbiol.202314127387010.3389/fmicb.2023.1273870 37920269
    [Google Scholar]
  8. BertoC.G. LiouP. CoyleC.M. EmondJ.C. Surgical management of cystic echinococcosis of the liver.Curr. Opin. Infect. Dis.202336534835210.1097/QCO.0000000000000955 37548389
    [Google Scholar]
  9. DehkordiA.B. SaneiB. YousefiM. SharafiS.M. SafarnezhadF. JafariR. DaraniH.Y. Albendazole and treatment of hydatid cyst: Review of the literature. Infect. Disord.-.Drug Targ.201919210110410.2174/1871526518666180629134511 29956639
    [Google Scholar]
  10. TopcuO. AydinC. AriciS. DumanM. KoyuncuA. SenM. The effects of various scolicidal agents on the hepatopancreatic biliary system.Visc. Med.200622318519010.1159/000094710
    [Google Scholar]
  11. KumarR. Nanomedicine & Nanotechnology.Palliat. Med.20169273286
    [Google Scholar]
  12. ShnawaB.H. Al-AliS.J. SwarS.O. Nanoparticles as a new approach for treating hydatid cyst disease. In: Veterinary Pathobiology and Public Health.1st edUnique Scientific Publishers202118018910.47278/book.vpph/2021.015
    [Google Scholar]
  13. KarunakaranG. SudhaK.G. AliS. ChoE.B. Biosynthesis of nanoparticles from various biological sources and its biomedical applications.Molecules20232811452710.3390/molecules28114527 37299004
    [Google Scholar]
  14. BaghdadiH.B.A. Potential use of silver nanoparticles green synthesized using Astragalus spinosus extract for treating cystic echinococcosis.Acta Trop.202425710729610.1016/j.actatropica.2024.107296 38909723
    [Google Scholar]
  15. BagherivandA. JafariradS. NorouziR. KarimiA. Scolicidal and apoptotic effects of phyto- and chemically synthesized silver/boehmite nanocomposites on Echinococcus granulosus protoscoleces.Biomater. Adv.202415721372310.1016/j.bioadv.2023.213723 38160631
    [Google Scholar]
  16. BagherivandA. JafariradS. NorouziR. KarimiA. Biomedical behaviors of CuO/γ-alumina/chitosan nanocomposites: Scolicidal and apoptotic effects on hydatid cysts protoscolices.Int. J. Biol. Macromol.2024263Pt 213051510.1016/j.ijbiomac.2024.130515 38423424
    [Google Scholar]
  17. RazianiY. ShakibP. RashidipourM. CheraghipourK. Ghasemian YadegariJ. MahmoudvandH. Green synthesis, characterization, and antiparasitic effects of gold nanoparticles against Echinococcus granulosus protoscoleces.Trop. Med. Infect. Dis.20238631310.3390/tropicalmed8060313 37368731
    [Google Scholar]
  18. JalilP.J. ShnawaB.H. HamadS.M. HamadB.S. AhmedM.H. The efficiency of fabricated Ag/ZnO nanocomposite using Ruta chalepensis L. leaf extract as a potent protoscolicidal and anti-hydatid cysts agent.J. Biomater. Appl.202338562964510.1177/08853282231207236 37844268
    [Google Scholar]
  19. ShnawaB.H. JalilP.J. AspoukehP. MohammedD.A. BiroD.M. Protoscolicidal and biocompatibility properties of biologically fabricated zinc oxide nanoparticles using Ziziphus spina-christi leaves.Pak. Vet. J.20224242074776410.29261/pakvetj/2022.058
    [Google Scholar]
  20. ShnawaB.H. HamadS.M. BarzinjyA.A. KareemP.A. AhmedM.H. Scolicidal activity of biosynthesized zinc oxide nanoparticles by Mentha longifolia L. leaves against Echinococcus granulosus protoscolices.Emergent Mater.20225368369310.1007/s42247‑021‑00264‑9
    [Google Scholar]
  21. ShnawaB.H. JalilP.J. HamadS.M. AhmedM.H. Antioxidant, protoscolicidal, hemocompatibility, and antibacterial activity of nickel oxide nanoparticles synthesized by Ziziphus spina-christi.Bionanoscience20221241264127810.1007/s12668‑022‑01028‑3
    [Google Scholar]
  22. SaeedA.F. MohamedS.T. AlammarM.H. Effect of AgNPs on viability of Capparies spinose Echinococcus granulosus protoscolexs.Indian J. Ecol.20224919362365
    [Google Scholar]
  23. ShakibaieM. KhalafA.K. RashidipourM. MahmoudvandH. Effects of green synthesized zinc nanoparticles alone and along with albendazole against hydatid cyst protoscoleces.Ann. Med. Surg. (Lond.)20227810374610.1016/j.amsu.2022.103746 35600184
    [Google Scholar]
  24. HamadS.M. ShnawaB.H. JalilP.J. AhmedM.H. Assessment of the therapeutic efficacy of silver nanoparticles against secondary cystic echinococcosis in BALB/c mice.Surfaces2022519111210.3390/surfaces5010004
    [Google Scholar]
  25. JalilP.J. ShnawaB.H. HamadS.M. Silver nanoparticles: Green synthesis, characterization, blood compatibility and protoscolicidal efficacy against echinococcus granulosus.Pak. Vet. J.202141339339910.29261/pakvetj/2021.039
    [Google Scholar]
  26. SalihT.A. HassanK.T. MajeedS.R. IbraheemI.J. HassanO.M. ObaidA.S. In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus.Biotechnol. Rep. (Amst.)202028e0054510.1016/j.btre.2020.e00545 33163372
    [Google Scholar]
  27. EzzatkhahF. KhalafA.K. MahmoudvandH. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces.Biomed. Pharmacother.202113611125710.1016/j.biopha.2021.111257 33450495
    [Google Scholar]
  28. AbboodA.H.S.H.A. (The Role of Silver Ag) Nanoparticles synthesis by Penicillium spp against the toxicity of Echinococcus granulosus in adult albino male rats.Med.-Leg. Update2020201533
    [Google Scholar]
  29. BarabadiH. HonaryS. Ali MohammadiM. AhmadpourE. RahimiM.T. AlizadehA. NaghibiF. SaravananM. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus.Environ. Sci. Pollut. Res. Int.20172465800581010.1007/s11356‑016‑8291‑8 28054267
    [Google Scholar]
  30. RahimiM.T. AhmadpourE. Rahimi EsboeiB. SpotinA. Kohansal KoshkiM.H. AlizadehA. HonaryS. BarabadiH. Ali MohammadiM. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices.Int. J. Surg.20151912813310.1016/j.ijsu.2015.05.043 26028438
    [Google Scholar]
  31. MahmoudvandH. Fasihi HarandiM. ShakibaieM. AflatoonianM.R. ZiaAli, N.; Makki, M.S.; Jahanbakhsh, S. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts.Int. J. Surg.201412539940310.1016/j.ijsu.2014.03.017 24686032
    [Google Scholar]
  32. MalikB. PirzadahT.B. KumarM. RehmanR.U. Biosynthesis of nanoparticles and their application in pharmaceutical industry.In: Kalia, V., Saini, A. (eds) Metabolic Engineering for Bioactive Compounds.SingaporeSpringer201733134910.1007/978‑981‑10‑5511‑9_16
    [Google Scholar]
  33. SouzaA.O. OliveiraJ.W.F. MorenoC.J.G. de MedeirosM.J.C. Fernandes-NegreirosM.M. SouzaF.R.M. PontesD.L. SilvaM.S. RochaH.A.O. Silver nanoparticles containing fucoidan synthesized by green method have anti-Trypanosoma cruzi activity.Nanomaterials (Basel)20221212205910.3390/nano12122059 35745396
    [Google Scholar]
  34. ZhangP. GongJ. JiangY. LongY. LeiW. GaoX. GuoD. Application of silver nanoparticles in parasite treatment.Pharmaceutics2023157178310.3390/pharmaceutics15071783 37513969
    [Google Scholar]
  35. AvitabileE. SenesN. D’AvinoC. TsamesidisI. PinnaA. MediciS. PantaleoA. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite.PLoS One2020159e023853210.1371/journal.pone.0238532 32870934
    [Google Scholar]
  36. FantiJ.R. Tomiotto-PellissierF. Miranda-SaplaM.M. CataneoA.H.D. AndradeC.G.T.J. PanisC. RodriguesJ.H.S. WowkP.F. KuczeraD. CostaI.N. NakamuraC.V. NakazatoG. DuránN. PavanelliW.R. Conchon-CostaI. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro.Acta Trop.2018178465410.1016/j.actatropica.2017.10.027 29111137
    [Google Scholar]
  37. ToniN.A.D. GirgisJ.R.A. HusseinA.W. ThagfanF.A. Abdel-GaberR. AliS.E. MareyA.M. Al-NajjarM.A.A. AlkhudhayriA. DkhilM.A. In vitro role of biosynthesized nanosilver from Allium sativum against helminths.Food Sci. Technol. (Campinas)202343e12362210.1590/fst.123622
    [Google Scholar]
  38. WeiL. LuJ. XuH. PatelA. ChenZ.S. ChenG. Silver nanoparticles: Synthesis, properties, and therapeutic applications.Drug Discov. Today201520559560110.1016/j.drudis.2014.11.014 25543008
    [Google Scholar]
  39. Dos SantosC.A. SecklerM.M. IngleA.P. GuptaI. GaldieroS. GaldieroM. GadeA. RaiM. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues.J. Pharm. Sci.201410371931194410.1002/jps.24001 24824033
    [Google Scholar]
  40. AminiS.M. HadighiR. NajmM. AlipourM. HasanpourH. VosooghM. VosoughA. HajizadehM. BadirzadehA. The therapeutic effects of curcumin-coated gold nanoparticle against Leishmania major causative agent of zoonotic cutaneous leishmaniasis (ZCL): An in vitro and in vivo study.Curr. Microbiol.202380410410.1007/s00284‑022‑03172‑1 36781499
    [Google Scholar]
  41. KumarR. RayP.C. DattaD. BansalG.P. AngovE. KumarN. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles.Vaccine201533395064507110.1016/j.vaccine.2015.08.025 26299750
    [Google Scholar]
  42. ThambirajS. HemaS. Ravi ShankaranD. Functionalized gold nanoparticles for drug delivery applications.Mater. Today Proc.201858167631677310.1016/j.matpr.2018.06.030
    [Google Scholar]
  43. BenelliG. Gold nanoparticles – against parasites and insect vectors.Acta Trop.2018178738010.1016/j.actatropica.2017.10.021 29092797
    [Google Scholar]
  44. MirzaeiH. DarroudiM. Zinc oxide nanoparticles: Biological synthesis and biomedical applications.Ceram. Int.201743190791410.1016/j.ceramint.2016.10.051
    [Google Scholar]
  45. NajoomS. FoziaF. AhmadI. WahabA. AhmadN. UllahR. GulA. BariA. KhanM.Y. KhanA.A. Effective antiplasmodial and cytotoxic activities of synthesized zinc oxide nanoparticles using Rhazya stricta leaf extract.Evid. Based Complement. Alternat. Med.2021202111910.1155/2021/5586740 34484393
    [Google Scholar]
  46. ShnawaB.H. JalilP.J. FarisV.M. AbdullaB.A. HamadK.J. AhmedM.H. Anthelmintic activity of biosynthesized zinc oxide nanoparticles using Typha domingensis pers. against Echinococcus granulosus protoscoleces.Toxicol. Environ. Health Sci.202315441142310.1007/s13530‑023‑00192‑7
    [Google Scholar]
  47. BogdanovićU. LazićV. VodnikV. BudimirM. MarkovićZ. DimitrijevićS. Copper nanoparticles with high antimicrobial activity.Mater. Lett.2014128757810.1016/j.matlet.2014.04.106
    [Google Scholar]
  48. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  49. KhuranaA. TekulaS. SaifiM.A. VenkateshP. GoduguC. Therapeutic applications of selenium nanoparticles.Biomed. Pharmacother.201911180281210.1016/j.biopha.2018.12.146 30616079
    [Google Scholar]
  50. WadhwaniS.A. ShedbalkarU.U. SinghR. ChopadeB.A. Biogenic selenium nanoparticles: Current status and future prospects.Appl. Microbiol. Biotechnol.201610062555256610.1007/s00253‑016‑7300‑7 26801915
    [Google Scholar]
  51. HuangX. ChenX. ChenQ. YuQ. SunD. LiuJ. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs.Acta Biomater.20163039740710.1016/j.actbio.2015.10.041 26518106
    [Google Scholar]
  52. DivyaK. JishaM.S. Chitosan nanoparticles preparation and applications.Environ. Chem. Lett.201816110111210.1007/s10311‑017‑0670‑y
    [Google Scholar]
  53. JhaR. MayanovicR.A. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine.Nanomaterials (Basel)2023138130210.3390/nano13081302 37110887
    [Google Scholar]
  54. NapooniS. DelavariM. ArbabiM. BarkhehH. RastiS. HooshyarH. MostafaH.M.S. Scolicidal effects of chitosan-curcumin nanoparticles on the hydatid cyst protoscolices.Acta Parasitol.201964236737510.2478/s11686‑019‑00054‑8 31087261
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137341299250116152732
Loading
/content/journals/cnano/10.2174/0115734137341299250116152732
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test