Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This work aims to develop an eco-friendly, plant-based synthesis of silver nanoparticles using to combat . The approach addresses the need for alternative antifungal treatments and reduces the environmental impact of conventional methods. It offers a sustainable solution by utilizing the plant’s medicinal properties in nanotechnology applications.

Methods

Biomimetic synthesis of silver nanoparticles (AgNPs) was prepared by seed, fruit pulp crude methanolic extract of a medicinal plant (Linn.) Schrad exhibited the potential effect to inhibit the growth of the fungus () isolated from the Juniper tree from Ziarat, Pakistan. The shape, size, specific surface area, charge, and composition of the silver nanoparticles were studied by UV-visible spectroscopy, infra-red spectroscopy, X-ray diffraction technique, and atomic force microscopy.

Results

UV-visible spectrum of AgNPs displayed the surface plasmon resonance (SPR) peak at (427 nm), and Fourier transform infra-red (FTIR) spectrum revealed the possible presence of polyphenols and alkaloids involved in the synthesis, capping, and stabilizing of AgNPs. Furthermore, X-ray diffraction (XRD) analysis showed face centered cubic (FCC) shape of AgNPs. Atomic force microscopic (AFM) analysis showed poly dispersion of AgNPs with a size of 28.8 nm. The AgNPs exhibited a significant inhibitory zone of 22.5 mm against as compared to the standard with an inhibition zone of 7.5 mm at 1000 ppm, the biosynthesized AgNPs might be an effective strategy to control these pathogenic fungi and combat fungal diseases.

Conclusion

The findings focus on the efficiency of Cc-AgNPs against of plant-pathogenic fungus and support to develop new and more active therapeutic substitutes for fungus diseases.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137356893241217060404
2025-01-21
2026-01-03
Loading full text...

Full text loading...

References

  1. AhmadS. MunirS. ZebN. UllahA. KhanB. AliJ. BilalM. OmerM. AlamzebM. SalmanS.M. AliS. Green nanotechnology: A review on green synthesis of silver nanoparticles — an ecofriendly approach.Int. J. Nanomedicine2019145087510710.2147/IJN.S200254 31371949
    [Google Scholar]
  2. ZahinN. AnwarR. TewariD. KabirM.T. SajidA. MathewB. UddinM.S. AleyaL. Abdel-DaimM.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  3. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  4. HussainZ. KhanJ.A. MurtazaS. Nanotechnology: An emerging therapeutic option for breast cancer.Crit. Rev. Eukaryot. Gene Expr.201828216317510.1615/CritRevEukaryotGeneExpr.2018022771 30055543
    [Google Scholar]
  5. TostiA. PiracciniB.M. StinchiC. LorenziS. Onychomycosis due to Scopulariopsis brevicaulis: Clinical features and response to systemic antifungals.Br. J. Dermatol.1996135579980210.1111/j.1365‑2133.1996.tb03895.x 8977686
    [Google Scholar]
  6. TostiA. PiracciniB. LorenziS. Onychomycosis caused by nondermatophytic molds: Clinical features and response to treatment of 59 cases.J. Am. Acad. Dermatol.200042221722410.1016/S0190‑9622(00)90129‑4 10642676
    [Google Scholar]
  7. IwenP.C. SchutteS.D. FlorescuD.F. Noel-HurstR.K. SiglerL. Invasive Scopulariopsis brevicaulis infection in an immunocompromised patient and review of prior cases caused by Scopulariopsis and Microascus species.Med. Mycol.201250656156910.3109/13693786.2012.675629 22524638
    [Google Scholar]
  8. KurataK. NishimuraS. IchikawaH. SakaiR. MizutaniY. TakenakaK. KakiuchiS. MiyataY. KitaoA. YakushijinK. KawamotoS. YamamotoK. ItoM. MatsuokaH. TokimatsuI. KameiK. MinamiH. Invasive Scopulariopsis alboflavescens infection in patient with acute myeloid leukemia.Int. J. Hematol.2018108665866410.1007/s12185‑018‑2496‑1 29987744
    [Google Scholar]
  9. WalshT.J. GrollA. HiemenzJ. FlemingR. RoilidesE. AnaissieE. Infections due to emerging and uncommon medically important fungal pathogens.Clin. Microbiol. Infect.200410Suppl. 1486610.1111/j.1470‑9465.2004.00839.x 14748802
    [Google Scholar]
  10. Cuenca-EstrellaM. Gomez-LopezA. BuitragoM.J. MelladoE. Garcia-EffronG. Rodriguez-TudelaJ.L. In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis.Antimicrob. Agents Chemother.20065062248225010.1128/AAC.00162‑06 16723597
    [Google Scholar]
  11. YaoL. WanZ. LiR. YuJ. In vitro triple combination of anti-fungal drugs against clinical Scopulariopsis and Microascus species.Antimicrob. Agents Chemother.20155985040504310.1128/AAC.00145‑15 26014943
    [Google Scholar]
  12. Martin-VicenteA. GuarroJ. CapillaJ. Does a triple combination have better activity than double combinations against multiresistant fungi? Experimental in vitro evaluation.Int. J. Antimicrob. Agents201749442242610.1016/j.ijantimicag.2016.12.015 28257903
    [Google Scholar]
  13. SondiI. Salopek-SondiB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.012 15158396
    [Google Scholar]
  14. DorauB. ArangoR. GreenF. Proceedings of the 2nd Wood-Frame Housing Durabili and Disaster Issues Conference, Forest Products SocietyLas VegasNV2004
    [Google Scholar]
  15. FengQ.L. WuJ. ChenG.Q. CuiF.Z. KimT.N. KimJ.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.J. Biomed. Mater. Res.200052466266810.1002/1097‑4636(20001215)52:4<662::AID‑JBM10>3.0.CO;2‑3 11033548
    [Google Scholar]
  16. HussainA.I. RathoreH.A. SattarM.Z.A. ChathaS.A.S. SarkerS.D. GilaniA.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential.J. Ethnopharmacol.20141551546610.1016/j.jep.2014.06.011 24936768
    [Google Scholar]
  17. ChekrounE. BenaribaN. AdidaH. BechiriA. AzziR. DjaziriR. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots.Asian Pac. J. Trop. Dis.20155863263710.1016/S2222‑1808(15)60903‑3
    [Google Scholar]
  18. RasoolK. JahanbakhshT. Anticandidal screening and antibacterial of Citrullus colocynthis in South East of Iran.J. Hortic. For.2011339239810.5897/JHF11.030
    [Google Scholar]
  19. TheivasanthiT. AlagarM. X-ray diffraction studies of copper nano powder.Archives of Physics Research201012112117
    [Google Scholar]
  20. TheivasanthiT. AlagarM. Electrolytic synthesis and characterizations of silver nano powder.Nano Biomed. Eng.20124216110.5101/nbe.v4i2.p58‑65
    [Google Scholar]
  21. BhasinA. SinghS. GargR. Nutritional and medical importance of Citrullus colocynthis - A review.Plant Arch.202020234003406
    [Google Scholar]
  22. BauerA.W. KirbyW.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.American J. Clin. Pathol.1996454493496
    [Google Scholar]
  23. DastmalchiK. Damien DormanH.J. KoşarM. HiltunenR. Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract.Lebensm. Wiss. Technol.200740223924810.1016/j.lwt.2005.09.019
    [Google Scholar]
  24. SharififarF. MoshafiM.H. MansouriS.H. KhodashenasM. KhoshnoodiM. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora boiss.Food Control200718780080510.1016/j.foodcont.2006.04.002
    [Google Scholar]
  25. ZhengM.S. LiuY.S. YuanT. LiuL.Y. LiZ.Y. HuangX.L. Research progress on chemical constituents of Citrullus colocynthis and their pharmacological effects.Zhongguo Zhongyao Zazhi202045481682410.19540/j.cnki.cjcmm.20191104.201 32237481
    [Google Scholar]
  26. AlbertA. PhillipsJ.N. Ionization constants of heterocyclic substances. Part II. hydroxy-derivatives of nitrogenous six-membered ring-compounds.J. Chem. Soc.19561294130410.1039/jr9560001294
    [Google Scholar]
  27. PersonA.L.L. LacosteA-S. CornardJ-P. Photo-degradation of trans-caffeic acid in aqueous solution and influence of complexation by metal ions.J. Photochem. Photobiol. A Chem.2013265101910.1016/j.jphotochem.2013.05.004
    [Google Scholar]
  28. BohrenC.F. HuffmanD.R. Absorption and Scattering of Light by Small Particles.Weinheim, GermanyWiley-VCH2004
    [Google Scholar]
  29. HaynesC.L. Van DuyneR.P. Nano sphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics.J. Phys. Chem. B2001105245599561110.1021/jp010657m
    [Google Scholar]
  30. KellyK.L. CoronadoE. ZhaoL.L. SchatzG.C. The optical properties of metal nanoparticles. The influence of size, shape, and dielectric environment.J. Phys. Chem. B2003107366867710.1021/jp026731y
    [Google Scholar]
  31. SiddiquiM.R. KhanM. Khan; Adil; Tahir; Tremel, W.; Khathlan; Warthan, Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract.Int. J. Nanomedicine201381507151610.2147/IJN.S43309 23620666
    [Google Scholar]
  32. VidhuV.K. AromalS.A. PhilipD. Green synthesis of silver nanoparticles using Macrotyloma uniflorum.Spectrochim. Acta A Mol. Biomol. Spectrosc.201183139239710.1016/j.saa.2011.08.051 21920808
    [Google Scholar]
  33. SunY. XiaY. Shape-controlled synthesis of gold and silver nanoparticles.Science200229856012176217910.1126/science.1077229 12481134
    [Google Scholar]
  34. PanX. Medina-RamirezI. MernaughR. LiuJ. Nanocharacterization and bactericidal performance of silver modified titania photocatalyst.Colloids Surf. B Biointerfaces2010771828910.1016/j.colsurfb.2010.01.010 20153152
    [Google Scholar]
  35. RavikumarP. RavichandranK. SakthivelB. Effect of thickness of SnO2: F over layer on certain physical properties of ZnO: Al thin films for opto-electronic applications.J. Mater. Sci. Technol.20122811999100310.1016/S1005‑0302(12)60164‑9
    [Google Scholar]
  36. GomathiM. RajkumarP.V. PrakasamA. Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity.Results Phys.20181085886410.1016/j.rinp.2018.08.011
    [Google Scholar]
  37. AntonyJ. NuttingJ. BaerD.R. MeyerD. SharmaA. QiangY. Size-dependent specific surface area of nano-porous film assembled by core-shell iron Nanoclusters.J. Nanomater.20062006105496110.1155/JNM/2006/54961
    [Google Scholar]
  38. SatyavaniK. RamanathanT. GurudeebanS. Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis).Dig. J. Nanomater. Biostruct.2011631019102410.5330/ijpi.2020.3.56
    [Google Scholar]
  39. SaravanakumarA. PengM.M. GaneshM. JayaprakashJ. MohankumarM. JangH.T. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.Artif. Cells Nanomed. Biotechnol.20174561165117110.1080/21691401.2016.1203795 27396523
    [Google Scholar]
  40. HemlataM.P.R. MeenaP.R. SinghA.P. TejavathK.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines.ACS Omega20205105520552810.1021/acsomega.0c00155 32201844
    [Google Scholar]
  41. AliS.S. KhanM.I. Green synthesis of silver nanoparticles using plant extracts: A review on their antifungal properties and mechanisms of action.Biotechnol. Rep. (Amst.)202338e0074010.1016/j.btrec.2023.e00740
    [Google Scholar]
  42. ShawkeyA.M. RabehM.A. AbdulallA.K. AbdellatifA.O. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts.Int. J. Adv. Life Sci.2013136070
    [Google Scholar]
  43. HafeezR. KanwalZ. RazaM.A. RasoolS. RiazS. NaseemS. RabaniS. HaiderI. AhmadN. AlomarS.Y. Role of Citrullus colocynthis and Psidium guajava mediated green synthesized silver nanoparticles in disease resistance against Aeromonas hydrophila challenge in Labeo rohita.Biomedicines2023119234910.3390/biomedicines11092349 37760791
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137356893241217060404
Loading
/content/journals/cnano/10.2174/0115734137356893241217060404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test