Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Identifying abdominal aortic aneurysm (AAA) and its condition is crucial for providing better treatment before rupture. Since AAA is often asymptomatic, regular monitoring is necessary for elderly individuals to detect changes in the aorta.

Methods

Although imaging techniques are commonly used to diagnose AAA, they are expensive and can cause discomfort to patients. C-reactive protein (CRP) is an acute-phase protein, and its concentration is highly correlated with the size of the abdominal aortic aneurysm (AAA) diameter. It was found that patients with elevated CRP levels above 1.4 mg/mL had an AAA expansion rate of 4.8 mM, compared to 3.9 mM in those with levels below 1.4 mg/mL. In addition, CRP helps to identify AAA in asymptomatic patients. Compared to other biomarkers, CRP levels are useful in assessing the size of AAA.

Results

Therefore, quantifying CRP levels aids in identifying and monitoring AAA size. This research focuses on developing a CRP biosensor on a zeolite-modified electrode with a silica substrate for diagnosing AAA. An anti-CRP aptamer serves as the capture molecule, while an anti-CRP antibody functions as the detection molecule. The aptamer is conjugated with gold nanoparticles and linked to the electrode an amine-modified zeolite to enhance aptamer immobilization.

Conclusion

Using an aptamer-antibody sandwich assay, a detection limit of 1 pg/mL of CRP was achieved on this surface. Furthermore, CRP-spiked serum samples showed a noticeable increase in current responses, while control proteins and complementary aptamers failed to elevate the current level, indicating the selective and specific detection of CRP.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137331819241129072746
2025-01-15
2026-01-03
Loading full text...

Full text loading...

References

  1. DavidovićL. MarkovićM. KostićD. ČinaraI. MarkovićD. MaksimovićŽ. CvetkovićS. SindjelicR. IlleT. Ruptured abdominal aortic aneurysms: factors influencing early survival.Ann. Vasc. Surg.2005191293410.1007/s10016‑004‑0148‑9 15714364
    [Google Scholar]
  2. AggarwalS. QamarA. SharmaV. SharmaA. Abdominal aortic aneurysm: A comprehensive review.Exp. Clin. Cardiol.20111611115 21523201
    [Google Scholar]
  3. SpringerF. SchlierfR. PfefferJ.G. MahnkenA.H. SchnakenbergU. Schmitz-RodeT. Detecting endoleaks after endovascular AAA repair with a minimally invasive, implantable, telemetric pressure sensor: An in vitro study.Eur. Radiol.200717102589259710.1007/s00330‑007‑0583‑4 17340105
    [Google Scholar]
  4. LinJ. MaL. ZhangD. GaoJ. JinY. HanZ. LinD. Tumour biomarkers—Tracing the molecular function and clinical implication.Cell Prolif.2019523e1258910.1111/cpr.12589 30873683
    [Google Scholar]
  5. GopinathN. Artificial intelligence and neuroscience: An update on fascinating relationships.Process Biochem.202312511312010.1016/j.procbio.2022.12.011
    [Google Scholar]
  6. GopinathN. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic.Process Biochem.2021110949910.1016/j.procbio.2021.08.001 34366689
    [Google Scholar]
  7. LakshmipriyaT. FujimakiM. GopinathS.C.B. AwazuK. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications.Langmuir20132948151071511510.1021/la4027283 24200095
    [Google Scholar]
  8. DomanovitsH. SchillingerM. MüllnerM. HölzenbeinT. JanataK. BayeganK. LaggnerA.N. Acute phase reactants in patients with abdominal aortic aneurysm.Atherosclerosis2002163229730210.1016/S0021‑9150(02)00006‑0 12052476
    [Google Scholar]
  9. PowellJ.T. MullerB.R. GreenhalghR.M. Acute phase proteins in patients with abdominal aortic aneurysms.J. Cardiovasc. Surg. (Torino)1987285528530 2443505
    [Google Scholar]
  10. VainasT. LubbersT. StassenF.R.M. HerngreenS.B. van Dieijen-VisserM.P. BruggemanC.A. KitslaarP.J.E.H.M. SchurinkG.W.H. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue.Circulation200310781103110510.1161/01.CIR.0000059938.95404.92 12615785
    [Google Scholar]
  11. KimE.N. YuJ. LimJ.S. JeongH. KimC.J. ChoiJ.S. KimS.R. AhnH.S. KimK. OhS.J. CRP immunodeposition and proteomic analysis in abdominal aortic aneurysm.PLoS One2021168e024536110.1371/journal.pone.0245361 34428207
    [Google Scholar]
  12. Jung JoH. Sung KangM. Jeong JangH. Selestin RajaI. LimD. KimB. HanD.-W. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering. MSAM202322062010.36922/msam.0620
    [Google Scholar]
  13. MaF. ZhangQ. ZhangC. Nanomaterial-based biosensors for DNA methyltransferase assay.J. Mater. Chem. B Mater. Biol. Med.20208163488350110.1039/C9TB02458A 32095792
    [Google Scholar]
  14. HayatA. CatananteG. MartyJ. Current trends in nanomaterial-based amperometric biosensors.Sensors (Basel)20141412234392346110.3390/s141223439 25494347
    [Google Scholar]
  15. MokhtarzadehA. Eivazzadeh-KeihanR. PashazadehP. HejaziM. GharaatifarN. HasanzadehM. BaradaranB. de la GuardiaM. Nanomaterial-based biosensors for detection of pathogenic virus.Trends Analyt. Chem.20179744545710.1016/j.trac.2017.10.005 32287543
    [Google Scholar]
  16. YusoffM.S. GopinathS.C.B. UdaM.N.A. LakshmipriyaT. Wan YaakubA.R. AnbuP. Conjugation of silver and gold nanoparticles for enhancing antimicrobial activity.INNOSC Theranostics and Pharmacological Sciences202242384710.36922/itps.v4i2.70
    [Google Scholar]
  17. MohammedA.M. RahimR.A. IbraheemI.J. LoongF.K. HishamH. HashimU. Al-DouriY. Application of gold nanoparticles for electrochemical DNA biosensor.J. Nanomater.20142014168346010.1155/2014/683460
    [Google Scholar]
  18. JiangP. WangY. ZhaoL. JiC. ChenD. NieL. Applications of gold nanoparticles in non-optical biosensors.Nanomaterials (Basel)201881297710.3390/nano8120977 30486293
    [Google Scholar]
  19. KucherenkoI.S. SoldatkinO.O. DzyadevychS.V. SoldatkinA.P. Application of zeolites and zeolitic imidazolate frameworks in the biosensor development.Biomaterials Advances202214321318010.1016/j.bioadv.2022.213180 36375221
    [Google Scholar]
  20. DapengQin Z.Y.; Gong, Q.; Li, X.; Gao, Y.; Subash, C.B. Identification of Mycoplasma pneumoniae by DNA-modified gold nanomaterials in a colorimetric assay.Biotechnol. Appl. Biochem.202270553559
    [Google Scholar]
  21. KulkarniM.B. AyachitN.H. AminabhaviT.M. Biosensors and microfluidic biosensors: From fabrication to application.Biosensors (Basel)202212754310.3390/bios12070543 35884346
    [Google Scholar]
  22. LakshmipriyaT. HoriguchiY. NagasakiY. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma.Analyst (Lond.)2014139163977398510.1039/C4AN00168K 24922332
    [Google Scholar]
  23. LakshmipriyaT. FujimakiM. GopinathS.C.B. AwazuK. HoriguchiY. NagasakiY. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity.Analyst (Lond.)2013138102863287010.1039/c3an00298e 23577343
    [Google Scholar]
  24. RamanathanS. GopinathS.C.B. Md ArshadM.K. PoopalanP. AnbuP. LakshmipriyaT. Aluminosilicate nanocomposites from incinerated chinese holy joss fly ash: A potential nanocarrier for drug cargos.Sci. Rep.2020101335110.1038/s41598‑020‑60208‑x 32099019
    [Google Scholar]
  25. JarczewskaM. RębiśJ. GórskiŁ. MalinowskaE. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein.Talanta2018189455410.1016/j.talanta.2018.06.035 30086945
    [Google Scholar]
  26. QiuZ. ZhangX. JiaN. LiX. LiR. GopinathS.C.B. JiaoM. Zeolite nanomaterial-modified dielectrode oxide surface for diagnosing Alzheimer’s disease by dual molecular probed impedance sensor.Turk Biyokim. Derg.202448666867410.1515/tjb‑2023‑0079
    [Google Scholar]
  27. ZhangH. GopinathS.C.B. HuY. Spinal cord injury immunosensor: Sensitive detection of S100β on interdigitated electrode sensor.Heliyon202399e1930410.1016/j.heliyon.2023.e19304 37662784
    [Google Scholar]
  28. BennettH.A. LiY. YanH. Thermal treatment affects aptamers’ structural profiles.Bioorg. Med. Chem. Lett.20238212915010.1016/j.bmcl.2023.129150 36693483
    [Google Scholar]
  29. SaadY. BouzidM. SelmiM. GazzahM.H. AlmansourA.M. BoshraA.Y. MansouriS.M.H. BelmabroukH. The adsorption effect on chemical kinetics at the reaction surface in a microfluidic channel of a biosensor for the SARS-Cov-2 detection.Sens. Actuators A Phys.202436911517510.1016/j.sna.2024.115175
    [Google Scholar]
  30. LakshmipriyaT. GopinathS.C.B. TangT.H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay.PLoS One2016113e015115310.1371/journal.pone.0151153 26954237
    [Google Scholar]
  31. LiJ. LiH. XuJ. ZhaoX. SongS. ZhangH. Myocardial infarction biomarker C‐reactive protein detection on nanocomposite aptasensor.Biotechnol. Appl. Biochem.202269116617110.1002/bab.2093 33370481
    [Google Scholar]
  32. WeiW. TangY. HeH. GopinathS.C.B. WangL. Determination of cardiac disease biomarker by plasmonic sandwich ELISA.Biotechnol. Appl. Biochem.202269116016510.1002/bab.2092 33369762
    [Google Scholar]
  33. AllardJ.B. DuanC. IGF-binding proteins: Why do they exist and why are there so many?Front. Endocrinol. (Lausanne)2018911710.3389/fendo.2018.00117 29686648
    [Google Scholar]
  34. PanekB. GackoM. PałkaJ. Metalloproteinases, insulin‐like growth factor‐I and its binding proteins in aortic aneurysm.Int. J. Exp. Pathol.200485315916410.1111/j.0959‑9673.2004.00386.x 15255969
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137331819241129072746
Loading
/content/journals/cnano/10.2174/0115734137331819241129072746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test