Skip to content
2000
image of Zeolite-assisted Silica Substrate for Sensing Abdominal Aortic Aneurysms by Aptamer-C-reactive Protein-antibody Sandwich

Abstract

Introduction

Identifying abdominal aortic aneurysm (AAA) and its condition is crucial for providing better treatment before rupture. Since AAA is often asymptomatic, regular monitoring is necessary for elderly individuals to detect changes in the aorta.

Methods

Although imaging techniques are commonly used to diagnose AAA, they are expensive and can cause discomfort to patients. C-reactive protein (CRP) is an acute-phase protein, and its concentration is highly correlated with the size of the abdominal aortic aneurysm (AAA) diameter. It was found that patients with elevated CRP levels above 1.4 mg/mL had an AAA expansion rate of 4.8 mM, compared to 3.9 mM in those with levels below 1.4 mg/mL. In addition, CRP helps to identify AAA in asymptomatic patients. Compared to other biomarkers, CRP levels are useful in assessing the size of AAA.

Results

Therefore, quantifying CRP levels aids in identifying and monitoring AAA size. This research focuses on developing a CRP biosensor on a zeolite-modified electrode with a silica substrate for diagnosing AAA. An anti-CRP aptamer serves as the capture molecule, while an anti-CRP antibody functions as the detection molecule. The aptamer is conjugated with gold nanoparticles and linked to the electrode via an amine-modified zeolite to enhance aptamer immobilization.

Conclusion

Using an aptamer-antibody sandwich assay, a detection limit of 1 pg/mL of CRP was achieved on this surface. Furthermore, CRP-spiked serum samples showed a noticeable increase in current responses, while control proteins and complementary aptamers failed to elevate the current level, indicating the selective and specific detection of CRP.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137331819241129072746
2025-01-15
2025-09-19
Loading full text...

Full text loading...

References

  1. Davidović L. Marković M. Kostić D. Činara I. Marković D. Maksimović Ž. Cvetković S. Sindjelic R. Ille T. Ruptured abdominal aortic aneurysms: factors influencing early survival. Ann. Vasc. Surg. 2005 19 1 29 34 10.1007/s10016‑004‑0148‑9 15714364
    [Google Scholar]
  2. Aggarwal S. Qamar A. Sharma V. Sharma A. Abdominal aortic aneurysm: A comprehensive review. Exp. Clin. Cardiol. 2011 16 1 11 15 21523201
    [Google Scholar]
  3. Springer F. Schlierf R. Pfeffer J.G. Mahnken A.H. Schnakenberg U. Schmitz-Rode T. Detecting endoleaks after endovascular AAA repair with a minimally invasive, implantable, telemetric pressure sensor: an in vitro study. Eur. Radiol. 2007 17 10 2589 2597 10.1007/s00330‑007‑0583‑4 17340105
    [Google Scholar]
  4. Lin J. Ma L. Zhang D. Gao J. Jin Y. Han Z. Lin D. Tumour biomarkers—Tracing the molecular function and clinical implication. Cell Prolif. 2019 52 3 e12589 10.1111/cpr.12589 30873683
    [Google Scholar]
  5. Gopinath N. Artificial intelligence and neuroscience: An update on fascinating relationships. Process Biochem. 2023 125 113 120 10.1016/j.procbio.2022.12.011
    [Google Scholar]
  6. Gopinath N. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021 110 94 99 10.1016/j.procbio.2021.08.001 34366689
    [Google Scholar]
  7. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 2013 29 48 15107 15115 10.1021/la4027283 24200095
    [Google Scholar]
  8. Domanovits H. Schillinger M. Müllner M. Hölzenbein T. Janata K. Bayegan K. Laggner A.N. Acute phase reactants in patients with abdominal aortic aneurysm. Atherosclerosis 2002 163 2 297 302 10.1016/S0021‑9150(02)00006‑0 12052476
    [Google Scholar]
  9. Powell J.T. Muller B.R. Greenhalgh R.M. Acute phase proteins in patients with abdominal aortic aneurysms. J. Cardiovasc. Surg. (Torino) 1987 28 5 528 530 2443505
    [Google Scholar]
  10. Vainas T. Lubbers T. Stassen F.R.M. Herngreen S.B. van Dieijen-Visser M.P. Bruggeman C.A. Kitslaar P.J.E.H.M. Schurink G.W.H. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue. Circulation 2003 107 8 1103 1105 10.1161/01.CIR.0000059938.95404.92 12615785
    [Google Scholar]
  11. Kim E.N. Yu J. Lim J.S. Jeong H. Kim C.J. Choi J.S. Kim S.R. Ahn H.S. Kim K. Oh S.J. CRP immunodeposition and proteomic analysis in abdominal aortic aneurysm. PLoS One 2021 16 8 e0245361 10.1371/journal.pone.0245361 34428207
    [Google Scholar]
  12. Jung Jo H. Sung Kang M. Jeong Jang H. Selestin Raja I. Lim D. Kim B. Han D.-W. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering. MSAM 2023 2 2 0620 10.36922/msam.0620
    [Google Scholar]
  13. Ma F. Zhang Q. Zhang C. Nanomaterial-based biosensors for DNA methyltransferase assay. J. Mater. Chem. B Mater. Biol. Med. 2020 8 16 3488 3501 10.1039/C9TB02458A 32095792
    [Google Scholar]
  14. Hayat A. Catanante G. Marty J. Current trends in nanomaterial-based amperometric biosensors. Sensors (Basel) 2014 14 12 23439 23461 10.3390/s141223439 25494347
    [Google Scholar]
  15. Mokhtarzadeh A. Eivazzadeh-Keihan R. Pashazadeh P. Hejazi M. Gharaatifar N. Hasanzadeh M. Baradaran B. de la Guardia M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem. 2017 97 445 457 10.1016/j.trac.2017.10.005 32287543
    [Google Scholar]
  16. Yusoff M.S. Gopinath S.C.B. Uda M.N.A. Lakshmipriya T. Wan Yaakub A.R. Anbu P. Conjugation of Silver and Gold Nanoparticles for Enhancing Antimicrobial Activity. INNOSC Theranostics and Pharmacological Sciences 2022 4 2 38 47 10.36922/itps.v4i2.70
    [Google Scholar]
  17. Mohammed A.M. Rahim R.A. Ibraheem I.J. Loong F.K. Hisham H. Hashim U. Al-Douri Y. Application of gold nanoparticles for electrochemical DNA biosensor. J. Nanomater. 2014 2014 1 683460 10.1155/2014/683460
    [Google Scholar]
  18. Jiang P. Wang Y. Zhao L. Ji C. Chen D. Nie L. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials (Basel) 2018 8 12 977 10.3390/nano8120977 30486293
    [Google Scholar]
  19. Kucherenko I.S. Soldatkin O.O. Dzyadevych S.V. Soldatkin A.P. Application of zeolites and zeolitic imidazolate frameworks in the biosensor development. Biomaterials Advances 2022 143 213180 10.1016/j.bioadv.2022.213180 36375221
    [Google Scholar]
  20. Dapeng Qin Z.Y. Gong Q. Li X. Gao Y. Subash C.B. Identification of Mycoplasma pneumoniae by DNA-modified gold nanomaterials in a colorimetric assay. Biotechnol. Appl. Biochem. 2022 70 553 559
    [Google Scholar]
  21. Kulkarni M.B. Ayachit N.H. Aminabhavi T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors (Basel) 2022 12 7 543 10.3390/bios12070543 35884346
    [Google Scholar]
  22. Lakshmipriya T. Horiguchi Y. Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst (Lond.) 2014 139 16 3977 3985 10.1039/C4AN00168K 24922332
    [Google Scholar]
  23. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Horiguchi Y. Nagasaki Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst (Lond.) 2013 138 10 2863 2870 10.1039/c3an00298e 23577343
    [Google Scholar]
  24. Ramanathan S. Gopinath S.C.B. Md Arshad M.K. Poopalan P. Anbu P. Lakshmipriya T. Aluminosilicate Nanocomposites from Incinerated Chinese Holy Joss Fly Ash: A Potential Nanocarrier for Drug Cargos. Sci. Rep. 2020 10 1 3351 10.1038/s41598‑020‑60208‑x 32099019
    [Google Scholar]
  25. Jarczewska M. Rębiś J. Górski Ł. Malinowska E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 2018 189 45 54 10.1016/j.talanta.2018.06.035 30086945
    [Google Scholar]
  26. Qiu Z. Zhang X. Jia N. Li X. Li R. Gopinath S.C.B. Jiao M. Zeolite nanomaterial-modified dielectrode oxide surface for diagnosing Alzheimer’s disease by dual molecular probed impedance sensor. Turk Biyokim. Derg. 2024 48 6 668 674 10.1515/tjb‑2023‑0079
    [Google Scholar]
  27. Zhang H. Gopinath S.C.B. Hu Y. Spinal cord injury immunosensor: Sensitive detection of S100β on interdigitated electrode sensor. Heliyon 2023 9 9 e19304 10.1016/j.heliyon.2023.e19304 37662784
    [Google Scholar]
  28. Bennett H.A. Li Y. Yan H. Thermal treatment affects aptamers’ structural profiles. Bioorg. Med. Chem. Lett. 2023 82 129150 10.1016/j.bmcl.2023.129150 36693483
    [Google Scholar]
  29. Saad Y. Bouzid M. Selmi M. Gazzah M.H. Almansour A.M. Boshra A.Y. Mansouri S.M.H. Belmabrouk H. The adsorption effect on chemical kinetics at the reaction surface in a microfluidic channel of a biosensor for the SARS-Cov-2 detection. Sens. Actuators A Phys. 2024 369 115175 10.1016/j.sna.2024.115175
    [Google Scholar]
  30. Lakshmipriya T. Gopinath S.C.B. Tang T.H. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay. PLoS One 2016 11 3 e0151153 10.1371/journal.pone.0151153 26954237
    [Google Scholar]
  31. Li J. Li H. Xu J. Zhao X. Song S. Zhang H. Myocardial infarction biomarker C‐reactive protein detection on nanocomposite aptasensor. Biotechnol. Appl. Biochem. 2022 69 1 166 171 10.1002/bab.2093 33370481
    [Google Scholar]
  32. Wei W. Tang Y. He H. Gopinath S.C.B. Wang L. Determination of cardiac disease biomarker by plasmonic sandwich ELISA. Biotechnol. Appl. Biochem. 2022 69 1 160 165 10.1002/bab.2092 33369762
    [Google Scholar]
  33. Allard J.B. Duan C. IGF-binding proteins: Why do they exist and why are there so many? Front. Endocrinol. (Lausanne) 2018 9 117 10.3389/fendo.2018.00117 29686648
    [Google Scholar]
  34. Panek B. Gacko M. Pałka J. Metalloproteinases, insulin‐like growth factor‐I and its binding proteins in aortic aneurysm. Int. J. Exp. Pathol. 2004 85 3 159 164 10.1111/j.0959‑9673.2004.00386.x 15255969
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137331819241129072746
Loading
/content/journals/cnano/10.2174/0115734137331819241129072746
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanomaterial ; dual probe ; nanoparticle ; Silica ; artificial antibody
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test