Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Stem cell therapy has emerged as a highly active field of research due to the remarkable abilities of stem cells to renew themselves and differentiate into various types of cells when cultured. However, scientists have recently become more aware of the limitations of traditional 2D culture and stem cell culture media.

Methods

This study aims to create an alternative polymeric three-dimensional (3D) scaffold by utilizing the self-assembly process of a star-shaped amphiphilic copolymer (poly(caprolactone) and poly(ethylene oxide)) into nanofibers. These nanofibers closely resemble the native extracellular matrix in terms of scale and capability of replicating the extracellular microenvironment, enabling the observation and manipulation of stem cell functions.

Results

The findings of this study indicate that polymeric nanofibers are highly effective as a 3D scaffold for the proliferation of mouse Embryonic Stem Cells (mESCs) while maintaining their stem cell characteristics.

Conclusion

These findings strongly suggest that the polymeric 3D scaffolds, in the form of nanofibers, not only support the growth and proliferation of stem cells but also preserve the pluripotency of mESCs.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137341067241231110858
2025-04-09
2026-01-04
Loading full text...

Full text loading...

/deliver/fulltext/cnano/22/1/CNANO-22-1-11.html?itemId=/content/journals/cnano/10.2174/0115734137341067241231110858&mimeType=html&fmt=ahah

References

  1. TanF. LiX. WangZ. LiJ. ShahzadK. ZhengJ. Clinical applications of stem cell-derived exosomes.Signal Transduct. Target. Ther.2024911710.1038/s41392‑023‑01704‑0 38212307
    [Google Scholar]
  2. ChuD.T. NguyenT.T. TienN.L.B. TranD.K. JeongJ.H. AnhP.G. ThanhV.V. TruongD.T. DinhT.C. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications.Cells20209356310.3390/cells9030563 32121074
    [Google Scholar]
  3. DongY. WuX. ChenX. ZhouP. XuF. LiangW. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook.Biomed. Pharmacother.202113711123610.1016/j.biopha.2021.111236 33486201
    [Google Scholar]
  4. AfewerkiS. BassousN. HarbS. Palo-NietoC. Ruiz-EsparzaG.U. MarcianoF.R. WebsterT.J. FurtadoA.S.A. LoboA.O. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications.Nanomedicine20202410214310.1016/j.nano.2019.102143 31862427
    [Google Scholar]
  5. BadekilaA.K. KiniS. JaiswalA.K. Fabrication techniques of biomimetic scaffolds in three‐dimensional cell culture: A review.J. Cell. Physiol.2021236274176210.1002/jcp.29935 32657458
    [Google Scholar]
  6. RathinavelS. PriyadharshiniK. PandaD. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application.Mater. Sci. Eng. B202126811509510.1016/j.mseb.2021.115095
    [Google Scholar]
  7. KongH. YangG. HeP. ZhuD. LuanX. XuY. MuR. WeiG. Self-assembly of bioinspired peptides for biomimetic synthesis of advanced peptide-based nanomaterials: A mini-review.Nano Futures20237101200110.1088/2399‑1984/acafbe
    [Google Scholar]
  8. Bierman-DuquetteR.D. SafariansG. HuangJ. RajputB. ChenJ.Y. WangZ.Z. SeidlitsS.K. Engineering tissues of the central nervous system: Interfacing conductive biomaterials with neural stem/progenitor cells.Adv. Healthc. Mater.2022117210157710.1002/adhm.202101577 34808031
    [Google Scholar]
  9. HolmannovaD. BorskyP. SvadlakovaT. BorskaL. FialaZ. Carbon nanoparticles and their biomedical applications.Appl. Sci. (Basel)20221215786510.3390/app12157865
    [Google Scholar]
  10. Nur-E-KamalA. AhmedI. KamalJ. SchindlerM. MeinersS. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells.Stem Cells200624242643310.1634/stemcells.2005‑0170 16150921
    [Google Scholar]
  11. ChehrehgoshaM. KhoshnevisanK. MalekiH. BaharifarH. MeftahA.M. Sajjadi-JaziS.M. SharifiF. A systematic study of nano-based fibrous systems: Diagnostic and therapeutic approaches for dementia control.Ageing Res. Rev.20238510185310.1016/j.arr.2023.101853 36642189
    [Google Scholar]
  12. KalluriL. DuanY. JanorkarA.V. Electrospun polymeric nanofibers for dental applications.J. Appl. Polym. Sci.202414115e5522410.1002/app.55224
    [Google Scholar]
  13. PerestreloA.R. MouffoukF. da CostaA.M.R. BeloJ.A. Novel triblock co-polymer nanofibre system as an alternative support for embryonic stem cells growth and pluripotency.J. Tissue Eng. Regen. Med.20161010E467E47610.1002/term.1838 24668905
    [Google Scholar]
  14. OuyangA. NgR. YangS.T. Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without extracellular matrix coating.Stem Cells200725244745410.1634/stemcells.2006‑0322 17023515
    [Google Scholar]
  15. AlrokayanS.H. MouffoukF. KhanH.A. HussainT. AlameryS. Abu-SalahK. Self-assembled copolymeric nanowires as a new class of 3D scaffold for stem cells growth and proliferation.J. Nanomater.2023202311110.1155/2023/5867338
    [Google Scholar]
  16. LeeT.C. LeeT.H. HuangY.H. ChangN.K. LinY.J. ChienP.W.C. YangW.H. LinM.H.C. Comparison of surface markers between human and rabbit mesenchymal stem cells.PLoS One2014911e11139010.1371/journal.pone.0111390 25380245
    [Google Scholar]
  17. OspennikovA.S. GavrilovA.A. ArtykulnyiO.P. KuklinA.I. NovikovV.V. ShibaevA.V. PhilippovaO.E. Transformations of wormlike surfactant micelles induced by a water-soluble monomer.J. Colloid Interface Sci.202160259060110.1016/j.jcis.2021.05.062 34147750
    [Google Scholar]
  18. OkolicsanyiR.K. GriffithsL.R. HauptL.M. Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix.Dev. Biol.2014388111010.1016/j.ydbio.2014.01.024 24509075
    [Google Scholar]
  19. ZaragosiL.E. DadoneB. MichielsJ.F. MartyM. PedeutourF. DaniC. BianchiniL. Syndecan-1 regulates adipogenesis: New insights in dedifferentiated liposarcoma tumorigenesis.Carcinogenesis2015361324010.1093/carcin/bgu222 25344834
    [Google Scholar]
  20. DeoD. MarchioniM. RaoP. Mesenchymal stem/stromal cells in organ transplantation.Pharmaceutics202214479110.3390/pharmaceutics14040791 35456625
    [Google Scholar]
  21. ShinoharaT. AvarbockM.R. BrinsterR.L. β 1 - and α 6 -integrin are surface markers on mouse spermatogonial stem cells.Proc. Natl. Acad. Sci. USA199996105504550910.1073/pnas.96.10.5504 10318913
    [Google Scholar]
  22. IbrahimS.A. HassanH. ReinboldR. Espinoza-SanchezN.A. GreveB. GötteM. Role of syndecan-1 in cancer stem cells. In: Proteoglycans in Stem Cells.From Development to Cancer202127930810.1007/978‑3‑030‑73453‑4_12
    [Google Scholar]
  23. Rodríguez-FuentesD.E. Fernández-GarzaL.E. Samia-MezaJ.A. Barrera-BarreraS.A. CaplanA.I. Barrera-SaldañaH.A. Mesenchymal stem cells current clinical applications: A systematic review.Arch. Med. Res.20215219310110.1016/j.arcmed.2020.08.006 32977984
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137341067241231110858
Loading
/content/journals/cnano/10.2174/0115734137341067241231110858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test