Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

This study aimed to investigate the structural alterations of nanoparticles due to external forces. These forces, both direct and indirect, are crucial in changing the structures and characteristics of nanoparticles, which may have an impact on important variables and results.

Methods

The main focus of this study was on how researchers might modify the characteristics of nanoparticles by using a simple technique and adding precursor chemicals. The employed methodology, referred to as the simple bath method, made it easier to prepare and characterize composite nanoparticles using high-resolution TEM, XRD, SEM, and UV. To obtain important information, a comparative examination was carried out against standard market combinations.

Results

This study explored the size and shape fluctuations of nanoparticles as identified by XRD and SEM investigations. Using Tauc plots for UV-vis spectroscopy, the refractive indices of the nanoparticles were calculated, and energy gaps, extinction coefficients, and dielectric constants were visualized. Moreover, ZnO nanoparticles were tested against Gram-positive (, , and ) and Gram-negative (, , ‘-) bacteria using an agar well diffusion process. Region reserve values (mm) were measured after twenty-four hours at thirty-seven degrees Celsius.

Conclusion

The common antibiotic amoxicillin (10 µg/disc) was used as a standard. The activity of IN, ISB, ISC, and ISN on bacteria and fungi was examined. It was found that ZnO nanoparticles exhibited antibacterial capabilities, such as ion release and rupture, as well as the generation of antibacterial properties of IN, ISB, ISC, and ISN. , where ZnO nanoparticles alone were evaluated directly to establish baseline activity; , where Lawsonia inermis (henna) extract was combined with ZnO nanoparticles in a Petri dish under different substrates and conditions; , where Lawsonia inermis extract with ZnO nanoparticles was combined in a concave dish and tested under varying substrates and conditions; and , where Lawsonia inermis extract with ZnO nanoparticles was further doped with NaOH.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137321780240929180817
2025-04-07
2026-01-03
Loading full text...

Full text loading...

References

  1. HingoraniS. PillaiV. KumarP. MultaniM.S. ShahD.O. Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies.Mater. Res. Bull.199328121303131010.1016/0025‑5408(93)90178‑G
    [Google Scholar]
  2. ZhiyongF. LuJ.G. Chemical sensing with ZnO nanowire field-effect transistor.IEEE Trans. Nanotechnol.20065439339610.1109/TNANO.2006.877428
    [Google Scholar]
  3. BagabasA. AlshammariA. AboudM.F. KosslickH. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation.Nanoscale Res. Lett.20138151610.1186/1556‑276X‑8‑516
    [Google Scholar]
  4. ShaoS. ZhengK. ZidekK. ChaberaP. PulleritsT. ZhangF. Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells.Sol. Energy Mater. Sol. Cells2013118434710.1016/j.solmat.2013.07.046
    [Google Scholar]
  5. BhatS. GovindarajA. RaoC.N.R. Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration.Sol. Energy Mater. Sol. Cells20119582318232110.1016/j.solmat.2011.03.047
    [Google Scholar]
  6. ZhouY. KrügerM. EckM. Organic-inorganic hybrid solar cells: State of the art, challenges and perspectives.In: Solar Cells - New Aspects and Solutions.Intech Open201110.5772/19732
    [Google Scholar]
  7. VaseemM. UmarA. HahnY-B. Zinc oxide nanoparticles: Growth, properties and their applications.In: Umar Ahmad, Hahn Yoon-Bong, Eds. Metal oxide nanostructures and their applications. USA: American Scientific Publishers20095136
    [Google Scholar]
  8. GuptaS.K. JoshiA. KaurM. Development of gas sensors using ZnO nanostructures.J. Chem. Sci.20101221576210.1007/s12039‑010‑0006‑y
    [Google Scholar]
  9. ZhaoZ. LeiW. ZhangX. WangB. JiangH. ZnO-based amperometric enzyme biosensors.Sensors (Basel)20101021216123110.3390/s100201216 22205864
    [Google Scholar]
  10. XuC.X. YangC. GuB.X. FangS.J. Nanostructured ZnO for biosensing applications.Chin. Sci. Bull.201358212563256610.1007/s11434‑013‑5714‑5
    [Google Scholar]
  11. SoosenS.M. BoseL. GeorgeK.C. Optical properties of ZnO nanoparticles.SB Academic Review2009161 & 25765
    [Google Scholar]
  12. YuQ. FuW. YuC. Structural electrical and optical properties of yttrium doped ZnO nanoparticles.J. Phys. D Appl. Phys.200740559210.1088/0022‑3727/40/18/014
    [Google Scholar]
  13. WuY.L. TokA.I.Y. BoeyF.Y.C. ZengX.T. ZhangX.H. Surface modification of ZnO nanocrystals.Appl. Surf. Sci.2007253125473547910.1016/j.apsusc.2006.12.091
    [Google Scholar]
  14. ShanmuganS. SelvarajuP. SivakumarS. NagarajJ. Srinivas PrasadM.V.V.K. AbhiramN. Solar cells absorption viewpoint of Mie theory: Experimental analysis of TiO2 doping V/Ce.Mater. Today Proc.2022511124112810.1016/j.matpr.2021.07.110
    [Google Scholar]
  15. ChenS. KumarR.V. GedankenA. ZabanA. Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye‐sensitized solar cells.Isr. J. Chem.2001411515410.1560/HQ1V‑8KAG‑5KQK‑E91F
    [Google Scholar]
  16. GhaffarianH.R. SaiediM. SayyadnejadM.A. Synthesis of ZnO nanoparticles by spray pyrolysis method.Iran J Chem Chem Eng2011301610.30492/IJCCE.2011.6250
    [Google Scholar]
  17. PemartinK. SolansC. Vidal-LopezG. Sanchez-DominguezM. Synthesis of ZnO and ZnO2 nanoparticles by the oil-in-water microemulsion reaction method.Chem. Lett.2012 Oct41101032103410.1246/cl.2012.1032
    [Google Scholar]
  18. SinghN. Effect of ageing in structural properties of ZnO nanoparticles with ph variation for application in solar cells.Open Renewable Energy Journal201251151810.2174/1876387101205010015
    [Google Scholar]
  19. SureshB.K. NarayananV. Hydrothermal synthesis of hydrated zinc oxide nanoparticles and its characterization.Chem. Sci. Trans.20132S1S3310.7598/cst2013.004
    [Google Scholar]
  20. BandyopadhyayA. ModakS. AcharyaS. DebA.K. ChakrabartiP.K. Microstructural, magnetic and crystal field investigations of nanocrystalline Dy3+ doped zinc oxide.Solid State Sci.201012444845410.1016/j.solidstatesciences.2009.12.006
    [Google Scholar]
  21. KaninginiA.G. AziziS. SintwaN. Effect of optimized precursor concentration, temperature, and doping on optical properties of ZnO nanoparticles synthesized via a green route using bush tea (Athrixia phylicoides DC.) leaf extracts.ACS Omega2022736316583166610.1021/acsomega.2c00530 36120056
    [Google Scholar]
  22. ChekrounM.Z. BenaliM.A. YahiaouiI.E. DebabM. BelmehdiM.Z. Tabet-DerrazH. Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet–visible spectral range: Experimental and numerical study.Opt. Mater.202213211276910.1016/j.optmat.2022.112769
    [Google Scholar]
  23. MeenaM. KavithaA. KarthickS. PavithraS. ShanmuganS. Effect of decorated photoanode of TiO2 nanorods/nanoparticles in dye-sensitized solar cell.Bull. Mater. Sci.202245423110.1007/s12034‑022‑02828‑9
    [Google Scholar]
  24. PremkumarN. RadhaMadhavi M, Kitmo K, Shanmugan S. Utilizing the lignocellulosic fibers from Pineapple Crown Leaves extract for enhancing TiO2 interfacial bonding in dye-sensitized solar cell photoanodes.Mater. Renew. Sustain. Energy202413132510.1007/s40243‑023‑00245‑4
    [Google Scholar]
  25. DedeepyaG ShanmuganS SunitaSundariG et al. Dyes prepared from leaf extract of siriyanangai (Andrographis paniculata) with the effect of TiO2 based DSSCs.Mater. Today Proc.2022663644365010.1016/j.matpr.2022.07.188
    [Google Scholar]
  26. RajasekarR. SenthilKumar M, Shanmugan S, Nagarajan M. The influence of Cu2ZnSnS4 thin films with characteristics of treatment conditions on spray pyrolysis technique for solar cells applications.Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci.202296370771610.1007/s12648‑020‑01999‑7
    [Google Scholar]
  27. TamilselvanS.N. ShanmuganS. Towards sustainable solar cells: Unveiling the latest developments in bio-nano materials for enhanced DSSC efficiency.Clean Energy20248323825710.1093/ce/zkae031
    [Google Scholar]
  28. MiccoliI. SpampinatoR. MarzoF. PreteP. LovergineN. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets.Appl. Surf. Sci.201431341842310.1016/j.apsusc.2014.05.225
    [Google Scholar]
  29. PreteP. LovergineN. TapferL. Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100)Si.Appl. Phys., A Mater. Sci. Process.2007881212610.1007/s00339‑007‑3946‑4
    [Google Scholar]
  30. ShanmuganS. SelvarajuP. NagarajJ. SivakumarS. RavichandranS. Biogenic silver nanoparticles of antibacterial activities for poly-herbal extracts in novel medicine.Mater. Today Proc.20225111107111410.1016/j.matpr.2021.07.107
    [Google Scholar]
  31. AhmadS. UsmanM. HashimM. AliA. ShahR. RahmanN.U. Investigation of optical and dielectric properties of nickel-doped zinc oxide nanostructures prepared via coprecipitation method.J Nanomater Nanotechnol202410.1155/2024/8330886
    [Google Scholar]
  32. SemongO. BatlokwaB.S. Rapid colorimetric detection of Hg (II) based on Hg (II)-induced suppressed enzyme-like reduction of 4-nitrophenol by Au@ZnO/Fe3O4 in a cosmetic skin product.J Nanomater Nanotechnol202320231360368010.1155/2023/3603680
    [Google Scholar]
  33. KavithaA. KumarM.R. RavichandranS. ShanmuganS. SelvarajuP. Srinivas PrasadM.V.V.K. Luminescence, high thermal stability of Erbium – Ytterbium Schiff base metal complexes for bioimaging application.Mater. Today Proc.20225111087109510.1016/j.matpr.2021.07.102
    [Google Scholar]
  34. ShanmuganS. MadupuR.K. SelvarajuP. RavichandranS. Systematic growth on antibacterial activities use of silver nanoparticles with Citrus aurantifolia.Mater. Today Proc.2022511998100510.1016/j.matpr.2021.07.055
    [Google Scholar]
  35. KumarR. MauryaA. ShanmuganS. Use of absorber plate built of ZnO/PVC/Bioactivation modified epoxy nanocomposites to improvement of double-effect solar distiller productivity analyzing the energy, exergo-environment and enviro-economical.J. Clean. Prod.202443413960110.1016/j.jclepro.2023.139601
    [Google Scholar]
  36. SangeethaA. ShanmuganS. GorjianS. Experimental evaluation and thermodynamic Gibbs free energy analysis of a double-slope U-shaped stepped basin solar still using activated carbon with ZnO nanoparticles.J. Clean. Prod.2022380213511810.1016/j.jclepro.2022.135118
    [Google Scholar]
  37. ShanmuganS. DjuansjahJ. AhmadeinM. Chemical potential of different phases inside the pyramid stepped basin solar still through Gibbs free energy.Case Stud. Therma Eng.20234910327710.1016/j.csite.2023.103277
    [Google Scholar]
  38. MousaG. BasemA. ShanmuganS. Harnessing fluorescence resonance energy transfer for improved solar still performance with zinc oxide nanoparticles and activated carbon.Appl. Mater. Today20243810219610.1016/j.apmt.2024.102196
    [Google Scholar]
  39. Salavati-NiasariM. DavarF. MazaheriM. Preparation of ZnO nanoparticles from [bis(acetylacetonato)zinc(II)]–oleylamine complex by thermal decomposition.Mater. Lett.20086212-131890189210.1016/j.matlet.2007.10.032
    [Google Scholar]
  40. UngárT. Characterization of nanocrystalline materials by X-ray line profile analysis.J. Mater. Sci.20074251584159310.1007/s10853‑006‑0696‑1
    [Google Scholar]
  41. CullityB.D. StockS.R. Elements of X-ray diffraction.Prentice HallNew Jersey2001
    [Google Scholar]
  42. ZakA.K. AbrishamiM.E. MajidW.H.A. YousefiR. HosseiniS.M. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method.Ceram. Int.201137139339810.1016/j.ceramint.2010.08.017
    [Google Scholar]
  43. BartelsW.J. Characterization of thin layers on perfect crystals with a multipurpose high resolution x‐ray diffractometer.J. Vac. Sci. Technol.198333834510.1116/1.582553
    [Google Scholar]
  44. BartelsW.J. High-resolution X-ray diffractometer.Philips Tech Rev198341183185
    [Google Scholar]
  45. YogamalarR. SrinivasanR. VinuA. ArigaK. BoseA.C. X-ray peak broadening analysis in ZnO nanoparticles.Solid State Commun.200914943-441919192310.1016/j.ssc.2009.07.043
    [Google Scholar]
  46. RogersK.D. DanielsP. An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure.Biomaterials200223122577258510.1016/S0142‑9612(01)00395‑7 12033606
    [Google Scholar]
  47. BirkholzM. Thin film analysis by X-ray scattering.Wiley2005
    [Google Scholar]
  48. MichelD. MazerollesL. PortierR. Directional solidification in thealumina-silica system microstructures and interfaces.In: Somiya S, Davis RF, Pask JA, Eds. Mullite and mullite matrix composites199043544710.1007/978‑1‑4615‑5393‑9
    [Google Scholar]
  49. OkadaK. ŌtuskaN. Synthesis of mullite whiskers and their application in composites.J. Am. Ceram. Soc.199174102414241810.1111/j.1151‑2916.1991.tb06778.x
    [Google Scholar]
  50. HongS.H. MessingG.L. Anisotropic grain growth in diphasic-gelderivedtitania-doped mullite.J. Am. Ceram. Soc.19988151269127710.1111/j.1151‑2916.1998.tb02478.x
    [Google Scholar]
  51. MulderF.M. AssfourB. HuotJ. DingemansT.J. WagemakerM. Ramirez-CuestaA.J. Hydrogen in the metal-organic framework Cr MIL-53.J. Phys. Chem. C201011423106481065510.1021/jp102463p
    [Google Scholar]
  52. DhasN.A. RajC.P. GedankenA. Synthesis, characterization, and properties of metallic copper nanoparticles.Chem. Mater.19981051446145210.1021/cm9708269
    [Google Scholar]
  53. KairyteK. ArunasKadys, ZivileLuksiene, Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension.J. Photochem. Photobiol. B2013128788410.1016/j.jphotobiol.2013.07.017 24035847
    [Google Scholar]
  54. TaglienteM.A. MassaroM. Strain-driven (0 0 2) preferred orientation of ZnO nanoparticles in ion-implanted silica.Nucl. Instrum. Methods Phys. Res. B200826671055106110.1016/j.nimb.2008.02.036
    [Google Scholar]
  55. EsmailzadehH. SangpourP. ShahrazF. HejaziJ. KhaksarR. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.Mater. Sci. Eng. C2016581058106310.1016/j.msec.2015.09.078 26478403
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137321780240929180817
Loading
/content/journals/cnano/10.2174/0115734137321780240929180817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test