Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

There is a growing interest in plant extracts due to their natural origin and wide range of desirable features and benefits. These extracts are easily transferred to other media to explore their properties and usefulness using advanced technological approaches. Their encapsulation in a suitable polymer matrix and electrospinning can improve their bioavailability and maintain the required concentration release of bioactive compounds to the targeted medicinal site.

Methods

In this study, plant species (L) L’herit (PA) leaf extract was incorporated into the polyvinylpyrrolidone/cellulose acetate (PVP/CA) polymer blended matrix and characterized for their morphology, fiber diameter distribution, and structural changes. The antibacterial sensitivity of the nanofibers was evaluated against and using agar diffusion and microdilution methods. GC-MS spectra revealed the active polyphenolic compounds confirmed using the functional groups in the FTIR spectra and complimented by the qualitative tests for the presence of various classes of organic bioactive compounds. The FTIR spectra revealed the dominance of the functional groups such as C-H, C=O, and COOH due to their significant shifts in their wave numbers, which demonstrated the interaction and presence of extract in the polymer matrix.

Results

The nanofibers' SEM images showed smooth, uniform nanofibers with diameters decreasing with a slight increase in leaf extract concentration (306 to 288 nm). The presence of PA extract in the fibers promoted the antibacterial activity of nanofibers, as proven in the antibacterial test (inhibition of bacterial growth). The 5 wt% PA nanofibers showed optimal antibacterial efficacy, pioneering plant extract-based PVP/CA nanofiber mats with antibacterial activity.

Conclusion

The present work, thus, proves that the electrospinning technique is an effective strategy for the formation of antibacterial fibers for the biomedicine, pharmacy, and food industries.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137357570250124122356
2025-04-24
2026-01-09
Loading full text...

Full text loading...

/deliver/fulltext/cnano/22/1/CNANO-22-1-12.html?itemId=/content/journals/cnano/10.2174/0115734137357570250124122356&mimeType=html&fmt=ahah

References

  1. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  2. KowalczewskiP.Ł. ZembrzuskaJ. Advances in biological activities and application of plant extracts.Appl. Sci.20231316932410.3390/app13169324
    [Google Scholar]
  3. KumarA. NirmalP. KumarM. JoseA. TomerV. EmelO. ProestosC. ZengM. ElobeidT. SnehaK. FatihO. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887
    [Google Scholar]
  4. MisraR.C. ThimmappaR. BonfillM. Editorial: Advances in discoveries of plant phytochemicals.Front. Plant Sci.2024151141415010.3389/fpls.2024.1414150 38745925
    [Google Scholar]
  5. ChaachouayN. ZidaneL. Plant-derived natural products: A source for drug discovery and development. Drugs. Drug.Candidates.20243118420710.3390/ddc3010011
    [Google Scholar]
  6. ChihomvuP. GanesanA. GibbonsS. WoollardK. HayesM.A. Phytochemicals in drug discovery: A confluence of tradition and innovation.Int. J. Mol. Sci.20242516879210.3390/ijms25168792 39201478
    [Google Scholar]
  7. MakanyaneD.M. EjidikeI.P. SsemakaluC.C. MtunziF.M. PakadeV.E. KlinkM.J. LebeloR.S. GC-MS analysis and extraction optimization of bioactive compounds from Pelargonium graveolens L’Her methanolic extract and their activities as pharmacological agents.Int. Res. J. Pharm.2019109597210.7897/2230‑8407.1009263
    [Google Scholar]
  8. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine20201512555256210.2147/IJN.S246764 32368040
    [Google Scholar]
  9. Espinosa-DiezC. MiguelV. MennerichD. KietzmannT. Sánchez-PérezP. CadenasS. LamasS. Antioxidant responses and cellular adjustments to oxidative stress.Redox Biol.20156118319710.1016/j.redox.2015.07.008 26233704
    [Google Scholar]
  10. XingY. AnX. WangB. ChangG. ZhuH. YuY. Mechanism of antibacterial enhancement and drug resistance based on smart medical imaging on antibiotics.Comput. Math. Methods Med.202220221011310.1155/2022/6103649 35371276
    [Google Scholar]
  11. HamdanN. YaminA. HamidS.A. KhodirW.K.W.A. GuarinoV. Functionalized antimicrobial nanofibers: Design criteria and recent advances.J. Funct. Biomater.20211245910.3390/jfb12040059 34842715
    [Google Scholar]
  12. GuoY. FanZ. AnX. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing.J. Mech. Behav. Biomed. Mater.2020118104452
    [Google Scholar]
  13. TeixeiraM.A. AmorimM.T.P. FelgueirasH.P. Poly(Vinyl Alcohol)-Based nanofibrous electrospun scaffolds for tissue engineering applications.Polymers2019121710.3390/polym12010007 31861485
    [Google Scholar]
  14. KurakulaM. RaoG.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition.J. Drug Deliv. Sci. Technol.202060110204610.1016/j.jddst.2020.102046 32905026
    [Google Scholar]
  15. AndradeJ. González-MartínezC. ChiraltA. Physical and active properties of poly (vinyl alcohol) films with phenolic acids as affected by the processing method.Food Packag. Shelf Life202233100855
    [Google Scholar]
  16. SereaD. ConduracheN.N. AproduI. ConstantinO.E. BahrimG.E. StănciucN. StanciuS. RapeanuG. Thermal stability and inhibitory action of red grape skin phytochemicals against enzymes associated with metabolic syndrome.Antioxidants202211111810.3390/antiox11010118 35052624
    [Google Scholar]
  17. KesiciH. CalliogluF. CetinE. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning.J. Text. Inst.2018110419
    [Google Scholar]
  18. KittlerS. GreulichC. KöllerM. EppleM. Synthesis of PVP‐coated silver nanoparticles and their biological activity towards human mesenchymal stem cells.Materialwiss. Werkstofftech.200940425826410.1002/mawe.200800437
    [Google Scholar]
  19. EdikresnhaD. SuciatiT. MunirM.M. KhairurrijalK. Polyvinylpyrrolidone/cellulose acetate electrospun composite nanofibres loaded by glycerine and garlic extract with in vitro antibacterial activity and release behaviour test.RSC Advances2019945263512636310.1039/C9RA04072B 35531031
    [Google Scholar]
  20. Laboy-LópezS. Méndez FernándezP.O. Padilla-ZayasJ.G. NicolauE. Bioactive cellulose acetate electrospun mats as scaffolds for bone tissue regeneration.Int. J. Biomater.20222022111410.1155/2022/3255039 35154326
    [Google Scholar]
  21. ArroyoF.D. Castro-GuerreroC.F. León-SilvaU. Thin films of cellulose acetate nanofibers from cigarette butt waste.Prog. Rubber Plast. Recycl. Technol.202036131710.1177/1477760619895024
    [Google Scholar]
  22. JanS. KhanM.R. RashidU. BokhariJ. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of monotheca buxifolia fruit.Osong Public Health Res. Perspect.20134524625410.1016/j.phrp.2013.09.003 24298440
    [Google Scholar]
  23. JinousA. FereshtehR. An overview on phytopharmacology of Pelargonium gravoelens.Indian J. Tradit. Knowl.2015414558563
    [Google Scholar]
  24. SingabA. El-HefnawyH. El-KolobbyD. Standardization of Polyphenol content for certain species belonging to Genus Pelargonium cultivated in Egypt.Int. J. Pharm. Sci. Res.2014512975992
    [Google Scholar]
  25. DhawanD. GuptaJ. Comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves.Int. J. Biol. Chem.2016111172210.3923/ijbc.2017.17.22
    [Google Scholar]
  26. ShahR. YadavR. Qualitative phytochemical analysis and estimation of total phenols and flavonoids in leaf extract of Sarcochlamys pulcherrima.GJBB2015418184
    [Google Scholar]
  27. GeorgeM. BrittoS. Phytochemical, antioxidant and antibacterial studies on the leaf extracts of Curcuma Amada Roxb.Int. J. Curr. Pharm. Res.2016823238
    [Google Scholar]
  28. XieY. YangW. TangF. ChenX. RenL. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism.Curr. Med. Chem.201422113214910.2174/0929867321666140916113443 25245513
    [Google Scholar]
  29. Miklasińska-MajdanikM. KępaM. WojtyczkaR.D. IdzikD. WąsikT.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus Aureus clinical strains.Int. J. Environ. Res. Public Health20181510232110.3390/ijerph15102321 30360435
    [Google Scholar]
  30. AwololaG.V. KoorbanallyN.A. CheniaH. ShodeF.O. BaijnathH. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) extracts.Afr. J. Tradit. Complement. Altern. Med.201411312413110.4314/ajtcam.v11i3.19 25371574
    [Google Scholar]
  31. JoshiV. FernieA.R. Citrulline metabolism in plants.Amino Acids20174991543155910.1007/s00726‑017‑2468‑4 28741223
    [Google Scholar]
  32. KhajuriaH. NayakB. Detection of drugs of abuse (Morphine) in hair.Res J Forensic Sci2013111820
    [Google Scholar]
  33. SaczewskiF. BalewskiŁ. Biological activities of guanidine compounds.Expert Opin. Ther. Pat.200919101417144810.1517/13543770903216675 19780701
    [Google Scholar]
  34. LiuG. FuJ. Squalene synthase cloning and functional identification in wintersweet plant (Chimonanthus zhejiangensis).Bot. Stud. (Taipei, Taiwan)20185913010.1186/s40529‑018‑0246‑6 30539325
    [Google Scholar]
  35. BhatK.I. SufeeraK. Chaitanya Sunil KumarP. Synthesis, characterization and biological activity studies of 1,3,4-oxadiazole analogs.J. Young Pharm.20113431031410.4103/0975‑1483.90243 22224038
    [Google Scholar]
  36. ShibulaK. VelavanS. Determination of phytocomponents in methanolic extract of Annona muricata leaf using GC-MS technique.Int. J. Pharmacogn. Phytochem. Res.20157612511255
    [Google Scholar]
  37. VeluchamyV. SankaranM. Quantitative variation of bioactive phyto compounds in ethyl acetate and methanol extracts of Pergularia daemia (Forsk.).Chiov. J. Biomed. Res.201529216917210.7555/JBR.28.20140100 25859273
    [Google Scholar]
  38. MuniandyK. GothaiS. TanW.S. KumarS.S. Mohd EsaN. ChandramohanG. Al-NumairK.S. ArulselvanP. In vitro wound healing potential of stem extract of Alternanthera sessilis.Evid. Based Complement. Alternat. Med.201820181314207310.1155/2018/3142073 29670658
    [Google Scholar]
  39. AbalosI.S. RodríguezY.I. LozanoV. CeresetoM. MussiniM.V. SpinettoM.E. ChialeC. PesceG. Transepithelial transport of biperiden hydrochloride in Caco-2 cell monolayers.Environ. Toxicol. Pharmacol.201234222322710.1016/j.etap.2012.04.004 22554863
    [Google Scholar]
  40. MerlinK.H. ManickavasakamK. MohanS. GC-MS analysis of bioactive components of a siddha poly herbal drug Adathodai Chooranam.Int. J. Res. Ayurveda Pharm.2016724710.7897/2277‑4343.07245
    [Google Scholar]
  41. HameedI. AltameneH. IdanS. Artemisa annua: Biochemical products analysis of methanolic aerial parts extract ant anti-microbial capacity.Res. J. Pharm. Biol. Chem. Sci.20167218431868
    [Google Scholar]
  42. HusseinH. UbaidJ. HameedI. Insecticidal activity of methanolic seeds extract of ricinus communis on adults of Callosobruchus maculatus (Coleoptera: Brauchidae) and analysis of its phytochemical composition.Int. J. Pharmacogn Pharm. Res.20168813851397
    [Google Scholar]
  43. OlivierM.T. MuganzaF.M. ShaiL.J. GololoS.S. NemutavhananiL.D. Phytochemical screening, antioxidant and antibacterial activities of ethanol extracts of Asparagus suaveolens aerial parts.S. Afr. J. Bot.2017108414610.1016/j.sajb.2016.09.014
    [Google Scholar]
  44. EbbensgaardA. MordhorstH. AarestrupF.M. HansenE.B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides.Front. Microbiol.20189215310.3389/fmicb.2018.02153 29441043
    [Google Scholar]
  45. DormanH.D. DeansS.G. Chemical composition, antimicrobial and in vitro antioxidant properties of Monardacitriodora var. Citriodora, Myristica fragrans, Origanum vulgare ssp. Hirtum, Pelargonium sp. and Thymus zygis oils.J. Essent. Oil Res.200416145150
    [Google Scholar]
  46. SaxenaD. MaitraR. BormonR. CzekanskaM. MeiersJ. TitzA. VermaS. ChopraS. Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens npj.Antimicrob. Resist.20231117
    [Google Scholar]
  47. ZhouG. WangQ. WangY. WenX. PengH. PengR. ShiQ. XieX. LiL. Outer membrane porins contribute to antimicrobial resistance in gram-negative bacteria.Microorganisms2023117169010.3390/microorganisms11071690 37512863
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137357570250124122356
Loading
/content/journals/cnano/10.2174/0115734137357570250124122356
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test