Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The application of nanotechnology in agriculture provides efficient disease diagnosis and management, precision farming with nano-sensors, increased production with nano-fertilizers and pesticides, and improved food quality and safety innovative packaging. Nanotechnology is used in various ways at various stages in the agriculture sector. Nanotechnology could be utilized to ensure crop safety in two ways: Nanoparticles that are harmful to pests and pathogens and serve as pesticide carriers, such as ZnO, SiO, Cu, and TiO, protect the plant from microbial disease and regulate its activity. Nanoparticles are essential tools used in manipulating plants, and there is a wide variety of nanoparticles, each with its own uses for different plants. Plants undergo minuscule gene manipulations that give them advantages and endurance. When particles are reduced to the nanometer scale, they exhibit a high surface area to volume ratio, resulting in unique properties that allow for systematic applications in engineering, biomedical, agricultural, and related fields. Nanomaterials can be created through bottom-up or top-down procedures using physical, chemical, and organic synthesis methods. This review study explores the use of different nano materials in the agricultural sector and the impact of silica nanoparticles, metal oxide, and metal nanoparticles on plant metabolic processes. Additionally, the impacts of nanoparticles on microbes, bacteria, and other pathogens are also being analyzed.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137328209240930134458
2024-10-10
2025-09-30
Loading full text...

Full text loading...

References

  1. SheteiwyM.S. ShaghalehH. HamoudY.A. HolfordP. ShaoH. QiW. HashmiM.Z. WuT. Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality.Environ. Sci. Pollut. Res. Int.20212828369423696610.1007/s11356‑021‑14542‑w34043175
    [Google Scholar]
  2. ChavanS. NadanathangamV. Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil.Agronomy (Basel)20199314010.3390/agronomy9030140
    [Google Scholar]
  3. WangT. LiuY. WangM. FanQ. TianH. QiaoX. LiY. Applications of UAS in Crop Biomass Monitoring: A Review.Front. Plant Sci.20211261668910.3389/fpls.2021.61668933897719
    [Google Scholar]
  4. Gade, A.; Ingle, P.; Nimbalkar, U.; Rai, M.; Raut, R.; Vedpathak, M.; Jagtap, P.; Abd-Elsalam, K.A. Nanofertilizers: The next generation of agrochemicals for long-term impact on sustainability in farming sy stems. Agrochemicals,2023225727810.1016/j.pt.2021.03.00333775559
    [Google Scholar]
  5. ShangY. HasanM.K. AhammedG.J. LiM. YinH. ZhouJ. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review.Molecules20192414255810.3390/molecules2414255831337070
    [Google Scholar]
  6. NemeK. NafadyA. UddinS. TolaY.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges.Heliyon2021712e0853910.1016/j.heliyon.2021.e0853934934845
    [Google Scholar]
  7. KutawaA.B. AhmadK. AliA. HusseinM.Z. Abdul WahabM.A. AdamuA. IsmailaA.A. GunasenaM.T. RahmanM.Z. HossainM.I. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review.Biology (Basel)202110988110.3390/biology1009088134571758
    [Google Scholar]
  8. YousafM. LiJ. LuJ. RenT. CongR. FahadS. LiX. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system.Sci. Rep.201771127010.1038/s41598‑017‑01412‑028455510
    [Google Scholar]
  9. QianY. QinC. ChenM. LinS. Nanotechnology in soil remediation − applications vs. implications.Ecotoxicol. Environ. Saf.202020111081510.1016/j.ecoenv.2020.11081532559688
    [Google Scholar]
  10. PrasadR. BhattacharyyaA. NguyenQ.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.Front. Microbiol.20178101410.3389/fmicb.2017.0101428676790
    [Google Scholar]
  11. SekhonB. Nanotechnology in agri-food production: an overview.Nanotechnol. Sci. Appl.20147315310.2147/NSA.S3940624966671
    [Google Scholar]
  12. Ur RahimH. QaswarM. UddinM. GianniniC. HerreraM.L. ReaG. Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture.Nanomaterials (Basel)2021118206810.3390/nano1108206834443899
    [Google Scholar]
  13. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  14. MukhopadhyayS.S. Nanotechnology in agriculture: prospects and constraints.Nanotechnol. Sci. Appl.20147637110.2147/NSA.S3940925187699
    [Google Scholar]
  15. HeX. DengH. HwangH.M. The current application of nanotechnology in food and agriculture.Yao Wu Shi Pin Fen Xi201927112130648562
    [Google Scholar]
  16. SinghH. SharmaA. BhardwajS.K. AryaS.K. BhardwajN. KhatriM. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development.Environ. Sci. Process. Impacts202123221323910.1039/D0EM00404A33447834
    [Google Scholar]
  17. ChoudharyS. ThakurS. BhardwajP. Molecular basis of transitivity in plant RNA silencing.Mol. Biol. Rep.20194644645466010.1007/s11033‑019‑04866‑931098805
    [Google Scholar]
  18. ZhangH. ZhangH. DemirerG.S. González-GrandíoE. FanC. LandryM.P. Engineering DNA nanostructures for siRNA delivery in plants.Nat. Protoc.20201593064308710.1038/s41596‑020‑0370‑032807907
    [Google Scholar]
  19. AllanJ. BelzS. HoevelerA. HugasM. OkudaH. PatriA. RauscherH. SilvaP. SlikkerW. Sokull-Kluettgen. Regulatory landscape of nanotechnology and nanoplastics from a global perspective.B Regul Toxicol Pharmacol.202112210488510.1016/j.yrtph.2021.104885
    [Google Scholar]
  20. FortunatiE. MazzagliaA. BalestraG.M. Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches.J. Sci. Food Agric.2019993986100010.1002/jsfa.934130191564
    [Google Scholar]
  21. AliS.S. Al-TohamyR. KoutraE. MoawadM.S. KornarosM. MustafaA.M. MahmoudY.A.G. BadrA. OsmanM.E.H. ElsamahyT. JiaoH. SunJ. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives.Sci. Total Environ.202179214835910.1016/j.scitotenv.2021.14835934147795
    [Google Scholar]
  22. KimD.Y. KadamA. ShindeS. SarataleR.G. PatraJ. GhodakeG. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities.J. Sci. Food Agric.201898384986410.1002/jsfa.874929065236
    [Google Scholar]
  23. AlabdallahN.M. HasanM.M. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants.Saudi J. Biol. Sci.202128105631563910.1016/j.sjbs.2021.05.08134588874
    [Google Scholar]
  24. ChenJ. WuL. LuM. LuS. LiZ. DingW. Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.Front. Microbiol.20201136510.3389/fmicb.2020.0036532226420
    [Google Scholar]
  25. PeiA. XieR. ZhangY. FengY. WangW. ZhangS. HuangZ. ZhuL. ChaiG. YangZ. GaoQ. YeH. ShangC. ChenB.H. GuoZ. Effective electronic tuning of Pt single atoms via heterogeneous atomic coordination of (Co,Ni)(OH) 2 for efficient hydrogen evolution.Energy Environ. Sci.20231631035104810.1039/D2EE02785B
    [Google Scholar]
  26. SahayarajK. RajeshS. RathiJ.A.M. KumarV. Green preparation of seaweed‐based silver nano‐liquid for cotton pathogenic fungi management.IET Nanobiotechnol.201913221922510.1049/iet‑nbt.2018.500731051454
    [Google Scholar]
  27. ParionaN. Mtz-EnriquezA.I. Sánchez-RangelD. CarriónG. Paraguay-DelgadoF. Rosas-SaitoG. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens.RSC Advances2019933188351884310.1039/C9RA03110C35516870
    [Google Scholar]
  28. ChinderaK. MahatoM. SharmaA. HorsleyH. Kloc-MuniakK. KamaruzzamanN. KumarS. McFarlaneA. StachJ. BentinT. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomesSci. Rep.20162162312110.1038/srep23121
    [Google Scholar]
  29. AhmedA. RushworthJ.V. HirstN.A. MillnerP.A. Biosensors for whole-cell bacterial detection.Clin. Microbiol. Rev.201427363164610.1128/CMR.00120‑1324982325
    [Google Scholar]
  30. TripathiD.K. SinghS. SinghV.P. PrasadS.M. DubeyN.K. ChauhanD.K. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.Plant Physiol. Biochem.2017110708110.1016/j.plaphy.2016.06.02627470120
    [Google Scholar]
  31. FerrariE. BarberoF. Busquets-FitéM. Franz-WachtelM. KöhlerH.R. PuntesV. KemmerlingB. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings.Nanomaterials (Basel)20211112316110.3390/nano1112316134947510
    [Google Scholar]
  32. SiddiquiM.H. Al-WhaibiM.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.).Saudi J. Biol. Sci.2014211131710.1016/j.sjbs.2013.04.00524596495
    [Google Scholar]
  33. ZhangS. PeiA. LiG. ZhuL. LiG. WuF. LinS. ChenW. ChenB.H. LuqueR. Pd/CuO–Ni(OH) 2 /C as a highly efficient and stable catalyst for the electrocatalytic oxidation of ethanol.Green Chem.20222462438245010.1039/D1GC04799J
    [Google Scholar]
  34. PatelD.K. KimH.B. DuttaS.D. GangulyK. LimK.T. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications.Materials (Basel)2020137167910.3390/ma1307167932260227
    [Google Scholar]
  35. de Sousa VictorR. Marcelo da Cunha SantosA. Viana de SousaB. de Araújo NevesG. Navarro de Lima SantanaL. Rodrigues MenezesR. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment.Materials (Basel)20201321499510.3390/ma1321499533171898
    [Google Scholar]
  36. UnerM. YenerG. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.Int. J. Nanomedicine20072328930018019829
    [Google Scholar]
  37. MeenaM. ZehraA. SwapnilP. Harish MarwalA. YadavG. SonigraP. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications.Front Chem.2021961334310.3389/fchem.2021.61334334113600
    [Google Scholar]
  38. AliM.A. AhmedT. WuW. HossainA. HafeezR. Islam MasumM.M. WangY. AnQ. SunG. LiB. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens.Nanomaterials (Basel)2020106114610.3390/nano1006114632545239
    [Google Scholar]
  39. WorrallE. HamidA. ModyK. MitterN. PappuH. Nanotechnology for Plant Disease Management.Agronomy (Basel)201881228510.3390/agronomy8120285
    [Google Scholar]
  40. PeiA. LiG. ZhuL. HuangZ. YeJ. ChangY.C. OsmanS.M. PaoC.W. GaoQ. ChenB.H. LuqueR. Nickel Hydroxide‐Supported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation.Adv. Funct. Mater.20223251220858710.1002/adfm.202208587
    [Google Scholar]
  41. KhiyamiM.A. AlmoammarH. AwadY.M. AlghuthaymiM.A. Abd-ElsalamK.A. Plant pathogen nanodiagnostic techniques: forthcoming changes?Biotechnol. Biotechnol. Equip.201428577578510.1080/13102818.2014.96073926740775
    [Google Scholar]
  42. MubeenB. AnsarA.N. RasoolR. UllahI. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. NadeemM.S. KazmiI. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics.Antibiotics (Basel)20211012147310.3390/antibiotics1012147334943685
    [Google Scholar]
  43. ZhaoJ. RenW. DaiY. LiuL. WangZ. YuX. ZhangJ. WangX. XingB. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses.Environ. Sci. Technol.201751137686769510.1021/acs.est.7b0160228586199
    [Google Scholar]
  44. NandiniB. MawaleK.S. GiridharP. Nanomaterials in Agriculture for Plant Health and Food Safety: A Comprehensive Review on the Current State of Agro-nanoscience.3 Biotech.202313373
    [Google Scholar]
  45. SarrafM. VishwakarmaK. KumarV. ArifN. DasS. JohnsonR. JaneeshmaE. PuthurJ.T. AliniaeifardS. ChauhanD.K. FujitaM. HasanuzzamanM. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms.Plants202211331610.3390/plants1103031635161297
    [Google Scholar]
  46. JuzenasP. ChenW. SunY.P. CoelhoM.A.N. GeneralovR. GeneralovaN. ChristensenI.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer.Adv. Drug Deliv. Rev.200860151600161410.1016/j.addr.2008.08.00418840487
    [Google Scholar]
  47. Plant-based Synthesis of Zinc Oxide Nanoparticles (zno-nps) Using Aqueous Leaf Extract of Aquilegia Pubiflora: Their Antiproliferative Activity Against Hepg2 Cells Inducing Reactive Oxygen Species and Other in Vitro Properties.Oxid. Med. Cell. Longev.202120214786227
    [Google Scholar]
  48. FerdousZ. NemmarA. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure.Int. J. Mol. Sci.2020217237510.3390/ijms2107237532235542
    [Google Scholar]
  49. KhanF. PandeyP. UpadhyayT.K. Applications of Nanotechnology-Based Agrochemicals in Food Security and Sustainable Agriculture: An Overview.Agriculture20221210167210.3390/agriculture12101672
    [Google Scholar]
  50. AssisG.C. AntonelliR. DantasA.O.S. TeixeiraA.C.S.C. Microplastics as hazardous pollutants: Occurrence, effects, removal and mitigation by using plastic waste as adsorbents and supports for photocatalysts.J. Environ. Chem. Eng.202311611110710.1016/j.jece.2023.111107
    [Google Scholar]
  51. RayP.C. YuH. FuP.P. Toxicity and environmental risks of nanomaterials: challenges and future needs.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200927113510.1080/1059050080270826719204862
    [Google Scholar]
  52. KrólA. PomastowskiP. RafińskaK. Railean-PlugaruV. BuszewskiB. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.Adv. Colloid Interface Sci.2017249375210.1016/j.cis.2017.07.03328923702
    [Google Scholar]
  53. SembadaA.A. LenggoroI.W. Transport of Nanoparticles into Plants and Their Detection Methods.Nanomaterials (Basel)202414213110.3390/nano1402013138251096
    [Google Scholar]
  54. Milewska-HendelA. ZubkoM. StróżD. KurczyńskaE.U. Effect of Nanoparticles Surface Charge on the Arabidopsis thaliana (L.) Roots Development and Their Movement into the Root Cells and Protoplasts.Int. J. Mol. Sci.2019207165010.3390/ijms2007165030987084
    [Google Scholar]
  55. WojcieszekJ. Jiménez-LamanaJ. RuzikL. SzpunarJ. JaroszM. To-Do and Not-To-Do in Model Studies of the Uptake, Fate and Metabolism of Metal-Containing Nanoparticles in Plants.Nanomaterials (Basel)2020108148010.3390/nano1008148032731603
    [Google Scholar]
  56. ChenH. QiuX. XiaT. LiQ. WenZ. HuangB. LiY. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine.Gels20239320710.3390/gels903020736975656
    [Google Scholar]
  57. TripathiD.K. SinghV.P. PrasadS.M. ChauhanD.K. DubeyN.K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings.Plant Physiol. Biochem.20159618919810.1016/j.plaphy.2015.07.02626298805
    [Google Scholar]
  58. YanA. ChenZ. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism.Int. J. Mol. Sci.2019205100310.3390/ijms2005100330813508
    [Google Scholar]
  59. QingY. ChengL. LiR. LiuG. ZhangY. TangX. WangJ. LiuH. QinY. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.Int. J. Nanomedicine2018133311332710.2147/IJN.S16512529892194
    [Google Scholar]
  60. KimS.W. JungJ.H. LamsalK. KimY.S. MinJ.S. LeeY.S. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.Mycobiology2012401535810.5941/MYCO.2012.40.1.05322783135
    [Google Scholar]
  61. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/36043824999379
    [Google Scholar]
  62. XiongT. ZhangS. KangZ. ZhangT. LiS. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce (Lactuca sativa L.) to Copper Oxide Nanoparticles—Insights into the Phytotoxicity Mechanisms.Int. J. Mol. Sci.2021227368810.3390/ijms2207368833916236
    [Google Scholar]
  63. LonganoD. DitarantoN. SabbatiniL. TorsiL. CioffiN. Synthesis and Antimicrobial Activity of Copper Nanomaterials.Nano-Antimicrobials201185117
    [Google Scholar]
  64. AdamsJ. WrightM. WagnerH. ValienteJ. BrittD. AndersonA. Cu from dissolution of CuO nanoparticles signals changes in root morphology.Plant Physiol. Biochem.201711010811710.1016/j.plaphy.2016.08.00527544889
    [Google Scholar]
  65. VermaV. Al-DossariM. SinghJ. RawatM. KordyM.G.M. ShabanM. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications.Polymers (Basel)2022147144410.3390/polym1407144435406317
    [Google Scholar]
  66. ChakhtounaH. BenzeidH. ZariN. QaissA. BouhfidR. Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors.Environ. Sci. Pollut. Res. Int.20212833446384466610.1007/s11356‑021‑14996‑y34212334
    [Google Scholar]
  67. LyuS. WeiX. ChenJ. WangC. WangX. PanD. Titanium as a Beneficial Element for Crop Production.Front. Plant Sci.2017859710.3389/fpls.2017.0059728487709
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137328209240930134458
Loading
/content/journals/cnano/10.2174/0115734137328209240930134458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test