Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This review explores the potential of microneedles (MNs) in enhancing the delivery of biologics vital for treating conditions, including infectious diseases, cancer, and autoimmune disorders. The COVID-19 pandemic has amplified the demand for biologics, prompting research and development. The global biologics market is expected to grow substantially due to the rise of personalized medicine. Large, complex molecules, including proteins, peptides, and vaccines, are known as biologics, and a potential technique for their delivery is microneedles. MNs come in various forms: solid, hollow, coated, dissolvable, and hydrogel MNs. Traditional drug delivery methods have limitations, while transdermal drug delivery Microneedles offers a promising alternative. Microneedles painlessly penetrate the skin's barrier, forming temporary microchannels for effective medication administration. This minimally invasive, self-administered technique increases patient comfort and compliance and eliminates the complications of oral medications and injections, indicating a bright future for biologic drug administration. Microneedles hold the promise to reshape healthcare delivery by facilitating broader access to vaccines, insulin, and other crucial biologics.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137317813241014113421
2024-10-25
2025-09-30
Loading full text...

Full text loading...

References

  1. BaumgartD.C. MiseryL. NaeyaertS. TaylorP.C. Biological therapies in immune-mediated inflammatory diseases: Can biosimilars reduce access inequities?Front. Pharmacol.20191027910.3389/fphar.2019.0027930983996
    [Google Scholar]
  2. PlichtaJ. KunaP. PanekM. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives.Front. Immunol.202314120764110.3389/fimmu.2023.120764137334374
    [Google Scholar]
  3. HilpertK. Peptides in COVID-19 clinical trials — A snapshot.Biologics20211330031110.3390/biologics1030018
    [Google Scholar]
  4. Karadeniz SaygılıS. SzymanowskaA. Lopez-BeresteinG. Rodriguez-AguayoC. AmeroP. Aptamers as insights for targeting SARS-CoV-2.Biologics20233211613710.3390/biologics3020007
    [Google Scholar]
  5. ChavdaV. HossainM. BeladiyaJ. ApostolopoulosV. Nucleic acid vaccines for COVID-19: A paradigm shift in the vaccine development arena.Biologics20211333735610.3390/biologics1030020
    [Google Scholar]
  6. Biologics market size, share & trends analysis report by source (microbial, mammalian), by product (MABs, recombinant proteins, antisense & RNAi), by disease category, by manufacturing, by region, and segment forecasts, 2023 - 2030.Available from: https://www.grandviewresearch.com/industry-analysis/biologics-market
  7. SullyR.E. MooreC.J. GarelickH. LoizidouE. PodoleanuA.G. GubalaV. Nanomedicines and microneedles: A guide to their analysis and application.Anal. Methods202113303326334710.1039/D1AY00954K34313266
    [Google Scholar]
  8. WenH. JungH. LiX. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges.AAPS J.20151761327134010.1208/s12248‑015‑9814‑926276218
    [Google Scholar]
  9. RamadonD. McCruddenM.T.C. CourtenayA.J. DonnellyR.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications.Drug Deliv. Transl. Res.202212475879110.1007/s13346‑021‑00909‑633474709
    [Google Scholar]
  10. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  11. KulkarniD. DamiriF. RojekarS. ZehraviM. RamproshadS. DhokeD. MusaleS. MulaniA.A. ModakP. ParadhiR. Recent advancements in microneedle technology for multifaceted biomedical applications.Pharmaceutics2022145109710.3390/pharmaceutics1405109735631683
    [Google Scholar]
  12. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: An emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x22150668
    [Google Scholar]
  13. ZhaoZ. ChenY. ShiY. Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis.RSC Advances20201024140401404910.1039/D0RA00735H35498446
    [Google Scholar]
  14. Needle fears and phobia – Find ways to manage.2023Available from: https://www.cdc.gov/childrensmentalhealth/features/needle-fears-and-phobia.html#print
  15. AlsbrooksK. HoeraufK. Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population.PLoS One20221711e027681410.1371/journal.pone.027681436409734
    [Google Scholar]
  16. AldawoodF.K. AndarA. DesaiS. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers (Basel)20211316281510.3390/polym1316281534451353
    [Google Scholar]
  17. WaghuleT. SinghviG. DubeyS.K. PandeyM.M. GuptaG. SinghM. DuaK. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.Biomed. Pharmacother.20191091249125810.1016/j.biopha.2018.10.07830551375
    [Google Scholar]
  18. JungJ.H. JinS.G. Microneedle for transdermal drug delivery: Current trends and fabrication.J. Pharm. Investig.202151550351710.1007/s40005‑021‑00512‑433686358
    [Google Scholar]
  19. ZhengM. ShengT. YuJ. GuZ. XuC. Microneedle biomedical devices.Nat. Rev. Bioeng.20242432434210.1038/s44222‑023‑00141‑6
    [Google Scholar]
  20. ZhaoM. ZhouM. GaoP. ZhengX. YuW. WangZ. LiJ. ZhangJ. AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery.J. Mater. Chem. B Mater. Biol. Med.20221091393140210.1039/D1TB01991K35132982
    [Google Scholar]
  21. BhatnagarS. BankarN.G. KulkarniM.V. VenugantiV.V.K. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model.Int. J. Pharm.201955626327510.1016/j.ijpharm.2018.12.02230557681
    [Google Scholar]
  22. AvcilM. ÇelikA. Microneedles in drug delivery: Progress and challenges.Micromachines (Basel)20211211132110.3390/mi1211132134832733
    [Google Scholar]
  23. ChambersR. Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg.Biol. Bull.192141631835010.2307/1536756
    [Google Scholar]
  24. ChambersR. Some physical properties of the cell nucleus.Science191440104082482710.1126/science.40.1040.82417829007
    [Google Scholar]
  25. GerstelM.S. PlaceV.A. Drug delivery device.US Patent 3964482A1976
  26. HenryS. McAllisterD.V. AllenM.G. PrausnitzM.R. Microfabricated microneedles: A novel approach to transdermal drug delivery.J. Pharm. Sci.199887892292510.1021/js980042+9687334
    [Google Scholar]
  27. MiksztaJ.A. AlarconJ.B. BrittinghamJ.M. SutterD.E. PettisR.J. HarveyN.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery.Nat. Med.20028441541910.1038/nm0402‑41511927950
    [Google Scholar]
  28. McAllisterD.V. WangP.M. DavisS.P. ParkJ.H. CanatellaP.J. AllenM.G. PrausnitzM.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies.Proc. Natl. Acad. Sci. USA200310024137551376010.1073/pnas.233131610014623977
    [Google Scholar]
  29. MiyanoT. TobinagaY. KannoT. MatsuzakiY. TakedaH. WakuiM. HanadaK. Sugar micro needles as transdermic drug delivery system.Biomed. Microdevices20057318518810.1007/s10544‑005‑3024‑716133805
    [Google Scholar]
  30. WangP.M. CornwellM. PrausnitzM.R. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles.Diabetes Technol. Ther.20057113114110.1089/dia.2005.7.13115738711
    [Google Scholar]
  31. FernandesD. Minimally invasive percutaneous collagen induction.Oral Maxillofac. Surg. Clin. North Am.20051715163, vi10.1016/j.coms.2004.09.00418088764
    [Google Scholar]
  32. MukerjeeE.V. CollinsS.D. IsseroffR.R. SmithR.L. Microneedle array for transdermal biological fluid extraction and in situ analysis.Sens. Actuators A Phys.20041142-326727510.1016/j.sna.2003.11.008
    [Google Scholar]
  33. DonnellyR.F. MorrowD.I.J. McCarronP.A. WoolfsonA.D. MorrisseyA. JuzenasP. JuzenieneA. IaniV. McCarthyH.O. MoanJ. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy.J. Control. Release2008129315416210.1016/j.jconrel.2008.05.00218556084
    [Google Scholar]
  34. DonnellyR.F. MorrowD.I.J. McCarronP.A. David WoolfsonA. MorrisseyA. JuzenasP. JuzenieneA. IaniV. McCarthyH.O. MoanJ. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer.Photochem. Photobiol.200985119520410.1111/j.1751‑1097.2008.00417.x18764907
    [Google Scholar]
  35. BhatnagarS. DaveK. VenugantiV.V.K. Microneedles in the clinic.J. Control. Release201726016418210.1016/j.jconrel.2017.05.02928549948
    [Google Scholar]
  36. BaoL. ParkJ. BonfanteG. KimB. Recent advances in porous microneedles: Materials, fabrication, and transdermal applications.Drug Deliv. Transl. Res.202212239541410.1007/s13346‑021‑01045‑x34415566
    [Google Scholar]
  37. Tamez-TamezJ.I. Vázquez-LepeE. RodriguezC.A. Martínez-LópezJ.I. García-LópezE. Assessment of geometrical dimensions and puncture feasibility of microneedles manufactured by micromilling.Int. J. Adv. Manuf. Technol.202312611-124983499610.1007/s00170‑023‑11467‑1
    [Google Scholar]
  38. KathuriaH. KangK. CaiJ. KangL. Rapid microneedle fabrication by heating and photolithography.Int. J. Pharm.202057511899210.1016/j.ijpharm.2019.11899231884060
    [Google Scholar]
  39. LiY. AoudeH. Blast response of beams built with high-strength concrete and high-strength ASTM A1035 bars.Int. J. Impact Eng.2019130416710.1016/j.ijimpeng.2019.02.007
    [Google Scholar]
  40. NejadH.R. SadeqiA. KiaeeG. SonkusaleS. Low-cost and cleanroom-free fabrication of microneedles.Microsyst. Nanoeng.2018411707310.1038/micronano.2017.73
    [Google Scholar]
  41. ChenH. WuB. ZhangM. YangP. YangB. QinW. WangQ. WenX. ChenM. QuanG. PanX. WuC. A novel scalable fabrication process for the production of dissolving microneedle arrays.Drug Deliv. Transl. Res.20199124024810.1007/s13346‑018‑00593‑z30341765
    [Google Scholar]
  42. DonnellyR.F. MajithiyaR. SinghT.R.R. MorrowD.I.J. GarlandM.J. DemirY.K. MigalskaK. RyanE. GillenD. ScottC.J. WoolfsonA.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique.Pharm. Res.2011281415710.1007/s11095‑010‑0169‑820490627
    [Google Scholar]
  43. LimJ. TahkD. YuJ. MinD.H. JeonN.L. Design rules for a tunable merged-tip microneedle.Microsyst. Nanoeng.2018412910.1038/s41378‑018‑0028‑z31057917
    [Google Scholar]
  44. EconomidouS.N. LamprouD.A. DouroumisD. 3D printing applications for transdermal drug delivery.Int. J. Pharm.2018544241542410.1016/j.ijpharm.2018.01.03129355656
    [Google Scholar]
  45. LohJ.M. LimY.J.L. TayJ.T. ChengH.M. TeyH.L. LiangK. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.Bioact. Mater.20243222224110.1016/j.bioactmat.2023.09.02237869723
    [Google Scholar]
  46. XueP. ZhangX. ChuahY.J. WuY. KangY. Flexible PEGDA-based microneedle patches with detachable PVP–CD arrowheads for transdermal drug delivery.RSC Adv.2015592752047520910.1039/C5RA09329E
    [Google Scholar]
  47. DetamornratU. McAlisterE. HuttonA.R.J. LarrañetaE. DonnellyR.F. The role of 3D printing technology in microengineering of microneedles.Small20221818210639210.1002/smll.20210639235362226
    [Google Scholar]
  48. How Tan Tock Seng Hospital built a cancer survivor a 3D-printed nose.2023Available from: https://www.straitstimes.com/multimedia/graphics/2023/05/singapore-3d-printing-prosthetics/index.html
  49. ZhuH. Mah Jian QiangJ. WangC.G. ChanC.Y. ZhuQ. YeE. LiZ. LohX.J. Flexible polymeric patch based nanotherapeutics against non-cancer therapy.Bioact. Mater.20221847149110.1016/j.bioactmat.2022.03.03435415299
    [Google Scholar]
  50. MillerP.R. GittardS.D. EdwardsT.L. LopezD.M. XiaoX. WheelerD.R. Monteiro-RiviereN.A. BrozikS.M. PolskyR. NarayanR.J. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing.Biomicrofluidics20115101341510.1063/1.356994521522504
    [Google Scholar]
  51. GittardS.D. MillerP.R. JinC. MartinT.N. BoehmR.D. ChisholmB.J. StafslienS.J. DanielsJ.W. CilzN. Monteiro-RiviereN.A. NasirA. NarayanR.J. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles.J. Miner. Met. Mater. Soc.2011636596810.1007/s11837‑011‑0093‑3
    [Google Scholar]
  52. BoehmR.D. MillerP.R. HayesS.L. Monteiro-RiviereN.A. NarayanR.J. Modification of microneedles using inkjet printing.AIP Adv.20111202213910.1063/1.360246122125759
    [Google Scholar]
  53. LuoY. DolderC.K. WalkerJ.M. MishraR. DeanD. BeckerM.L. Synthesis and biological evaluation of well-defined poly(propylene fumarate) oligomers and their use in 3D printed scaffolds.Biomacromolecules201617269069710.1021/acs.biomac.6b0001426771388
    [Google Scholar]
  54. LimS.H. NgJ.Y. KangL. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.Biofabrication20179101501010.1088/1758‑5090/9/1/01501028071597
    [Google Scholar]
  55. LimS.H. TiewW.J. ZhangJ. HoP.C.L. KachouieN.N. KangL. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide.Biofabrication202012303500310.1088/1758‑5090/ab6d3731952064
    [Google Scholar]
  56. El-SayedN. VautL. SchneiderM. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery.Eur. J. Pharm. Biopharm.202015416617410.1016/j.ejpb.2020.07.00532659323
    [Google Scholar]
  57. YaoW. LiD. ZhaoY. ZhanZ. JinG. LiangH. YangR. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing.Micromachines (Basel)20191111710.3390/mi1101001731877987
    [Google Scholar]
  58. Tuan-MahmoodT.M. McCruddenM.T.C. TorrisiB.M. McAlisterE. GarlandM.J. SinghT.R.R. DonnellyR.F. Microneedles for intradermal and transdermal drug delivery.Eur. J. Pharm. Sci.201350562363710.1016/j.ejps.2013.05.00523680534
    [Google Scholar]
  59. RouphaelN.G. PaineM. MosleyR. HenryS. McAllisterD.V. KalluriH. PewinW. FrewP.M. YuT. ThornburgN.J. KabbaniS. LaiL. VassilievaE.V. SkountzouI. CompansR.W. MulliganM.J. PrausnitzM.R. BeckA. EdupugantiS. HeekeS. KelleyC. NesheimW. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial.Lancet20173901009564965810.1016/S0140‑6736(17)30575‑528666680
    [Google Scholar]
  60. VassilievaE.V. WangS. LiS. PrausnitzM.R. CompansR.W. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.Sci. Rep.2017711785510.1038/s41598‑017‑18140‑029259264
    [Google Scholar]
  61. EsserE.S. RomanyukA. VassilievaE.V. JacobJ. PrausnitzM.R. CompansR.W. SkountzouI. Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy.J. Control. Release2016236475610.1016/j.jconrel.2016.06.02627327766
    [Google Scholar]
  62. ChenF. YanQ. YuY. WuM.X. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination.J. Control. Release2017255364410.1016/j.jconrel.2017.03.39728390901
    [Google Scholar]
  63. GalaR.P. ZamanR.U. D’SouzaM.J. ZughaierS.M. Novel whole-cell inactivated Neisseria gonorrhoeae microparticles as vaccine formulation in microneedle-based transdermal immunization.Vaccines (Basel)2018636010.3390/vaccines603006030181504
    [Google Scholar]
  64. BhatnagarS. ChawlaS.R. KulkarniO.P. VenugantiV.V.K. Zein microneedles for transcutaneous vaccine delivery: Fabrication, characterization, and in vivo evaluation using ovalbumin as the model antigen.ACS Omega2017241321133210.1021/acsomega.7b0034330023631
    [Google Scholar]
  65. RodgersA.M. CordeiroA.S. DonnellyR.F. Technology update: Dissolvable microneedle patches for vaccine delivery.Med. Devices (Auckl.)20191237939810.2147/MDER.S19822031572025
    [Google Scholar]
  66. ManglaB. JavedS. SultanM.H. AhsanW. AggarwalG. KohliK. Nanocarriers-assisted needle-free vaccine delivery through oral and intranasal transmucosal routes: A novel therapeutic conduit.Front. Pharmacol.20221275776110.3389/fphar.2021.75776135087403
    [Google Scholar]
  67. ShinC.I. JeongS.D. RejinoldN.S. KimY.C. Microneedles for vaccine delivery: Challenges and future perspectives.Ther. Deliv.20178644746010.4155/tde‑2017‑003228530151
    [Google Scholar]
  68. ResnikD. MožekM. PečarB. JanežA. UrbančičV. IliescuC. VrtačnikD. in vivo experimental study of noninvasive insulin microinjection through hollow si microneedle array.Micromachines (Basel)2018914010.3390/mi901004030393315
    [Google Scholar]
  69. Insulin.Available from: https://my.clevelandclinic.org/health/body/22601-insulin
  70. ZhaoJ. XuG. YaoX. ZhouH. LyuB. PeiS. WenP. Microneedle-based insulin transdermal delivery system: Current status and translation challenges.Drug Deliv. Transl. Res.202212102403242710.1007/s13346‑021‑01077‑334671948
    [Google Scholar]
  71. VinayakumarK.B. KulkarniP.G. NayakM.M. DineshN.S. HegdeG.M. RamachandraS.G. RajannaK. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat.J. Micromech. Microeng.201626606501310.1088/0960‑1317/26/6/065013
    [Google Scholar]
  72. ZhangN. ZhouX. LiuL. ZhaoL. XieH. YangZ. Dissolving polymer microneedles for transdermal delivery of insulin.Front. Pharmacol.20211271990510.3389/fphar.2021.71990534630098
    [Google Scholar]
  73. YuW. JiangG. ZhangY. LiuD. XuB. ZhouJ. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.Mater. Sci. Eng. C20178018719610.1016/j.msec.2017.05.14328866156
    [Google Scholar]
  74. MishraR. MaitiT.K. BhattacharyyaT.K. Feasibility studies on nafion membrane actuated micropump integrated with hollow microneedles for insulin delivery device.J. Microelectromech. Syst.201928698799610.1109/JMEMS.2019.2939189
    [Google Scholar]
  75. GrissP. StemmeG. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer.J. Microelectromech. Syst.200312329630110.1109/JMEMS.2003.809959
    [Google Scholar]
  76. DavisS.P. LandisB.J. AdamsZ.H. AllenM.G. PrausnitzM.R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force.J. Biomech.20043781155116310.1016/j.jbiomech.2003.12.01015212920
    [Google Scholar]
  77. KimY.C. ParkJ.H. PrausnitzM.R. Microneedles for drug and vaccine delivery.Adv. Drug Deliv. Rev.201264141547156810.1016/j.addr.2012.04.00522575858
    [Google Scholar]
  78. Fakhraei L.S. JangY. HuhI. YangH. JangM. JungH. Exendin-4–encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes.Sci. Rep.201881117010.1038/s41598‑018‑19789‑x29348573
    [Google Scholar]
  79. Fakhraei L.S. JangY. MaY. DangolM. YangH. JangM. JungH. Effects of dissolving microneedle fabrication parameters on the activity of encapsulated lysozyme.Eur. J. Pharm. Sci.201811729029610.1016/j.ejps.2018.03.00329505815
    [Google Scholar]
  80. YuJ. ZhangY. SunW. KahkoskaA.R. WangJ. BuseJ.B. GuZ. Insulin‐responsive glucagon delivery for prevention of hypoglycemia.Small20171319160302810.1002/smll.20160302828318091
    [Google Scholar]
  81. LiuD. YuB. JiangG. YuW. ZhangY. XuB. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats.Mater. Sci. Eng. C20189018018810.1016/j.msec.2018.04.05529853081
    [Google Scholar]
  82. ChenM.C. LingM.H. KusumaS.J. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.Acta Biomater.20152410611610.1016/j.actbio.2015.06.02126102333
    [Google Scholar]
  83. YangS. WuF. LiuJ. FanG. WelshW. ZhuH. JinT. Phase‐transition microneedle patches for efficient and accurate transdermal delivery of insulin.Adv. Funct. Mater.201525294633464110.1002/adfm.201500554
    [Google Scholar]
  84. DonnellyR.F. SinghT.R.R. GarlandM.J. MigalskaK. MajithiyaR. McCruddenC.M. KoleP.L. MahmoodT.M.T. McCarthyH.O. WoolfsonA.D. Hydrogel‐forming microneedle arrays for enhanced transdermal drug delivery.Adv. Funct. Mater.201222234879489010.1002/adfm.20120086423606824
    [Google Scholar]
  85. ZhuM. LiuY. JiangF. CaoJ. KunduS.C. LuS. Combined silk fibroin microneedles for insulin delivery.ACS Biomater. Sci. Eng.2020663422342910.1021/acsbiomaterials.0c0027333463180
    [Google Scholar]
  86. RegeN.K. PhillipsN.F.B. WeissM.A. Development of glucose-responsive ‘smart’ insulin systems.Curr. Opin. Endocrinol. Diabetes Obes.201724426727810.1097/MED.000000000000034528509691
    [Google Scholar]
  87. WangJ. WangZ. YuJ. KahkoskaA.R. BuseJ.B. GuZ. Glucose‐responsive insulin and delivery systems: Innovation and translation.Adv. Mater.20203213190200410.1002/adma.20190200431423670
    [Google Scholar]
  88. ChenG. YuJ. GuZ. Glucose-responsive microneedle patches for diabetes treatment.J. Diabetes Sci. Technol.2019131414810.1177/193229681877860729848105
    [Google Scholar]
  89. MatsumotoA. TanakaM. MatsumotoH. OchiK. Moro-okaY. KuwataH. YamadaH. ShirakawaI. MiyazawaT. IshiiH. KataokaK. OgawaY. MiyaharaY. SuganamiT. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice.Sci. Adv.2017311eaaq072310.1126/sciadv.aaq072329202033
    [Google Scholar]
  90. YuJ. ZhangY. YeY. DiSantoR. SunW. RansonD. LiglerF.S. BuseJ.B. GuZ. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.Proc. Natl. Acad. Sci. USA2015112278260826510.1073/pnas.150540511226100900
    [Google Scholar]
  91. BankarS.B. BuleM.V. SinghalR.S. AnanthanarayanL. Glucose oxidase — An overview.Biotechnol. Adv.200927448950110.1016/j.biotechadv.2009.04.00319374943
    [Google Scholar]
  92. UllahA. ChoiH.J. JangM. AnS. KimG.M. Smart microneedles with porous polymer layer for glucose-responsive insulin delivery.Pharmaceutics202012760610.3390/pharmaceutics1207060632629825
    [Google Scholar]
  93. SaravanakumarG. KimJ. KimW.J. Reactive‐oxygen‐species‐responsive drug delivery systems: Promises and challenges.Adv. Sci. (Weinh.)201741160012410.1002/advs.20160012428105390
    [Google Scholar]
  94. YangX.X. FengP. CaoJ. LiuW. TangY. Composition-engineered metal–organic framework-based microneedles for glucose-mediated transdermal insulin delivery.ACS Appl. Mater. Interfaces20201212136131362110.1021/acsami.9b2077432138507
    [Google Scholar]
  95. YuJ. WangJ. ZhangY. ChenG. MaoW. YeY. KahkoskaA.R. BuseJ.B. LangerR. GuZ. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs.Nat. Biomed. Eng.20204549950610.1038/s41551‑019‑0508‑y32015407
    [Google Scholar]
  96. GargN. KhaudiyalS. KumarS. Kumar D.S. Research trends in phase change materials (PCM) for high-performance sustainable construction.Mater. Today Proc.202310.1016/j.matpr.2023.06.445
    [Google Scholar]
  97. HeX. SunJ. ZhuangJ. XuH. LiuY. WuD. Microneedle system for transdermal drug and vaccine delivery: Devices, safety, and prospects.Dose Response2019174155932581987858510.1177/155932581987858531662709
    [Google Scholar]
  98. O’MahonyC. Structural characterization and in-vivo reliability evaluation of silicon microneedles.Biomed. Microdevices201416333334310.1007/s10544‑014‑9836‑624487507
    [Google Scholar]
  99. AliR. MehtaP. ArshadM.S. KucukI. ChangM-W. AhmadZ. Transdermal microneedles — A materials perspective.AAPS PharmSciTech20202111210.1208/s12249‑019‑1560‑331807980
    [Google Scholar]
  100. ChuL.Y. ChoiS.O. PrausnitzM.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs.J. Pharm. Sci.201099104228423810.1002/jps.2214020737630
    [Google Scholar]
  101. LeeJ.W. HanM.R. ParkJ.H. Polymer microneedles for transdermal drug delivery.J. Drug Target.201321321122310.3109/1061186X.2012.74113623167609
    [Google Scholar]
  102. Al-QallafB. DasD.B. Optimization of square microneedle arrays for increasing drug permeability in skin.Chem. Eng. Sci.20086392523253510.1016/j.ces.2008.02.007
    [Google Scholar]
  103. MillardD.R. MaiselsD.O. Silicon granuloma of the skin and subcutaneous tissues.Am. J. Surg.1966112111912310.1016/S0002‑9610(66)91294‑35936639
    [Google Scholar]
  104. PavlouA.K. ReichertJ.M. Recombinant protein therapeutics — Success rates, market trends and values to 2010.Nat. Biotechnol.200422121513151910.1038/nbt1204‑151315583654
    [Google Scholar]
  105. LallD. NaimM.O.H.D.J. RathoreS. An emerging transdermal drug delivery system: Fabrication and characterization of natural and biodegradable polymeric microneedles transdermal patch.J. Pharm. Res. Int.202133358465410.9734/jpri/2021/v33i35B31897
    [Google Scholar]
  106. AntosovaZ. MackovaM. KralV. MacekT. Therapeutic application of peptides and proteins: Parenteral forever?Trends Biotechnol.2009271162863510.1016/j.tibtech.2009.07.00919766335
    [Google Scholar]
  107. BrownL.R. Commercial challenges of protein drug delivery.Expert Opin. Drug Deliv.200521294210.1517/17425247.2.1.2916296733
    [Google Scholar]
  108. SaurerE.M. FlessnerR.M. SullivanS.P. PrausnitzM.R. LynnD.M. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin.Biomacromolecules201011113136314310.1021/bm100944320942396
    [Google Scholar]
  109. Cui KumarA. Cui LiX. SandovalM.A. RodriguezL.B. SloatB.R. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin.Int. J. Nanomedicine20111253125310.2147/IJN.S20413
    [Google Scholar]
  110. HanT. DasD.B. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles.J. Pharm. Sci.2013102103614362210.1002/jps.2366223873449
    [Google Scholar]
  111. ZhangS. QiuY. GaoY. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment.Acta Pharm. Sin. B20144110010410.1016/j.apsb.2013.12.01126579370
    [Google Scholar]
  112. ZhaoX. CoulmanS.A. HannaS.J. WongF.S. DayanC.M. BirchallJ.C. Formulation of hydrophobic peptides for skin delivery via coated microneedles.J. Control. Release201726521310.1016/j.jconrel.2017.03.01528286315
    [Google Scholar]
  113. CaudillC.L. PerryJ.L. TianS. LuftJ.C. DeSimoneJ.M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.J. Control. Release201828412213210.1016/j.jconrel.2018.05.04229894710
    [Google Scholar]
  114. DillonC. HughesH. O’ReillyN.J. McLoughlinP. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides.Int. J. Pharm.20175261-212513610.1016/j.ijpharm.2017.04.06628461268
    [Google Scholar]
  115. VoraL.K. CourtenayA.J. TekkoI.A. LarrañetaE. DonnellyR.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules.Int. J. Biol. Macromol.202014629029810.1016/j.ijbiomac.2019.12.18431883883
    [Google Scholar]
  116. MönkäreJ. Reza N.M. BaccoucheK. RomeijnS. JiskootW. BouwstraJ.A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery.J. Control. Release2015218536210.1016/j.jconrel.2015.10.00226437262
    [Google Scholar]
  117. ChenJ. QiuY. ZhangS. GaoY. Dissolving microneedle-based intradermal delivery of interferon-α-2b.Drug Dev. Ind. Pharm.201642689089610.3109/03639045.2015.109628226467418
    [Google Scholar]
  118. ChenB. WeiJ. IliescuC. Sonophoretic enhanced microneedles array (SEMA) — Improving the efficiency of transdermal drug delivery.Sens. Actuators B Chem.20101451546010.1016/j.snb.2009.11.013
    [Google Scholar]
  119. GolombekS. PilzM. SteinleH. KochbaE. LevinY. LunterD. SchlensakC. WendelH.P. Avci-AdaliM. Intradermal delivery of synthetic mRNA using hollow microneedles for efficient and rapid production of exogenous proteins in skin.Mol. Ther. Nucleic Acids20181138239210.1016/j.omtn.2018.03.00529858073
    [Google Scholar]
  120. CourtenayA.J. McCruddenM.T.C. McAvoyK.J. McCarthyH.O. DonnellyR.F. Microneedle-mediated transdermal delivery of bevacizumab.Mol. Pharm.20181583545355610.1021/acs.molpharmaceut.8b0054429996645
    [Google Scholar]
  121. DoddR.B. WilkinsonT. SchofieldD.J. Therapeutic monoclonal antibodies to complex membrane protein targets: Antigen generation and antibody discovery strategies.BioDrugs201832433935510.1007/s40259‑018‑0289‑y29934752
    [Google Scholar]
  122. dos SantosM.L. QuintilioW. ManieriT.M. TsurutaL.R. MoroA.M. Advances and challenges in therapeutic monoclonal antibodies drug development.Braz. J. Pharm. Sci.201854Spee0100710.1590/s2175‑97902018000001007
    [Google Scholar]
  123. SlastnikovaT.A. UlasovA.V. RosenkranzA.A. SobolevA.S. Targeted intracellular delivery of antibodies: The state of the art.Front. Pharmacol.20189120810.3389/fphar.2018.0120830405420
    [Google Scholar]
  124. JarviN.L. Balu-IyerS.V. Immunogenicity challenges associated with subcutaneous delivery of therapeutic proteins.BioDrugs202135212514610.1007/s40259‑020‑00465‑433523413
    [Google Scholar]
  125. Monoclonal Antibodies (mAbs) for infectious diseases.Available from: https://www.who.int/teams/immunization-vaccines-and-biologicals/product-and-delivery-research/monoclonal-antibodies-%28mabs%29-for-infectious-diseases
  126. PatelA. BahM.A. WeinerD.B. In vivo delivery of nucleic acid-encoded monoclonal antibodies.BioDrugs202034327329310.1007/s40259‑020‑00412‑332157600
    [Google Scholar]
  127. AwanK.H. The therapeutic usage of botulinum toxin (Botox) in non-cosmetic head and neck conditions – An evidence based review.Saudi Pharm. J.2017251182410.1016/j.jsps.2016.04.02428223858
    [Google Scholar]
  128. ParkM.Y. AhnK.Y. Scientific review of the aesthetic uses of botulinum toxin type A.Arch. Craniofac. Surg.202122111010.7181/acfs.2021.0000333714246
    [Google Scholar]
  129. HanX. SamizadehS. Botulinum toxin A: Treatment principles.Non-Surgical Rejuvenation of Asian FacesSpringerCham SamizadehS. 202218319210.1007/978‑3‑030‑84099‑0_12
    [Google Scholar]
  130. ZhangS. PengY. FanH. ZhangY. MinP. Microneedle delivery of botulinum toxin type A combined with hyaluronic acid for the synergetic management of multiple sternal keloids with oily skin: A retrospective clinical investigation.J. Cosmet. Dermatol.202221115601560910.1111/jocd.1521635796638
    [Google Scholar]
  131. TorrisiB.M. ZarnitsynV. PrausnitzM.R. AnsteyA. GateleyC. BirchallJ.C. CoulmanS.A. Pocketed microneedles for rapid delivery of a liquid-state botulinum toxin A formulation into human skin.J. Control. Release2013165214615210.1016/j.jconrel.2012.11.01023178949
    [Google Scholar]
  132. YanG. ArellyN. FarhanN. LoboS. LiH. Enhancing DNA delivery into the skin with a motorized microneedle device.Eur. J. Pharm. Sci.20145221522210.1016/j.ejps.2013.11.01524291361
    [Google Scholar]
  133. LiuG. DengY. SongY. SuiY. CenJ. ShaoZ. LiH. TangT. Transdermal delivery of adipocyte phospholipase A2 siRNA using microneedles to treat thyroid associated ophthalmopathy-related proptosis.Cell Transplant.2021300963689721101063310.1177/0963689721101063333880967
    [Google Scholar]
  134. LiangX. ZhangJ. OuH. ChenJ. MitragotriS. ChenM. Skin delivery of siRNA using sponge spicules in combination with cationic flexible liposomes.Mol. Ther. Nucleic Acids20202063964810.1016/j.omtn.2020.04.00332380414
    [Google Scholar]
  135. DulM. StefanidouM. PortaP. ServeJ. O’MahonyC. MalissenB. HenriS. LevinY. KochbaE. WongF.S. DayanC. CoulmanS.A. BirchallJ.C. Hydrodynamic gene delivery in human skin using a hollow microneedle device.J. Control. Release201726512013110.1016/j.jconrel.2017.02.02828254630
    [Google Scholar]
  136. DeMuthP.C. MinY. HuangB. KramerJ.A. MillerA.D. BarouchD.H. HammondP.T. IrvineD.J. Polymer multilayer tattooing for enhanced DNA vaccination.Nat. Mater.201312436737610.1038/nmat355023353628
    [Google Scholar]
  137. González-GonzálezE. KimY.C. SpeakerT.J. HickersonR.P. SpitlerR. BirchallJ.C. LaraM.F. HuR. LiangY. Kirkiles-SmithN. PrausnitzM.R. MilstoneL.M. ContagC.H. KasparR.L. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis.Sci. Rep.20111115810.1038/srep0015822355673
    [Google Scholar]
  138. DaddonaP.E. MatrianoJ.A. MandemaJ. MaaY.F. Parathyroid hormone (1-34)-coated microneedle patch system: Clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis.Pharm. Res.201128115916510.1007/s11095‑010‑0192‑920567999
    [Google Scholar]
  139. DugamS. TadeR. DholeR. NangareS. Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives.Future J. Pharm. Sci.2021711910.1186/s43094‑020‑00176‑1
    [Google Scholar]
  140. BedizB. KorkmazE. KhilwaniR. DonahueC. ErdosG. FaloL.D. OzdoganlarO.B. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application.Pharm. Res.201431111713510.1007/s11095‑013‑1137‑x23904139
    [Google Scholar]
  141. KirkbyM. HuttonA.R.J. DonnellyR.F. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: Current status and future considerations.Pharm. Res.202037611710.1007/s11095‑020‑02844‑632488611
    [Google Scholar]
  142. ChenB.Z. ZhaoZ.Q. ShahbaziM.A. GuoX.D. Microneedle-based technology for cell therapy: Current status and future directions.Nanoscale Horiz.20227771572810.1039/D2NH00188H35674378
    [Google Scholar]
  143. MenonI. BagweP. GomesK.B. BajajL. GalaR. UddinM.N. D’SouzaM.J. ZughaierS.M. Microneedles: A new generation vaccine delivery system.Micromachines (Basel)202112443510.3390/mi1204043533919925
    [Google Scholar]
  144. XueP. ZhangL. XuZ. YanJ. GuZ. KangY. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics.Appl. Mater. Today20181314415710.1016/j.apmt.2018.08.013
    [Google Scholar]
  145. Mc CruddenM.T.C. LarrañetaE. ClarkA. JarrahianC. Rein-WestonA. CreelmanB. MoyoY. Lachau-DurandS. NiemeijerN. WilliamsP. McCarthyH.O. ZehrungD. DonnellyR.F. Design, formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery.Adv. Healthc. Mater.201989180151010.1002/adhm.20180151030838804
    [Google Scholar]
  146. KearneyM.C. Caffarel-SalvadorE. FallowsS.J. McCarthyH.O. DonnellyR.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease.Eur. J. Pharm. Biopharm.2016103435010.1016/j.ejpb.2016.03.02627018330
    [Google Scholar]
  147. LaurentA. MistrettaF. BottigioliD. DahelK. GoujonC. NicolasJ.F. HenninoA. LaurentP.E. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines.Vaccine200725346423643010.1016/j.vaccine.2007.05.04617640778
    [Google Scholar]
  148. AlimardaniV. AbolmaaliS.S. YousefiG. RahiminezhadZ. AbediM. TamaddonA. AhadianS. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics.J. Clin. Med.202110218110.3390/jcm1002018133419118
    [Google Scholar]
  149. TasC. JoyceJ.C. NguyenH.X. EangoorP. KnaackJ.S. BangaA.K. PrausnitzM.R. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy.J. Control. Release201726815916510.1016/j.jconrel.2017.10.02129051065
    [Google Scholar]
  150. XieX. PascualC. LieuC. OhS. WangJ. ZouB. XieJ. LiZ. XieJ. YeomansD.C. WuM.X. XieX.S. Analgesic microneedle patch for neuropathic pain therapy.ACS Nano201711139540610.1021/acsnano.6b0610428001346
    [Google Scholar]
  151. NguyenT.T. ParkJ.H. Human studies with microneedles for evaluation of their efficacy and safety.Expert Opin. Drug Deliv.201815323524510.1080/17425247.2018.141013829169288
    [Google Scholar]
  152. MilewskiM. BrogdenN.K. StinchcombA.L. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin.Expert Opin. Drug Deliv.20107561762910.1517/1742524100366322820205604
    [Google Scholar]
  153. GloverK. MishraD. GadeS. VoraL.K. WuY. ParedesA.J. DonnellyR.F. SinghT.R.R. Microneedles for advanced ocular drug delivery.Adv. Drug Deliv. Rev.202320111508210.1016/j.addr.2023.11508237678648
    [Google Scholar]
  154. JeongH.R. LeeH.S. ChoiI.J. ParkJ.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety.J. Drug Target.2017251294010.1080/1061186X.2016.120058927282644
    [Google Scholar]
  155. RzhevskiyA.S. SinghT.R.R. DonnellyR.F. AnissimovY.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues.J. Control. Release201827018420210.1016/j.jconrel.2017.11.04829203415
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137317813241014113421
Loading
/content/journals/cnano/10.2174/0115734137317813241014113421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test