Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

The utilization of nanotechnology in developing novel packaging components has grown significantly in recent years, and it is anticipated to have a significant influence on the food industry shortly. It offers to produce food packaging with improved qualities that will assist food goods in lasting longer on the shelf. The present article comprehensively discusses the nanoparticles commonly used in food packaging, the significant changes they bring to the qualities of the material, and the commercially available packaging materials based on nanotechnology. This review primarily focuses on using nanotechnologies in food processing and packaging, explicitly examining their impact on food quality and safety. To comprehend the function of enhanced, active, and antimicrobial packaging in food packaging. The utilization of nanotechnology in food products has experienced a significant surge in popularity in both developed and developing nations. The review was obtained from searches conducted on academic databases such as Sci-Hub, Google Scholar, PubMed, . Collected data from many sources has been compiled and presented here to facilitate further research on the application of nanotechnology in food packaging. In the current review, we also discussed the different organic and inorganic nanomaterials. The article also discusses consumer health and safety concerns, highlighting the significance of thorough safety assessments and clear communication. Nanotechnology has numerous uses in diverse areas of food technology. This analysis examines the potential of nanotechnology to improve the quality and safety of packaged food. Nanotechnology in food packaging is highly encouraging, providing substantial advantages in terms of food preservation, safety, and sustainability. This paper offers a thorough examination of present trends, technological progress, and future predictions to provide a full understanding of how nanotechnology can fundamentally transform food packaging. This transformation will enable the development of creative, environmentally friendly, and more secure food systems.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137314364240920052006
2024-10-07
2025-09-30
Loading full text...

Full text loading...

References

  1. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. NanoparticlesS.L. Solid Lipid Nanoparticles: Peculiar Strategy to Deliver Bio-Proactive Molecules.Recent Pat. Nanotechnol.202317322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  2. DuncanT.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors.J. Colloid Interface Sci.2011363112410.1016/j.jcis.2011.07.01721824625
    [Google Scholar]
  3. CobbM.D. MacoubrieJ. Public perceptions about nanotechnology: Risks, benefits and trust.J. Nanopart. Res.20046439540510.1007/s11051‑004‑3394‑4
    [Google Scholar]
  4. CurrallS.C. KingE.B. LaneN. MaderaJ. TurnerS. What drives public acceptance of nanotechnology?Nat. Nanotechnol.20061315315510.1038/nnano.2006.15518654170
    [Google Scholar]
  5. CastelliniO.M. WalejkoG.K. HolladayC.E. TheimT.J. ZennerG.M. CroneW.C. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts.J. Nanopart. Res.20079218318910.1007/s11051‑006‑9160‑z
    [Google Scholar]
  6. Market Attitude Research Services Australian Community Attitudes about Nanotechnology – 2005–2009.AustraliaDepartment of Industry, Innovation, Science and Research2009
    [Google Scholar]
  7. AsthaS. AakritiP. HemaC. KiranY. NehaM. Nanotheranostics: The Fabrication of Theranostics with Nanoparticles and their Application to Treat the Neurological Disorders.Recent Pat. Nanotechnol.2025191734
    [Google Scholar]
  8. PrimožičM. KnezŽ. LeitgebM. Primožiˇc (Bio)Nanotechnology in Food Science—Food Packaging.Nanomaterials (Basel)202111229210.3390/nano1102029233499415
    [Google Scholar]
  9. LuttgeR. Nanotechnology.Microfabrication for Industrial ApplicationsWilliam Andrew Publishing2011
    [Google Scholar]
  10. HeX. DengH. HwangH.M. The current application of nanotechnology in food and agriculture.Yao Wu Shi Pin Fen Xi201927112130648562
    [Google Scholar]
  11. SinghT. ShuklaS. KumarP. WahlaV. BajpaiV.K. RatherI.A. Application of nanotechnology in food science: Perception and overview.Front. Microbiol.20178150110.3389/fmicb.2017.0150128824605
    [Google Scholar]
  12. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A26924445
    [Google Scholar]
  13. RamsdenJ.J. Bionanotechnology.NanotechnologyWilliam Andrew Publishing2016
    [Google Scholar]
  14. DasguptaN. RanjanS. MundekkadD. RamalingamC. ShankerR. KumarA. Nanotechnology in agro-food: From field to plate.Food Res. Int.20156938140010.1016/j.foodres.2015.01.005
    [Google Scholar]
  15. KuswandiB. MoradiM. Improvement of food packaging based on functional nanomaterial.Nanotechnology: Applications in Energy, Drug and Food. SiddiqueeS. MelvinG.J.H. RahmanM.M. Cham, SwitzerlandSpringer201930934410.1007/978‑3‑319‑99602‑8_16
    [Google Scholar]
  16. O’ CallaghanK.A.M. KerryJ.P. Consumer attitudes towards the application of smart packaging technologies to cheese products.Food Packag. Shelf Life201691910.1016/j.fpsl.2016.05.001
    [Google Scholar]
  17. ShuklaP. ChaurasiaP. YounisK. QadriO.S. FaridiS.A. SrivastavaG. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management.Nanotechnology for Environmental Engineering2019411110.1007/s41204‑019‑0058‑2
    [Google Scholar]
  18. TsagkarisA.S. TzegkasS.G. DanezisG.P. Nanomaterials in food packaging: state of the art and analysis.J. Food Sci. Technol.20185582862287010.1007/s13197‑018‑3266‑z30065395
    [Google Scholar]
  19. SharmaA. ThakurM. BhattacharyaM. MandalT. GoswamiS. Commercial application of cellulose nano-composites – A review.Biotechnol. Rep. (Amst.)201921e0031610.1016/j.btre.2019.e0031630847286
    [Google Scholar]
  20. FerrerA. PalL. HubbeM. Nanocellulose in packaging: Advances in barrier layer technologies.Ind. Crops Prod.20179557458210.1016/j.indcrop.2016.11.012
    [Google Scholar]
  21. NaseerB. SrivastavaG. QadriO.S. FaridiS.A. IslamR.U. YounisK. Importance and health hazards of nanoparticles used in the food industry.Nanotechnol. Rev.20187662364110.1515/ntrev‑2018‑0076
    [Google Scholar]
  22. ArrietaM.P. FortunatiE. BurgosN. PeltzerM.A. LópezJ. PeponiL. Nanocellulose-based polymeric blends for food packaging applications.Polymers201616342310.1016/B978‑0‑323‑44248‑0.00007‑9
    [Google Scholar]
  23. ZubairM. UllahA. Recent advances in protein derived bionanocomposites for food packaging applications.Crit. Rev. Food Sci. Nutr.202060340643410.1080/10408398.2018.153480030614251
    [Google Scholar]
  24. LiX. JiN. QiuC. XiaM. XiongL. SunQ. The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: A comparative study.Ind. Crops Prod.20157756557410.1016/j.indcrop.2015.09.026
    [Google Scholar]
  25. OymaciP. AltinkayaS.A. Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite.Food Hydrocoll.2016541910.1016/j.foodhyd.2015.08.030
    [Google Scholar]
  26. MoránD. GutiérrezG. Blanco-LópezM.C. MarefatiA. RaynerM. MatosM. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation.Appl. Sci. (Basel)20211110454710.3390/app11104547
    [Google Scholar]
  27. YuM. JiN. WangY. DaiL. XiongL. SunQ. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components.Compr. Rev. Food Sci. Food Saf.20212011075110010.1111/1541‑4337.1267733443809
    [Google Scholar]
  28. DulariaC. SinhmarA. ThoryR. PatheraA.K. NainV. Development of starch nanoparticles based composite films from non-conventional source - Water chestnut (Trapa bispinosa).Int. J. Biol. Macromol.20191361161116810.1016/j.ijbiomac.2019.06.16931247231
    [Google Scholar]
  29. NehaM. Development of wheatgrass (Triticum aestivum) extract loaded solid lipid nanoparticles using central composite design and its characterization- its in-vitro anti-cancer activity.Curr. Nanomater.20249433935410.2174/0124054615266447231107070012
    [Google Scholar]
  30. BiswalA.K. MisraP.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields.Mater. Chem. Phys.202025012301410.1016/j.matchemphys.2020.123014
    [Google Scholar]
  31. CarboneM. DoniaD.T. SabbatellaG. AntiochiaR. Silver nanoparticles in polymeric matrices for fresh food packaging.J. King Saud Univ. Sci.201628427327910.1016/j.jksus.2016.05.004
    [Google Scholar]
  32. AhmadS.S. YousufO. IslamR.U. YounisK. Silver nanoparticles as an active packaging ingredient and its toxicity.Packag. Technol. Sci.20213411-1265366310.1002/pts.2603
    [Google Scholar]
  33. AshfaqA. KhursheedN. FatimaS. AnjumZ. YounisK. Application of nanotechnology in food packaging.Pros and Cons. Journal of Agriculture and Food Research.20227100270
    [Google Scholar]
  34. MohrL.C. CapelezzoA.P. BarettaC.R.D.M. MartinsM.A.P.M. FioriM.A. MelloJ.M.M. Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer.Polym. Test.20197710586710.1016/j.polymertesting.2019.04.014
    [Google Scholar]
  35. Baranowska-WójcikE. SzwajgierD. OleszczukP. Winiarska-MieczanA. Effects of titanium dioxide nanoparticles exposure on human health—a review.Biol. Trace Elem. Res.2020193111812910.1007/s12011‑019‑01706‑630982201
    [Google Scholar]
  36. VenkatasubbuG.D. BaskarR. AnusuyaT. SeshanC.A. ChelliahR. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.Colloids Surf. B Biointerfaces201614860060610.1016/j.colsurfb.2016.09.04227694049
    [Google Scholar]
  37. SiripatrawanU. KaewklinP. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging.Food Hydrocoll.20188412513410.1016/j.foodhyd.2018.04.049
    [Google Scholar]
  38. McClementsD.J. XiaoH. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles.npj Sci. Food.2017116
    [Google Scholar]
  39. KimI. ViswanathanK. KasiG. ThanakkasaraneeS. SadeghiK. SeoJ. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges.Food Rev. Int.202238453756510.1080/87559129.2020.1737709
    [Google Scholar]
  40. AbbasM. BuntinxM. DefermeW. PeetersR. (Bio) polymer/ZnO nanocomposites for packaging applications: a review of gas barrier and mechanical properties.Nanomaterials (Basel)2019910149410.3390/nano910149431635113
    [Google Scholar]
  41. BajpaiV.K. KamleM. ShuklaS. MahatoD.K. ChandraP. HwangS.K. KumarP. HuhY.S. HanY-K. Prospects of using nanotechnology for food preservation, safety, and security.Yao Wu Shi Pin Fen Xi20182641201121430249319
    [Google Scholar]
  42. RanjanS. DasguptaN. ChakrabortyA.R. Melvin SamuelS. RamalingamC. ShankerR. KumarA. Nanoscience and nanotechnologies in food industries: opportunities and research trends.J. Nanopart. Res.2014166246410.1007/s11051‑014‑2464‑5
    [Google Scholar]
  43. KuswandiB. Environmental friendly food nano-packaging.Environ. Chem. Lett.201715220522110.1007/s10311‑017‑0613‑7
    [Google Scholar]
  44. BrodyA.L. Case studies on nanotechnologies for food packaging.Food Technol.200761102107
    [Google Scholar]
  45. KimS.W. ChaS.H. Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer‐based nanocomposites for food packaging films: Effects of nanoclay loading.J. Appl. Polym. Sci.201413111app.4028910.1002/app.40289
    [Google Scholar]
  46. JoyeI.J. Davidov-PardoG. McClementsD.J. Nanotechnology in food processing.Encyclopedia of Food and Health. CaballeroB. FinglasP.M. ToldráF. Oxford, UKAcademic Press2016495510.1016/B978‑0‑12‑384947‑2.00481‑5
    [Google Scholar]
  47. NileS.H. BaskarV. SelvarajD. NileA. XiaoJ. KaiG. Nanotechnologies in food science: Applications, recent trends, and future perspectives.Nano-Micro Lett.20201214510.1007/s40820‑020‑0383‑934138283
    [Google Scholar]
  48. GabrM.H. OkumuraW. UedaH. KuriyamaW. UzawaK. KimparaI. Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay.Compos., Part B Eng.2015699410010.1016/j.compositesb.2014.09.033
    [Google Scholar]
  49. DasguptaN. RanjanS. PatraD. SrivastavaP. KumarA. RamalingamC. Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation.Chem. Biol. Interact.201625310011110.1016/j.cbi.2016.05.01827180205
    [Google Scholar]
  50. MustafaF. AndreescuS. Nanotechnology-based approaches for food sensing and packaging applications.RSC Advances20201033193091933610.1039/D0RA01084G35515480
    [Google Scholar]
  51. MalhotraB. KeshwaniA. KharkwalH. Antimicrobial food packaging: potential and pitfalls.Front. Microbiol.2015661110.3389/fmicb.2015.0061126136740
    [Google Scholar]
  52. VilelaC. KurekM. HayoukaZ. RöckerB. YildirimS. AntunesM.D.C. Nilsen-NygaardJ. PettersenM.K. FreireC.S.R. A concise guide to active agents for active food packaging.Trends Food Sci. Technol.20188021222210.1016/j.tifs.2018.08.006
    [Google Scholar]
  53. BecerrilR. NerínC. SilvaF. Encapsulation systems for antimicrobial food packaging components: An update.Molecules2020255113410.3390/molecules2505113432138320
    [Google Scholar]
  54. ChaudharyP. FatimaF. KumarA. Relevance of nanomaterials in food packaging and its advanced future prospects.J. Inorg. Organomet. Polym. Mater.202030125180519210.1007/s10904‑020‑01674‑832837459
    [Google Scholar]
  55. NeethirajanS. RagavanV. WengX. ChandR. Biosensors for sustainable food engineering: Challenges and perspectives.Biosensors (Basel)2018812310.3390/bios801002329534552
    [Google Scholar]
  56. CostaC. ConteA. AlessandroM. NobileD. Use of metal nanoparticles for active packaging applications.Antimicrobial Food Packaging. Barros-VelázquezJ. San Diego, CA, USAAcademic Press201639940610.1016/B978‑0‑12‑800723‑5.00031‑0
    [Google Scholar]
  57. ValdésA. MellinasA.C. RamosM. BurgosN. JiménezA. GarrigósM.C. Use of herbs, spices and their bioactive compounds in active food packaging.RSC Advances2015550403244033510.1039/C4RA17286H
    [Google Scholar]
  58. RehmanA. JafariS.M. AadilR.M. AssadpourE. RandhawaM.A. MahmoodS. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils.Trends Food Sci. Technol.202010110612110.1016/j.tifs.2020.05.001
    [Google Scholar]
  59. AhmedJ. ArfatY.A. BherA. MullaM. JacobH. AurasR. Active chicken meat packaging based on polylactide films and bimetallic Ag-Cu nanoparticles and essential oil.J. Food Sci.20188351299131010.1111/1750‑3841.1412129660773
    [Google Scholar]
  60. KimS. SongK.B. Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms.Int. J. Food Sci. Technol.20185361549155710.1111/ijfs.13737
    [Google Scholar]
  61. MarcousA. RasouliS. ArdestaniF. Low-density polyethylene films loaded by titanium dioxide and zinc oxide nanoparticles as a new active packaging system against Escherichia Coli O157:H7 in fresh calf minced meat.Packag. Technol. Sci.2017301169370110.1002/pts.2312
    [Google Scholar]
  62. MadhusudanP. ChellukuriN. ShivakumarN. Smart packaging of food for the 21st century – A review with futuristic trends, their feasibility and economics.Mater. Today Proc.2018510210182102210.1016/j.matpr.2018.06.494
    [Google Scholar]
  63. BumbudsanpharokeN. KoS. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging.Nano Res.201912348950010.1007/s12274‑018‑2237‑z
    [Google Scholar]
  64. HalonenN. PálvölgyiP.S. BassaniA. FiorentiniC. NairR. SpignoG. KordasK. Bio-based smart materials for food packaging and sensors—A review.Front. Mater.202078210.3389/fmats.2020.00082
    [Google Scholar]
  65. KuswandiB. MoradiM. Improvement of food packaging based on functional nanomaterial.Nanotechnology: Applications in Energy, Drug and Food. SiddiqueeS. MelvinG.J.H. RahmanM.M. Cham, SwitzerlandSpringer201930934410.1007/978‑3‑319‑99602‑8_16
    [Google Scholar]
  66. FarooqA. PatoaryM.K. ZhangM. MussanaH. LiM. NaeemM.A. MushtaqM. FarooqA. LiuL. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.Int. J. Biol. Macromol.20201541050107310.1016/j.ijbiomac.2020.03.16332201207
    [Google Scholar]
  67. Abdul KhalilH.P.S. DavoudpourY. SaurabhC.K. HossainM.S. AdnanA.S. DunganiR. ParidahM.T. Islam SarkerM.Z. FazitaM.R.N. SyakirM.I. HaafizM.K.M. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications.Renew. Sustain. Energy Rev.20166482383610.1016/j.rser.2016.06.072
    [Google Scholar]
  68. FloresS. FamáL. RojasA.M. GoyanesS. GerschensonL. Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate.Food Res. Int.200740225726510.1016/j.foodres.2006.02.004
    [Google Scholar]
  69. Sadeghizadeh-YazdiJ. HabibiM. KamaliA.A. BanaeiM. Application of edible and biodegradable starch-based films in food packaging: A systematic review and meta-analysis.Curr. Res. Nutr. Food Sci.20197362463710.12944/CRNFSJ.7.3.03
    [Google Scholar]
  70. AshoriA. BahramiR. Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene.Polym. Plast. Technol. Eng.2014533312318[Google Scholar]. [CrossRef].10.1080/03602559.2013.866246
    [Google Scholar]
  71. JayakumarA. K vH. T SS. JosephM. MathewS. GP. NairI.C. e KR. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application.Int. J. Biol. Macromol.201913639540310.1016/j.ijbiomac.2019.06.01831173829
    [Google Scholar]
  72. KimH.Y. ParkS.S. LimS.T. Preparation, characterization and utilization of starch nanoparticles.Colloids Surf. B Biointerfaces201512660762010.1016/j.colsurfb.2014.11.01125435170
    [Google Scholar]
  73. CazónP. VázquezM. Applications of chitosan as food packaging materials.Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment.Cham, SwitzerlandSpringer20198112310.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  74. RadhakrishnanY. GopalG. LakshmananC.C. NandakumarK.S. Chitosan nanoparticles for generating novel systems for better applications: A review.Mol. Genet. Med.20159110
    [Google Scholar]
  75. KongM. ChenX.G. XingK. ParkH.J. Antimicrobial properties of chitosan and mode of action: A state of the art review.Int. J. Food Microbiol.20101441516310.1016/j.ijfoodmicro.2010.09.01220951455
    [Google Scholar]
  76. KravanjaG. PrimožičM. KnezŽ. LeitgebM. Chitosan-based (nano)materials for novel biomedical applications.Molecules20192410196010.3390/molecules2410196031117310
    [Google Scholar]
  77. DuttaP.K. TripathiS. MehrotraG.K. DuttaJ. Perspectives for chitosan based antimicrobial films in food applications.Food Chem.200911441173118210.1016/j.foodchem.2008.11.047
    [Google Scholar]
  78. NagyA. HarrisonA. SabbaniS. MunsonR.S.Jr DuttaP.K. WaldmanW.J. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action.Int. J. Nanomedicine201161833185221931480
    [Google Scholar]
  79. Yilmaz AtayH. Antibacterial activity of chitosan-based systems.Funct. Chitosan20202020457489
    [Google Scholar]
  80. CazónP. VázquezM. Applications of chitosan as food packaging materials.Sustainable Agriculture ReviewsSpringer201910.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  81. KadamD. MominB. PalamthodiS. LeleS.S. Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles.Carbohydr. Polym.201921112413210.1016/j.carbpol.2019.02.00530824072
    [Google Scholar]
  82. LinD. YangY. WangJ. YanW. WuZ. ChenH. ZhangQ. WuD. QinW. TuZ. Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging.Int. J. Biol. Macromol.202015412313310.1016/j.ijbiomac.2020.03.07032171840
    [Google Scholar]
  83. YadavS. MehrotraG.K. DuttaP.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging.Food Chem.202133412760510.1016/j.foodchem.2020.12760532738726
    [Google Scholar]
  84. HeX. HwangH-M. Nanotechnology in food science: Functionality, applicability, and safety assessment.Yao Wu Shi Pin Fen Xi201624467168128911604
    [Google Scholar]
  85. XiaY. RubinoM. AurasR. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant.Environ. Sci. Technol.20144823136171362410.1021/es502622c25369541
    [Google Scholar]
  86. HanW. YuY. LiN. WangL. Application and safety assessment for nano-composite materials in food packaging.Chin. Sci. Bull.201156121216122510.1007/s11434‑010‑4326‑6
    [Google Scholar]
  87. OberdörsterG. StoneV. DonaldsonK. Toxicology of nanoparticles: A historical perspective.Nanotoxicology20071122510.1080/17435390701314761
    [Google Scholar]
  88. BahadarH. MaqboolF. NiazK. AbdollahiM. Toxicity of nanoparticles and an overview of current experimental models.Iran. Biomed. J.201620111126286636
    [Google Scholar]
  89. BrandelliA. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity.Food Sci. Hum. Wellness20209182010.1016/j.fshw.2019.12.003
    [Google Scholar]
  90. MauricioM.D. Guerra-OjedaS. MarchioP. VallesS.L. AldasoroM. Escribano-LopezI. HeranceJ.R. RochaM. VilaJ.M. VictorV.M. Nanoparticles in medicine: A focus on vascular oxidative stress.Oxid. Med. Cell Longev.20182018623148210.1155/2018/6231482
    [Google Scholar]
  91. SouzaV.G.L. FernandoA.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review.Food Packag. Shelf Life20168637010.1016/j.fpsl.2016.04.001
    [Google Scholar]
  92. QadriO.S. YounisK. SrivastavaG. SrivastavaA.K. Nanotechnology in Packaging of Fresh Fruits and Vegetables.Emerging Postharvest Treatment of Fruits and VegetablesApple Academic Press2018
    [Google Scholar]
  93. DimitrijevicM. KarabasilN. BoskovicM. TeodorovicV. VasilevD. DjordjevicV. KilibardaN. CobanovicN. Safety aspects of nanotechnology applications in food packaging.Procedia Food Sci.20155576010.1016/j.profoo.2015.09.015
    [Google Scholar]
  94. DivyaK. JishaM.S. Chitosan nanoparticles preparation and applications.Environ. Chem. Lett.201816110111210.1007/s10311‑017‑0670‑y
    [Google Scholar]
  95. BumbudsanpharokeN. KoS. Nano-food packaging: an overview of market, migration research, and safety regulations.J. Food Sci.2015805R910R92310.1111/1750‑3841.1286125881665
    [Google Scholar]
  96. BandyopadhyayJ. RayS.S. Are nanoclay‐containing polymer composites safe for food packaging applications?—An overview.J. Appl. Polym. Sci.2019136124721410.1002/app.47214
    [Google Scholar]
  97. KupnikK. PrimožičM. KokolV. LeitgebM. Nanocellulose in drug delivery and antimicrobially active materials.Polymers (Basel)20201212282510.3390/polym1212282533261198
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137314364240920052006
Loading
/content/journals/cnano/10.2174/0115734137314364240920052006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test