Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This study aims to create a high-speed, low-power data transmission solution for implantable medical devices based on cutting-edge FinFET technology. The work examines the application of Binary Phase Shift Keying (BPSK) modulation through a transmission gate design, which provides an optimal blend of low resistance, high-speed performance, and minimal power consumption. Additionally, the work includes the design of a sine-to-square wave converter and a modulating signal generator. FinFET is employed owing to its high switching speed, low power consumption, low leakage current, and excellent tolerance of short channel effects. The design exhibits a steady electric field at the source end, a high electrostatic potential, and an improved ON current at low work function values using Sentaurus TCAD simulations of a 20nm FinFET, allowing high-speed data modulation in smart implants. A non-overlapping phase generator, a low-power, current-starved gated ring oscillator, a frequency divider utilizing a True Single Phase Clock D-Flip-flop, and an XOR gate serving as a pulse counter are all featured in the design of the BPSK demodulator. This work is significant for its ability to drastically reduce power consumption to 1.75µW while retaining high data transmission speeds, making it perfect for next-generation implantable medical devices. With a 0.9 V power supply, this FinFET-based BPSK modulator and demodulator achieve a far lower power consumption than conventional CMOS-based designs, which increases device longevity and efficiency in settings with limited resources.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137343365241122102200
2024-12-03
2025-09-30
Loading full text...

Full text loading...

References

  1. AbyzovaE. DogadinaE. RodriguezR.D. PetrovI. KolesnikovaY. ZhouM. LiuC. SheremetE. Beyond tissue replacement: The emerging role of smart implants in healthcare.Mater. Today Bio20232210078410.1016/j.mtbio.2023.10078437731959
    [Google Scholar]
  2. GaobotseG. MbungeE. BataniJ. MuchemwaB. Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies.Sens. Int.2022310015610.1016/j.sintl.2022.100156
    [Google Scholar]
  3. JavaidM. HaleemA. SinghR.P. RabS. SumanR. Exploring the potential of nanosensors: A brief overview.Sens. Int.2021210013010.1016/j.sintl.2021.100130
    [Google Scholar]
  4. SharmaR.K. DimitriadisC.A. BucherM. A comprehensive analysis of nanoscale single and multi-gate MOSFETs.Microelectronics J.201652667210.1016/j.mejo.2016.03.004
    [Google Scholar]
  5. SchollM. SaalfeldT. MuellerJ.H. ZhangY. BonehiV. BeyerstedtC. SpeicherF. SchreyM. WunderlichR. HeinenS.A. Multistandard, triple band wireless transceiver in a 130 nm CMOS technology with integrated PAs for IoT applications.IEEE Radio and Wireless Symposium (RWS)20188890
    [Google Scholar]
  6. MansourM. MansourI. DC-10 GHz broadband linear power amplifier for 5G applications using 180 nm CMOS technology.AEU Int. J. Electron. Commun.202316015451810.1016/j.aeue.2022.154518
    [Google Scholar]
  7. AlzaherH.A. Novel Schmitt trigger and square-wave generator using single current amplifier.IEEE Access2019718617518618110.1109/ACCESS.2019.2961640
    [Google Scholar]
  8. KimD. KihJ. KimW. A new waveform-reshaping circuit: An alternative approach to schmitt trigger.IEEE J. Solid-State Circuits199328216216410.1109/4.192048
    [Google Scholar]
  9. KytonakiE-S.A. PapananosY. A low-voltage differentially tuned current-adjusted 5.5-GHz quadrature VCO in 65-nm CMOS technology.IEEE Trans. Circuits Syst. II Express Briefs201158525425810.1109/TCSII.2011.2149010
    [Google Scholar]
  10. CollaertN. DixitA. GoodwinM. AnilK.G. RooyackersR. DegrooteB. LeunissenL.H.A. VelosoA. JonckheereR. DeMeyerK. JurczakM. BiesemansS. A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node.IEEE Electron Device Lett.200425856857010.1109/LED.2004.831585
    [Google Scholar]
  11. JangS-L. HuangS-S. LeeC-F. JuangM-H. CMOS quadrature VCO implemented with two first-harmonic injection-locked oscillators.IEEE Microw. Wirel. Compon. Lett.2008181069569710.1109/LMWC.2008.2003476
    [Google Scholar]
  12. MaierJ. SteiningerA. NajvirtR. The Hidden Behavior of a D-Latch.IEEE Trans. Circuits Syst. I Regul. Pap.20237041660167010.1109/TCSI.2023.3237283
    [Google Scholar]
  13. ArafaE. ZekryA. ShawkeyH. AliM. A CMOS RF Transmitter For LTE Applications: Implementation and Simulation.2019 Novel Intelligent and Leading Emerging Sciences Conference NILES201915558
    [Google Scholar]
  14. LinJ. WangL. LuY. ZhanC. A nano-watt dual-output subthreshold CMOS voltage reference.IEEE Open J. Circuits Syst.2020110010610.1109/OJCAS.2020.3005546
    [Google Scholar]
  15. LiuX. JinJ. WangX. ZhouJ.A. 2.4 GHz receiver with a current-reused inductor-less noise-canceling balun LNA in 40 nm CMOS.Microelectronics J.202111310506510.1016/j.mejo.2021.105065
    [Google Scholar]
  16. Erol AsD. YeltenM.B.A. Highly-Linear, Sub-MW LNA at 2.4 GHz in 40 nm CMOS Process.Integration (Amst.)20238827828510.1016/j.vlsi.2022.09.010
    [Google Scholar]
  17. RamosJ. AusínJ.L. TorelliG. Duque-CarrilloJ.F. Design tradeoffs for Sub-MW CMOS biomedical limiting amplifiers.Microelectronics J.2013441090491110.1016/j.mejo.2012.12.011
    [Google Scholar]
  18. PóvoaR. CanelasA. MartinsR. HortaN. LourençoN. GoesJ. A new family of CMOS Inverter-Based OTAs for biomedical and healthcare applications.Integration (Amst.)202071384810.1016/j.vlsi.2019.12.004
    [Google Scholar]
  19. MasiusA.A. WongY.C. On-chip miniaturized antenna in CMOS technology for biomedical implant.AEU Int. J. Electron. Commun.202011515302510.1016/j.aeue.2019.153025
    [Google Scholar]
  20. SharmaD. NathV. CMOS operational amplifier design for industrial and biopotential applications: Comprehensive review and circuit implementation.RINENG20242210235710.1016/j.rineng.2024.102357
    [Google Scholar]
  21. RosnerW. LandgrafE. KretzJ. DreeskornfeldL. SchaferH. StadeleM. SchulzT. HofmannF. LuykenR.J. SpechtM. HartwichJ. PamlerW. RischL. Nanoscale FinFETs for Low Power Applications.International Semiconductor Device Research Symposium2003452453
    [Google Scholar]
  22. RazaviehA. ZeitzoffP. NowakE.J. Challenges and Limitations of CMOS Scaling for FinFET and Beyond Architectures.IEEE Trans. Nanotechnol.201918999100410.1109/TNANO.2019.2942456
    [Google Scholar]
  23. SubramanianV. ParvaisB. BorremansJ. MerchaA. LintenD. WambacqP. LooJ. DehanM. GustinC. CollaertN. KubicekS. LanderR. HookerJ. CubaynesF. DonnayS. JurczakM. GroesenekenG. SansenW. DecoutereS. Planar bulk MOSFETs versus FinFETs: An Analog/RF perspective.IEEE Trans. Electron Dev.200653123071307910.1109/TED.2006.885649
    [Google Scholar]
  24. ColingeJ.-P. FinFETs and Other Multi-Gate TransistorsSpringer : New York2008
    [Google Scholar]
  25. EndoK. IshikawaY. LiuY. IshiiK. MatsukawaT. O’uchiS. MasaharaM. SugimataE. TsukadaJ. YamauchiH. SuzukiE. Four-terminal FinFETs fabricated using an etch-back gate separation.IEEE Trans. Nanotechnol.20076220120510.1109/TNANO.2007.891830
    [Google Scholar]
  26. UmayiaM. FinFET: A Revolution in Nanometer Regime.Emerging Electronics and AutomationSpringer Nature Singapore: Singapore2022403417
    [Google Scholar]
  27. SharmaV.K. FinFET: A Beginning of Non-Planar Transistor Era.Nanoscale VLSI: Devices, Circuits and ApplicationsSpringer Singapore: Singapore2020139159
    [Google Scholar]
  28. ReddyM.N. Kumar PandaD. A comprehensive review on FinFET in terms of its device structure and performance matrices.Silicon202214120151203010.1007/s12633‑022‑01929‑8
    [Google Scholar]
  29. MauryaR.K. BhowmickB. Review of FinFET devices and perspective on circuit design challenges.Silicon202257835791
    [Google Scholar]
  30. ManojC.R. NagpalM. VargheseD. RaoV.R. Device design and optimization considerations for bulk FinFETs.IEEE Trans. Electron Dev.200855260961510.1109/TED.2007.912996
    [Google Scholar]
  31. KingT-J. FinFETs for nanoscale CMOS digital integrated circuits.ICCAD-2005 IEEE/ACM International Conference on Computer-Aided Design2005200520721010.1109/ICCAD.2005.1560065
    [Google Scholar]
  32. BoukorttN.E.I. LenkaT.R. PatanèS. CrupiG. Effects of varying the fin width, fin height, gate dielectric material, and gate length on the DC and RF performance of a 14-nm SOI FINFET structure.Electronics202211191.10.3390/electronics11010091
    [Google Scholar]
  33. YanambakaV.P. MohantyS.P. KougianosE. GhaiD. GhaiG. Process variation analysis and optimization of a FinFET-Based VCO.IEEE Trans. Semicond. Manuf.201730212613410.1109/TSM.2017.2669314
    [Google Scholar]
  34. WoodB.S. KhajaF.A. ColombeauB.P. SunS. WaiteA. JinM. ChenH. ChanO. ThanigaivelanT. PradhanN. GossmannH-J.L. SharmaS. ChavvaV.R. CaiM-P. OkazakiM. MunnangiS.S. NiC-N. SuenW. ChangC-P. MayurA. VariamN. BrandA.D. Fin doping by hot implant for 14nm FinFET technology and beyond.ECS Trans.201358924910.1149/05809.0249ecst
    [Google Scholar]
  35. DixitA. KoriP.K. RajanC. SamajdarD.P. Design principles of 22-nm SOI LDD-FinFETs for ultra-low-power analog circuits.J. Electron. Mater.20225131029104010.1007/s11664‑021‑09337‑1
    [Google Scholar]
  36. KoriP.K. DixitA. RajanC. SamajdarD.P. 22 nm LDD FinFET based novel mixed signal application: Design and investigation.Silicon202214159453946510.1007/s12633‑021‑01535‑0
    [Google Scholar]
  37. PriydarshiA. ChattopadhyayM.K. Low-power and high-speed technique for logic gates in 20nm double-gate FinFET technology.J. Phys. Conf. Ser.2016755
    [Google Scholar]
  38. KarimiFa. OroujiA.A. A new nanoscale fin field effect transistor with embedded intrinsic region for high temperature applications.Superlattices Microstruct.201696475810.1016/j.spmi.2016.05.006
    [Google Scholar]
  39. SonkusareR. JoshiO. RathodS.S. SOI FinFET based instrumentation amplifier for biomedical applications.Microelectronics J.20199111010.1016/j.mejo.2019.07.005
    [Google Scholar]
  40. Santhosh RaniM. VinothkumarK. KrishnamoorthyR. JayasankarT. PrakashN.B. BharatirajaC. Design of low power VCO using FinFET technology for biomedical applications.Mater. Today Proc.2021452145215110.1016/j.matpr.2020.09.736
    [Google Scholar]
  41. VijayaP. LorenzoR. Performance analysis of gate engineered High-K gate oxide stack SOI Fin-FET for 5 nm technology.Nanosci. Nanotechnol. Asia202213110.2174/2210681213666221221141546
    [Google Scholar]
  42. JenaJ. JenaD. MohapatraE. DasS. DashT.P. FinFET-based inverter design and optimization at 7 nm technology node.Silicon20221416107811079410.1007/s12633‑022‑01812‑6
    [Google Scholar]
  43. WalunjR.A. KharateG.K. Design of DG FinFET based driver circuits for energy efficient sub threshold global interconnects.Analog Integr. Circuits Signal Process.20221131416010.1007/s10470‑022‑02051‑w
    [Google Scholar]
  44. Ul HaqS. SharmaV.K. Energy-efficient design for logic circuits using a leakage control configuration in FinFET technology.JTEIE(I):SB20241054903911
    [Google Scholar]
  45. SuruchiS. Effect of Various Structure Parameters on Electrical Characteristics of Double Gate FinFET.Mobile Radio Communications and 5G NetworksSpringer Nature Singapore: Singapore2024337345
    [Google Scholar]
  46. SivasankaranK. MallickP.S. Radio Frequency Stability Performance of FinFET.Multigate Transistors for High Frequency Applications.SingaporeSpringer Nature Singapore20234960
    [Google Scholar]
  47. LalruatfelaM. PanchananS. MaityR. MaityN.P. Metal gate work function engineering for nano-scaled trigate FinFET.Microsyst. Technol.2024202493594610.1007/s00542‑024‑05706‑y
    [Google Scholar]
  48. SumanJ.V. CheepurupalliK.K. AllasiH.L. Design of polymer-based trigate nanoscale FinFET for the implementation of two-stage operational amplifier.Int. J. Polym. Sci.2022202210.1155/2022/3963188
    [Google Scholar]
  49. SunaniS. MahatoS.S. JenaK. SwainR. Comparative analysis of single and triple material 10 nm Tri-Gate FinFET.J. Korean Phys. Soc.2024202473774510.1007/s40042‑024‑01169‑6
    [Google Scholar]
  50. VermaS. TripathiS.L. Design and analysis of heterojunction inverted-T P-FinFET on 14nm technology node for use in low-power digital circuits.Silicon20231583725373610.1007/s12633‑023‑02294‑w
    [Google Scholar]
  51. Bharath SreenivasuluV. NarendarV. A comprehensive analysis of junctionless Tri-Gate (TG) FinFET towards low-power and high-frequency applications at 5-nm gate length.Silicon2022142009202110.1007/s12633‑021‑00987‑8
    [Google Scholar]
  52. KusumaR. TalariV.K.H.R. Dimensional effect on Analog/RF performance of dual material gate junctionless FinFET at 7 nm technology node.Transactions on Electr. Electr. Mater.202324317818710.1007/s42341‑023‑00440‑0
    [Google Scholar]
  53. VijayaP. LorenzoR. Performance investigation of Junction-Less (JL) High-K Vertical Stack Oxide (VSO) Ga2O3-FinFET for RF and linear applications.Microsyst. Technol.2024202410.1007/s00542‑024‑05784‑y
    [Google Scholar]
  54. ManmariA. Design and Analysis of 10-nm FD-SOI FinFET by Dual-Dielectric Spacers for High-Speed Switching.Advances in Microelectronics, Embedded Systems and IoTSpringer Nature Singapore: Singapore2024209218
    [Google Scholar]
  55. AmaniM. PanigrahyA.K. ChoubeyA. ChoubeyS.B. SreenivasuluV.B. NairD.V. SwainR. Design and comparative analysis of FD-SOI FinFET with dual-dielectric spacers for high speed switching applications.Silicon20241641525153410.1007/s12633‑023‑02767‑y
    [Google Scholar]
  56. Sentaurus Device User Guide, Version U-2022.12.Mountain View, CaliforniaSynopsys, Inc.2022
    [Google Scholar]
  57. KhalilovR. Future prospects of biomaterials in nanomedicine.Adv. Biol. Earth Sci.2024951010.62476/abes.9s5
    [Google Scholar]
  58. SalahshourP. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs.AB&ES202499710410.62476/abes9s97
    [Google Scholar]
  59. UllahN. HasnainS.Z.U. BalochR. AminA. NasibovaA. SelakovicD. RosicG.L. IslamovS. NaraliyevaN. JaradatN. MammadovaA.O. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition.Front Chem.202412138362010.3389/fchem.2024.138362039086984
    [Google Scholar]
  60. KesherwaniS. DagaM. MishraG.P. Design of Sub-40nm FinFET based label free biosensor.Silicon202214124591246510.1007/s12633‑022‑01936‑9
    [Google Scholar]
  61. MadhaviK.B. TripathiS.L. SaxenaS. GhaiD. RajB. Design and analysis of 18 nm multichannel FinFET as biosensor for detection of biological species.Silicon202315146313632210.1007/s12633‑023‑02519‑y
    [Google Scholar]
  62. MansourM. ZekryA. AliM.K. ShawkeyH. Analysis and design of a reconfigurable wideband I/Q modulator and ultra-wideband I/Q demodulator for multi-standard applications.Microelectronics J.202010210483010.1016/j.mejo.2020.104830
    [Google Scholar]
  63. Maragowdanahalli ShivalingaiahN. Anamanahalli MariyappaV.P. Performance analysis of FinFET-Based LVDS I/O receiver architecture.SN Comput Sci20234214510.1007/s42979‑022‑01571‑6
    [Google Scholar]
  64. GulhaneS.V. MishraG.P. Effect of temperature on RF and linearity performance of inverted-T FinFET.Trans. Electr. Electron. Mater.202425554955810.1007/s42341‑024‑00534‑3
    [Google Scholar]
  65. SarangamK. KumarA.S. ReddyB.N.K. Design and Investigation of the 22 nm FinFET Based Dynamic Latched Comparator for Low Power Applications.Trans. Electr. Electron. Mater.202425221823110.1007/s42341‑023‑00503‑2
    [Google Scholar]
  66. UditK. FinFET Fractional Order Injection Locked Oscillator.Advances in Energy and Control SystemsSingapore2024183194
    [Google Scholar]
  67. GhaziM. MaghamiM.H. AmiriP. Hamedi-HaghS. An ultra-low-power area-efficient non-coherent binary phase-shift keying demodulator for implantable biomedical microsystems.Electronics (Basel)202097112310.3390/electronics9071123
    [Google Scholar]
  68. HosseinnejadM. ErfanianA. KaramiM.A. A fully digital BPSK demodulator for biomedical application.Microelectronics J.201881768310.1016/j.mejo.2018.09.009
    [Google Scholar]
  69. BestR.E. KuznetsovN.V. LeonovG.A. YuldashevM.V. YuldashevR.V. Tutorial on dynamic analysis of the costas loop.Annu. Rev. Contr.201642274910.1016/j.arcontrol.2016.08.003
    [Google Scholar]
  70. LuoZ. SonkusaleS. A Novel BPSK Demodulator for Biological Implants.IEEE Trans. Circuits Syst. I Regul. Pap.20085561478148410.1109/TCSI.2008.918174
    [Google Scholar]
  71. XuW. LuoZ. SonkusaleS. Fully Digital BPSK Demodulator and Multilevel LSK Back Telemetry for Biomedical Implant Transceivers.IEEE Trans. Circuits Syst. II Express Briefs200956971471810.1109/TCSII.2009.2027968
    [Google Scholar]
  72. ChoH. LeeH. BaeJ. YooH-J.A. 5.2 MW IEEE 802.15.6 HBC Standard Compatible Transceiver With Power Efficient Delay-Locked-Loop Based BPSK Demodulator.IEEE J. Solid-State Circuits201550112549255910.1109/JSSC.2015.2475179
    [Google Scholar]
  73. PanL. ChenM. ChenY. ZhuS. LiuY. An energy-autonomous power-and-data telemetry circuit with digital-assisted-PLL-based bpsk demodulator for implantable flexible electronics applications.IEEE Open J. Circuits Syst.2021272173110.1109/OJCAS.2021.3119931
    [Google Scholar]
  74. ZhuQ. XuY.A. 228 µW 750 MHz BPSK demodulator based on injection locking.IEEE J. Solid-State Circuits201146241642310.1109/JSSC.2010.2090611
    [Google Scholar]
  75. YasirU. LiX. CaoC. Low Power ASK modulator based on direct injection-locked current reuse VCO in 130-nm CMOS technology for high data rate RFID applications.Int. J. Circuit Theory Appl.20225015671
    [Google Scholar]
  76. WangZ. ChiangP-Y. NazariP. WangC-C. ChenZ. HeydariP.A. CMOS 210-GHz fundamental transceiver with OOK modulation.IEEE J. Solid-State Circuits201449356458010.1109/JSSC.2013.2297415
    [Google Scholar]
  77. ShahrouryF.R. The design methodology of fully digital pulse width modulation.JLPEA20211144110.3390/jlpea11040041
    [Google Scholar]
  78. KarimM.N. Istiaque HossainS.M. SahaP.K. A Low Power, High Data Rate Ir-Uwb Pulse Generator with BPSK Modulation in 90nm CMOS Technology for on-Chip Wireless Interconnects.2012 International Conference on Informatics, Electronics & Vision (ICIEV)20128790
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137343365241122102200
Loading
/content/journals/cnano/10.2174/0115734137343365241122102200
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BPSK; CMOS; demodulator; FinFET; implantable medical devices; modulator; smart implants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test