Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Bioceramics are engineered materials that achieve their applications in the medical field. Bioceramics are promising inorganic materials to create scaffolds for bone regeneration due to their desirable properties, such as biocompatibility, osteoconduction, and their similarity with bone composition. Bioceramics can operate as tissue replacement and can be used for coating metal implants to increase their biocompatibility. Bioceramics are classified into three types: bioinert ceramics, bioactive bioceramics, and biodegradable ceramics. There are different methods for the fabrication of bioceramics, they can be prepared by conventional powder processing methods or by some new unconventional methods. Bioceramics can be fabricated by a sintering process, which takes place through the hardening of the green bodies at a relatively high temperature lower than their melting point. Nowadays, microwave sintering is excellent in both heating efficiency, saving energy and time, and the concomitant processing cost. There are other methods used to obtain bioceramics; such as sol-gel, gas-foaming, gel-casting, and freeze-casting techniques. Recently, the CAD/CAM technique (computer-aided design/manufacture) was used in the fabrication of bioceramics and is applied in the dentistry field. The application of bioceramics connects to the repair of the skeletal system, which consists of joints, bones, and teeth, as well as both soft and hard tissues. Bioceramics can be used to replace parts of the cardiovascular system, especially heart valves.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137317518240723112352
2024-08-08
2025-09-07
Loading full text...

Full text loading...

References

  1. AmukarimiS. RamakrishnaS. MozafariM. Smart biomaterials—A proposed definition and overview of the field.Curr. Opin. Biomed. Eng.20211910031110.1016/j.cobme.2021.100311
    [Google Scholar]
  2. De AzaP.N. De AzaA.H. De AzaS. Crystalline bioceramic materials.Bol. Soc. Esp. Ceram.20054413514510.3989/cyv.2005.v44.i3.382
    [Google Scholar]
  3. KhayatanD. Bagherzadeh OskoueiA. AlamM. MohammadikhahM. BadkoobehA. GolkarM. AbbasiK. KaramiS. Sayyad SoufdoostR. Kamali HakimL. HussainA. TebyaniyanH. HeboyanA. Cross talk between cells and the current bioceramics in bone regeneration: A comprehensive review.Cell Transplant.2024330963689724123603010.1177/09636897241236030 38494898
    [Google Scholar]
  4. DorozhkinS.V. Current state of bioceramics.J. Ceramic Sci. Technol.20189435337010.4416/JCST2018‑00026
    [Google Scholar]
  5. KattimaniV.S. KondakaS. LingamaneniK.P. Hydroxyapatite–-past, present, and future in bone regeneration.Bone Tissue Regen. Insights20167BTRI.S3613810.4137/BTRI.S36138
    [Google Scholar]
  6. RibasR.G. SchatkoskiV.M. MontanheiroT.L.A. de MenezesB.R.C. StegemannC. LeiteD.M.G. ThimG.P. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review.Ceram. Int.20194517210512106110.1016/j.ceramint.2019.07.096
    [Google Scholar]
  7. VaianiL. BoccaccioA. UvaA.E. PalumboG. PiccininniA. GuglielmiP. CantoreS. SantacroceL. CharitosI.A. BalliniA. Ceramic materials for biomedical applications: An overview on properties and fabrication processes.J. Funct. Biomater.202314314610.3390/jfb14030146 36976070
    [Google Scholar]
  8. ArumughamT. KrishnamoorthyR. HasanS.W. BanatF. Recent advances in bioceramic-based nanocomposites for membrane and adsorption separation processes: A review.J. Water Process Eng.20224910315210.1016/j.jwpe.2022.103152
    [Google Scholar]
  9. JayaswalG.P. DangeS.P. KhalikarA.N. Bioceramic in dental implants: A review.J. Indian Prosthodont. Soc.201010181210.1007/s13191‑010‑0002‑4 23204715
    [Google Scholar]
  10. KargozarS. RamakrishnaS. MozafariM. Chemistry of biomaterials: Future prospects.Curr. Opin. Biomed. Eng.20191018119010.1016/j.cobme.2019.07.003
    [Google Scholar]
  11. BahatiD. BrichaM. El MabroukKh. Biocompatibility and biodegradability of bioceramics. Advanced Bioceramics.1st edMilton Park, AbingdonRoutledge202310.1201/9781003258353‑8
    [Google Scholar]
  12. BesleagaC. NanB. PopaA.C. BalescuL.M. NedelcuL. NetoA.S. PasukI. LeonatL. Popescu-PelinG. FerreiraJ.M.F. StanG.E. Sr Sr and Mg Doped bi-phasic calcium phosphate macroporous bone graft substitutes fabricated by robocasting: A structural and cytocompatibility assessment.J. Funct. Biomater.202213312310.3390/jfb13030123 36135559
    [Google Scholar]
  13. VidaneA.S. NunesF.C. FerreiraJ.A. FukumasuH. FreitasS.H. PalloneE.M.J.A. AmbrósioC.E. Biocompatibility and interaction of porous alumina-zirconia scaffolds with adipose-derived mesenchymal stem cells for bone tissue regeneration.Heliyon202399e2012810.1016/j.heliyon.2023.e20128 37809419
    [Google Scholar]
  14. MurthyH. MathewD. NivedhidhaR. JoseA. SijoD.A. Biomaterials and their application.Int. J. Res. Pub. Rev.202341011771183
    [Google Scholar]
  15. Arellano MoncayoA.M. PeñateL. ArreguiM. Giner-TarridaL. CedeñoR. State of the art of different zirconia materials and their indications according to evidence-based clinical performance: A narrative review.Dent. J.20231111810.3390/dj11010018
    [Google Scholar]
  16. ManiconeP.F. Rossi IommettiP. RaffaelliL. An overview of zirconia ceramics: Basic properties and clinical applications.J. Dent.2007351181982610.1016/j.jdent.2007.07.008 17825465
    [Google Scholar]
  17. AhamerC. OpitzA.K. RuppG.M. FleigJ. Revisiting the temperature dependent ionic conductivity of Yttria Stabilized Zirconia (YSZ).J. Electrochem. Soc.20171647F79010.1149/2.0641707jes
    [Google Scholar]
  18. GaoJ. ZhaoX. ChengZ. TianL. Theoretical study on the influence of the anharmonic effect on the ionic conductivity and thermal stability of 8 mol% Yttria-stabilized zirconia solid electrolyte material.Materials20231615534510.3390/ma16155345 37570048
    [Google Scholar]
  19. ZaroneF. RussoS. SorrentinoR. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations.Dent. Mater.2011271839610.1016/j.dental.2010.10.024 21094996
    [Google Scholar]
  20. KongkiatkamonS. RokayaD. KengtanyakichS. PeampringC. Current classification of zirconia in dentistry: An updated review.PeerJ2023111566910.7717/peerj.15669
    [Google Scholar]
  21. BurgerR.C. MartinezE.F. do AmaralF.L.B. In vitro analysis of surface treatment, titanium and zirconia used in prosthetic dentistry, on osteoblast cultures, mathews.J. Dent.20237341
    [Google Scholar]
  22. NkamgueuE.M. AdnetJ.J. BernardJ. ZieroldK. KilianL. JallotE. BenhayouneH. BonhommeP. In vitro effects of zirconia and alumina particles on human blood monocyte-derived macrophages: X-ray microanalysis and flow cytometric studies.J. Biomed. Mater. Res.200052458759410.1002/1097‑4636(20001215)52:4<587::AID‑JBM2>3.0.CO;2‑1 11033540
    [Google Scholar]
  23. ZhuY. LiuK. DengJ. YeJ. AiF. OuyangH. WuT. JiaJ. ChengX. WangX. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties.Int. J. Nanomedicine2019145977598710.2147/IJN.S202457 31534332
    [Google Scholar]
  24. GrabarczykJ. BatoryD. LoudaP. CouvratP. KotelaI. Bakowicz-MituraK. Carbon coatings for medical implants.J. Achieve Mater. Manufact. Eng.200720107110
    [Google Scholar]
  25. MaliszK. Świeczko-ŻurekB. Preparation and characterization of diamond-like carbon coatings for biomedical applications-a review.Materials2023169342010.3390/ma16093420
    [Google Scholar]
  26. GlasmacherB. NellenE. ReulH. RauG. In vitro hemocompatibility testing of new materials for mechanical heart valves.Materialwiss. Werkstofftech.1999301280680810.1002/(SICI)1521‑4052(199912)30:12<806::AID‑MAWE806>3.0.CO;2‑F
    [Google Scholar]
  27. HenchL.L. The story of Bioglass®.J. Mater. Sci. Mater. Med.2006171196797810.1007/s10856‑006‑0432‑z 17122907
    [Google Scholar]
  28. ErasmusE.P. SuleR. JohnsonO.T. MasseraJ. SigalasI. In vitro evaluation of porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration.Sci. Rep.201881369910.1038/s41598‑018‑22032‑2 29487328
    [Google Scholar]
  29. BainoF. Bioactive glasses – When glass science and technology meet regenerative medicine.Ceram. Int.20184413149531496610.1016/j.ceramint.2018.05.180
    [Google Scholar]
  30. Vallet-RegíM. Evolution of bioceramics within the field of biomaterials.C. R. Chim.2009131-217418510.1016/j.crci.2009.03.004
    [Google Scholar]
  31. Abd El-HamidH.K. El-KheshenA.A. AbdouA.M. ElwanR.L. Incorporation of strontium borosilicate bioactive glass in calcium aluminate biocement: Physicomechanical, bioactivity and antimicrobial properties.J. Mech. Behav. Biomed. Mater.202314410597610.1016/j.jmbbm.2023.105976
    [Google Scholar]
  32. Moreno-VargasY.A. Luna-AriasJ.P. Flores-FloresJ.O. OrozcoE. BucioL. Hydration reactions and physicochemical properties in a novel tricalcium-dicalcium silicate-based cement containing hydroxyapatite nanoparticles and calcite: A comparative study.Ceram. Int.20174316132901329810.1016/j.ceramint.2017.07.027
    [Google Scholar]
  33. NiuL. JiaoK. WangT. ZhangW. CamilleriJ. BergeronB.E. FengH. MaoJ. ChenJ. PashleyD.H. TayF.R. A review of the bioactivity of hydraulic calcium silicate cements.J. Dent.201442551753310.1016/j.jdent.2013.12.015 24440449
    [Google Scholar]
  34. GandolfiM.G. TaddeiP. TintiA. PratiC. Apatite‐forming ability (bioactivity) of ProRoot MTA.Int. Endod. J.2010431091792910.1111/j.1365‑2591.2010.01768.x 20646080
    [Google Scholar]
  35. Abd El-HamidH.K. Abo-AlmagedH.H. RadwanM.M. Synthesis, characterization and antimicrobial activity of nano-crystalline tricalcium silicate bio-cement.J. Appl. Pharm. Sci.20177101810.7324/JAPS.2017.71001
    [Google Scholar]
  36. Abd El-HamidH.K. FayadA.M. ElwanR.L. Evaluation of bioactivity, biocompatibility, and antibacterial properties of tricalcium silicate bone cement modified with wollastonite/fluorapatite glass and glass-ceramic.Ceramics Int.20245014253222533210.1016/j.ceramint.2024.04.262
    [Google Scholar]
  37. El-HamidH.K.A. Abo-NafS.M. ElwanR.L. Characterization, bioactivity investigation and cytotoxicity of borosilicate glass/dicalcium silicate composites.J. Non-Cryst. Solids2019512253210.1016/j.jnoncrysol.2019.03.002
    [Google Scholar]
  38. Reyes-CarmonaJ.F. FelippeM.S. FelippeW.T. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid.J. Endod.200935573173610.1016/j.joen.2009.02.011 19410094
    [Google Scholar]
  39. GandolfiM.G. TaddeiP. ModenaE. SiboniF. PratiC. Biointeractivity-related versus chemi/physisorption-related apatite precursor-forming ability of current root end filling materials.J. Biomed. Mater. Res. B Appl. Biomater.201310171107112310.1002/jbm.b.32920 23559495
    [Google Scholar]
  40. CombesC. ReyC. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials.Acta Biomater.2010693362337810.1016/j.actbio.2010.02.017 20167295
    [Google Scholar]
  41. PanH. LiuX.Y. TangR. XuH.Y. Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite.Chem. Commun.201046397415741710.1039/c0cc00971g 20820502
    [Google Scholar]
  42. TsengY.H. MouC.Y. ChanJ.C.C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation.J. Am. Chem. Soc.2006128216909691810.1021/ja060336u 16719471
    [Google Scholar]
  43. KouketsuA. MatsuiK. KawaiT. EzoeY. YanagisawaT. YasudaA. TakahashiT. KamakuraS. Octacalcium phosphate collagen composite stimulates the expression and activity of osteogenic factors to promote bone regeneration.J. Tissue Eng. Regen. Med.20201419910710.1002/term.2969 31721475
    [Google Scholar]
  44. ElwanR.L. HamzawyE.M.A. Abd El-HamidH.K. Characterization, bioactivity, antibacterial and cytotoxicity of inexpensive soda-lime-silica glass/tetracalcium phosphate composites.Ceram. Int.2024507111901119810.1016/j.ceramint.2024.01.020
    [Google Scholar]
  45. Demir-OğuzÖ. BoccacciniA.R. LocaD. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring?Bioact. Mater.20231921723610.1016/j.bioactmat.2022.04.007 35510175
    [Google Scholar]
  46. RadwanM.M. Abd El-HamidH.K. MohamedA.F. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.Mater. Sci. Eng. C20155735536210.1016/j.msec.2015.07.011 26354276
    [Google Scholar]
  47. Abd El-HamidH. RadwanM.M. Abo-AlmagedH.H. In vitro bioactivity study of calcium aluminate/calcium phosphate.Interceram - Int Ceramic Rev2019681-2364310.1007/s42411‑018‑0066‑4
    [Google Scholar]
  48. BestS.M. PorterA.E. ThianE.S. HuangJ. Bioceramics: Past, present and for the future.J. Eur. Ceram. Soc.20082871319132710.1016/j.jeurceramsoc.2007.12.001
    [Google Scholar]
  49. ZawrahM.F. TahaM.A. YounessR.A. Advanced ceramics: Stages of development. Advanced Ceramics.Berlin, HeidelbergSpringer Link202414610.1007/978‑3‑031‑43918‑6_1
    [Google Scholar]
  50. BabaieE. BhaduriS.B. Fabrication aspects of porous biomaterials in orthopedic applications: A review.ACS Biomater. Sci. Eng.20184113910.1021/acsbiomaterials.7b00615 33418675
    [Google Scholar]
  51. VeljovićD. Jančić-HajnemanR. BalaćI. JokićB. PutićS. PetrovićR. JanaćkovićD. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics.Ceram. Int.201137247147910.1016/j.ceramint.2010.09.014
    [Google Scholar]
  52. BordenM. AttawiaM. LaurencinC.T. The sintered microsphere matrix for bone tissue engineering: In vitro osteoconductivity studies.J. Biomed. Mater. Res.200261342142910.1002/jbm.10201 12115467
    [Google Scholar]
  53. BabaieE. RenY. BhaduriS.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization.J. Mater. Res.2016318995100310.1557/jmr.2016.84
    [Google Scholar]
  54. ZhouX. PedrowP.D. TangZ. BohnetS. SablaniS.S. TangJ. Heating performance of microwave ovens powered by magnetron and solid-state generators.Innov. Food Sci. Emerg. Technol.20238310324010.1016/j.ifset.2022.103240
    [Google Scholar]
  55. GaberA.A. Abd El-HamidH.K. NgidaR.E.A. SadekH.E.H. KhattabR.M.; Synthesis, characterization and corrosive resistance of ZnO and ZrO2 coated TiO2 substrate prepared via polymeric method and microwave combustion.Ceramics Internat.202450203891738932
    [Google Scholar]
  56. Abd El-HamidH.K. GaberA.A. NgidaR.E.A. SadekH.E.H. KhattabR.M. Mandour, Howida S. Study of microstructure and corrosion behavior of nano-Al2O3 coating layers on TiO2 substrate via polymeric method and microwave combustion,Scientific Reports2024141841710.1007/s10971‑019‑05003‑5
    [Google Scholar]
  57. JonesJ.R. HenchL.L. Regeneration of trabecular bone using porous ceramics.Curr. Opin. Solid State Mater. Sci.200374-530130710.1016/j.cossms.2003.09.012
    [Google Scholar]
  58. BinnerJ.G.P. ReichertJ. Processing of hydroxyapatite ceramic foams.J. Mater. Sci.199631215717572310.1007/BF01160820
    [Google Scholar]
  59. SepulvedaP. BinnerJ.G.P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers.J. Eur. Ceram. Soc.199919122059206610.1016/S0955‑2219(99)00024‑2
    [Google Scholar]
  60. SepulvedaP. BinnerJ.G.P. RogeroS.O. HigaO.Z. BressianiJ.C. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation.J. Biomed. Mater. Res.2000501273410.1002/(SICI)1097‑4636(200004)50:1<27::AID‑JBM5>3.0.CO;2‑6 10644960
    [Google Scholar]
  61. SepulvedaP. BinnerJ.G.P. Evaluation of the in situ polymerization kinetics for the gel-casting of ceramic foams.Chem. Mater.200113113882388710.1021/cm0102180
    [Google Scholar]
  62. PejchalováL. RolečekJ. SalamonD. Why freeze-casting brings different phase composition of calcium phosphates?Open Ceramics2021710016110.1016/j.oceram.2021.100161
    [Google Scholar]
  63. JiaZ.Q. GuoZ-X. ChenF. LiJ-J. ZhaoL. ZhangL. Microstructure, phase compositions and in vitro evaluation of freeze casting hydroxyapatite-silica scaffolds.Ceram. Int.20184443636364310.1016/j.ceramint.2017.11.114
    [Google Scholar]
  64. FasbinderD.J. Clinical performance of chairside CAD/CAM restorations.J. Am. Dent. Assoc.2006137Suppl.22S31S10.14219/jada.archive.2006.0395 16950934
    [Google Scholar]
  65. KargozarS. HamzehlouS. BainoF. Effects of the biological environment on ceramics: Degradation, cell response, and in vivo behavior. Fundamental Biomaterials.ChamSpringer201840743710.1016/B978‑0‑08‑102203‑0.00014‑7
    [Google Scholar]
  66. KumarP. DehiyaB.S. SindhuA. Bioceramics for hard tissue engineering applications: A review.Int. J. Appl. Eng. Res.201813527442752
    [Google Scholar]
  67. WenY. XunS. HaoyeM. BaichuanS. PengC. XuejianL. KaihongZ. XuanY. JiangP. ShibiL. 3D printed porous ceramic scaffolds for bone tissue engineering: A review.Biomater. Sci.2017591690169810.1039/C7BM00315C 28686244
    [Google Scholar]
  68. LiJ. HastingsG. Oxide bioceramics: Inert ceramic materials in medicine and dentistry. Handbook Of Biomaterial Properties.ChamSpringer201633935210.1007/978‑1‑4939‑3305‑1_21
    [Google Scholar]
  69. Al-SanabaniF.A. Alumina ceramic for dental applications: A review article.Amer J Mater Res2014112634
    [Google Scholar]
  70. XuJ. OniT. ShenD. ChaiY. WalterW.K. WalterW.L. Long-term results of alumina ceramic-on-ceramic bearings in cementless total hip arthroplasty: A 20-year minimum follow-up.J. Arthroplasty202237354955310.1016/j.arth.2021.11.028 34843912
    [Google Scholar]
  71. ChenY.W. MoussiJ. DruryJ.L. WatahaJ.C. Zirconia in biomedical applications.Expert Rev. Med. Devices2016131094596310.1080/17434440.2016.1230017 27635794
    [Google Scholar]
  72. BonaA. PechoO. AlessandrettiR. Zirconia as a dental biomaterial.Materials2015884978499110.3390/ma8084978 28793485
    [Google Scholar]
  73. GlasmacherB. ReulH. RauG. In vitro testing for blood compatibility: First results of a new carbon material.Int. J. Artif. Organs199619514519
    [Google Scholar]
  74. LeeS. ChiangH.C. LinC.T. HuangH.M. DongD.R. Finite element analysis of thermo-debonding mechanism in dental composites.Biomaterials200021131315132610.1016/S0142‑9612(99)00217‑3 10850925
    [Google Scholar]
  75. Lewandowska-SzumiełM. KomenderJ. GóreckiA. KowalskiM. Fixation of carbon fibre-reinforced carbon composite implanted into bone.J. Mater. Sci. Mater. Med.19978848548810.1023/A:1018526226382 15348714
    [Google Scholar]
  76. EliazN. MetokiN. Calcium phosphate bioceramics: A Review of their history, structure, properties, coating technologies and biomedical applications.Materials201710433443810.3390/ma10040334 28772697
    [Google Scholar]
  77. KargozarS. HamzehlouS. BainoF. Can bioactive glasses be useful to accelerate the healing of epithelial tissues?Mater. Sci. Eng. C2019971009102010.1016/j.msec.2019.01.028 30678892
    [Google Scholar]
  78. LenjiR.K. NourbakhshA.A. NourbakhshN. NourbakhshM. MackenzieK.J.D. Phase formation, microstructure and setting time of MCM-48 mesoporous silica nanocomposites with hydroxyapatite for dental applications: Effect of the Ca/P ratio.Ceram. Int.20174315128571286210.1016/j.ceramint.2017.06.177
    [Google Scholar]
  79. AsgaryS. EghbalM.J. ParirokhM. GhoddusiJ. KheiriehS. BrinkF. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement.J. Endod.200935224325010.1016/j.joen.2008.10.026 19166783
    [Google Scholar]
  80. PrimusC.M. TayF.R. NiuL. Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues.Acta Biomater.201996355410.1016/j.actbio.2019.05.050 31146033
    [Google Scholar]
  81. RadwanM.M. NagiS.M. Abd El-HamidH.K. Physico-mechanical characteristics of tri-calcium silicate pastes as dentin substitute and interface analysis in class II cavities: Effect of CaCl2 and SBF solutions.Heliyon201956e0197510.1016/j.heliyon.2019.e01975 31294120
    [Google Scholar]
  82. RadwanM.M. Abd El-HamidH.K. NagiS.M. Synthesis, properties and hydration characteristics of novel nano-size mineral trioxide and tetracalcium phosphate for dental applications.Orient. J. Chem.201632532051610.13005/ojc/320516
    [Google Scholar]
  83. HaiderA. HaiderS. HanS.S. KangI.K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review.RSC Adv20177137442745810.1039/C6RA26124H
    [Google Scholar]
  84. HenessG. Ben-NissanB. Innovative bioceramics.Mater Forum200427104114
    [Google Scholar]
  85. Abd El-HamidH.K. FaragM.M. AbdelraofM. ElwanR.L. Regulation of the antibiotic elution profile from tricalcium phosphate bone cement by addition of bioactive glass.Sci. Rep.2024141280410.1038/s41598‑024‑53319‑2 38307930
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137317518240723112352
Loading
/content/journals/cnano/10.2174/0115734137317518240723112352
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test