Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Essential Oil (EO) is widely used in medicine because of its antioxidant, anti-inflammatory, antibacterial, antimicrobial, and antiviral properties. However, the hydrophobicity, volatility, instability, and potential toxicity of EO make it difficult to achieve efficient delivery , which limits its application. In recent years, nano drug delivery systems have been gradually applied to encapsulate EO to improve their physical and chemical properties. In order to further improve the delivery efficiency of EOs, this review summarized the commonly used nano delivery systems for EOs, analyzed their preparation principles, and listed the factors affecting the delivery efficiency of essential oils. Moreover, the challenges faced by the EO delivery system are sorted out, and the corresponding solutions are proposed, with the hope of indicating the development direction for expanding the application of the nano drug delivery system in EO.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137293979240709113456
2024-07-19
2025-11-05
Loading full text...

Full text loading...

References

  1. TahmasebiA. HosseiniS.M. KaramiA. AfsharifarA. Sharifi OlounabadiA.R. Variation in essential oil composition of Rydingia michauxii at the three developmental stages.Nat. Prod. Res.202135234234510.1080/14786419.2019.162211231140321
    [Google Scholar]
  2. OubanninS. BijlaL. NidA.M. IbourkiM. El KharrassiY. DevkotaK. BouyahyaA. MaggiF. CaprioliG. SakarE.H. GharbyS. Recent advances in the extraction of bioactive compounds from plant matrices and their use as potential antioxidants for vegetable oils enrichment.J. Food Compos. Anal.202412810599510.1016/j.jfca.2024.105995
    [Google Scholar]
  3. VoraL.K. GholapA.D. HatvateN.T. NarenP. KhanS. ChavdaV.P. BalarP.C. GandhiJ. KhatriD.K. Essential oils for clinical aromatherapy: A comprehensive review.J. Ethnopharmacol.202433011818010.1016/j.jep.2024.11818038614262
    [Google Scholar]
  4. HuM. GeX. ChenX. MaoW. QianX. YuanW.E. Micro/nanorobot: A promising targeted drug delivery system.Pharmaceutics202012766510.3390/pharmaceutics1207066532679772
    [Google Scholar]
  5. HuY. LiuW. SunY. Self‐propelled micro‐/nanomotors as “on‐the‐move” platforms: Cleaners, sensors, and reactors.Adv. Funct. Mater.20223210210918110.1002/adfm.202109181
    [Google Scholar]
  6. LiuL. CaoW. XiaM. TianC. WuW. CaiY. ChuX. Self-emulsifying drug delivery system enhances tissue distribution of cinnamaldehyde by altering the properties of the mucus layer.AAPS PharmSciTech202223726110.1208/s12249‑022‑02416‑436131215
    [Google Scholar]
  7. ZhangJ. ZhangK. HaoY. YangH. WangJ. ZhangY. ZhaoW. MaS. MaoC. Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor.J. Colloid Interface Sci.202363367969010.1016/j.jcis.2022.11.09936473358
    [Google Scholar]
  8. FuentesC. Ruiz-RicoM. FuentesA. BaratJ.M. RuizM.J. Comparative cytotoxic study of silica materials functionalised with essential oil components in HepG2 cells.Food Chem. Toxicol.202114711185810.1016/j.fct.2020.11185833212212
    [Google Scholar]
  9. GonçalvesR.F.S. MadalenaD.A. FernandesJ.M. MarquesM. VicenteA.A. PinheiroA.C. Application of nanostructured delivery systems in food: From incorporation to detection and characterization.Trends Food Sci. Technol.202212911112510.1016/j.tifs.2022.09.016
    [Google Scholar]
  10. SirviA. KucheK. ChaudhariD. GhadiR. DateT. KatiyarS.S. JainS. Supersaturable self-emulsifying drug delivery system: A strategy for improving the loading and oral bioavailability of quercetin.J. Drug Deliv. Sci. Technol.20227110328910.1016/j.jddst.2022.103289
    [Google Scholar]
  11. ZhaoY. WangC. ChowA.H.L. RenK. GongT. ZhangZ. ZhengY. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies.Int. J. Pharm.20103831-217017710.1016/j.ijpharm.2009.08.03519732813
    [Google Scholar]
  12. ChandharakoolS. KoomhinP. SinlapasornJ. SuanjanS. PhungsaiJ. SuttiprommaN. SongsamoeS. MatanN. SattayakhomA. Effects of tangerine essential oil on brain waves, moods, and sleep onset latency.Molecules20202520486510.3390/molecules2520486533096890
    [Google Scholar]
  13. ZaïriA. NouirS. ZarroukA. HaddadH. KhélifaA. AchourL. TangyF. ChaouachiM. TrabelsiM. Chemical composition, fatty acids profile and biological properties of Thymus capitatus (L.) Hoffmanns, essential Oil.Sci. Rep.2019912013410.1038/s41598‑019‑56580‑y31882812
    [Google Scholar]
  14. PokajewiczK. Czarniecka-WieraM. KrajewskaA. MaciejczykE. WieczorekP.P. Lavandula x intermedia—a bastard lavender or a plant of many values? Part II. Biological activities and applications of lavandin.Molecules2023287298610.3390/molecules2807298637049749
    [Google Scholar]
  15. KendaM. Kočevar GlavačN. NagyM. Sollner DolencM. Medicinal plants used for anxiety, depression, or stress treatment: An update.Molecules20222718602110.3390/molecules2718602136144755
    [Google Scholar]
  16. de SousaM.H.O. MorganJ.M.S. CescaK. FlachA. de MouraN.F. Cytotoxic activity of Cunila angustifolia essential oil.Chem. Biodivers.2020172e190065610.1002/cbdv.20190065631910318
    [Google Scholar]
  17. DuZ. LiuZ. NingZ. LiuY. SongZ. WangC. LuA. Prospects of boswellic acids as potential pharmaceutics.Planta Med.201581425927110.1055/s‑0034‑139631325714728
    [Google Scholar]
  18. DingW. LipingN. XingH. WeiZ. ZhouaQ. NongR. ChenJ. Essential oil extracted from leaf of Phoebe bournei (Hemsl.) yang: Chemical constituents, antitumor, antibacterial, hypoglycemic activities.Nat. Prod. Res.202034172524252710.1080/14786419.2018.154239330580602
    [Google Scholar]
  19. Al-AsmariA.K. AtharM.T. Al-FaraidyA.A. AlmuhaizaM.S. Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market.Asian Pac. J. Trop. Biomed.20177214715010.1016/j.apjtb.2016.11.023
    [Google Scholar]
  20. PartheniadisI. VergkiziS. LazariD. ReppasC. NikolakakisI. Formulation, characterization and antimicrobial activity of tablets of essential oil prepared by compression of spray-dried powder.J. Drug Deliv. Sci. Technol.20195022623610.1016/j.jddst.2019.01.031
    [Google Scholar]
  21. Khoa HuynhN.A. DoT.H.T. LeX.L. HuynhT.T.N. NguyenD.H. TranN.K. TranC.T.H.L. NguyenD.H. TruongC.T. Development of softgel capsules containing cyclosporine a encapsulated pine essential oil based self-microemulsifying drug delivery system.J. Drug Deliv. Sci. Technol.20226810311510.1016/j.jddst.2022.103115
    [Google Scholar]
  22. SrivastavA.K. KarpathakS. RaiM.K. KumarD. MisraD.P. AgarwalV. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application.J. Drug Deliv. Sci. Technol.20238510452610.1016/j.jddst.2023.104526
    [Google Scholar]
  23. WindhabE.J. DresslerM. FeiglK. FischerP. Megias-AlguacilD. Emulsion processing—from single-drop deformation to design of complex processes and products.Chem. Eng. Sci.2005608-92101211310.1016/j.ces.2004.12.003
    [Google Scholar]
  24. TadrosT. IzquierdoP. EsquenaJ. SolansC. Formation and stability of nano-emulsions.Adv. Colloid Interface Sci.2004108-10930331810.1016/j.cis.2003.10.02315072948
    [Google Scholar]
  25. GulU. KhanM.I. MadniA. SohailM.F. RehmanM. RasulA. PeltonenL. Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: In vitro and ex vivo evaluation.Drug Deliv.202229160061210.1080/10717544.2022.203980535174738
    [Google Scholar]
  26. JaiswalM. DudheR. SharmaP. K. Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155212312710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  27. McClementsD.J. RaoJ. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr.201151428533010.1080/10408398.2011.55955821432697
    [Google Scholar]
  28. ZabarM.K. PhanC.M. BarifcaniA. Quantifying the spontaneous emulsification of a heavy hydrocarbon with the presence of a strong surfactant.Colloids Surf. A Physicochem. Eng. Asp.202365613042510.1016/j.colsurfa.2022.130425
    [Google Scholar]
  29. HornD. RiegerJ. Organic nanoparticles in the aqueous phase—theory, experiment, and use.Angew. Chem. Int. Ed.200140234330436110.1002/1521‑3773(20011203)40:23<4330::AID‑ANIE4330>3.0.CO;2‑W12404417
    [Google Scholar]
  30. SadeghianS.F. MajdinasabM. NejadmansouriM. HosseiniS.M.H. Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions.Ultrason. Sonochem.20239210627710.1016/j.ultsonch.2022.10627736571883
    [Google Scholar]
  31. MaldonadoA. RiquelmeN. Muñoz-FariñaO. GarcíaO. ArancibiaC. Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers.Lebensm. Wiss. Technol.202317411441910.1016/j.lwt.2022.114419
    [Google Scholar]
  32. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  33. YakoubiS. KobayashiI. UemuraK. NakajimaM. IsodaH. KsouriR. Saidani-TounsiM. NevesM.A. Essential-oil-loaded nanoemulsion lipidic-phase optimization and modeling by Response Surface Methodology (RSM): Enhancement of their antimicrobial potential and bioavailability in nanoscale food delivery system.Foods20211012314910.3390/foods1012314934945700
    [Google Scholar]
  34. TarhanO. SpottiM.J. Nutraceutical delivery through nano-emulsions: General aspects, recent applications and patented inventions.Colloids Surf. B Biointerfaces202120011152610.1016/j.colsurfb.2020.11152633517153
    [Google Scholar]
  35. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  36. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems – the current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.10275736152374
    [Google Scholar]
  37. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
  38. DingN. WangY. WangX. ChuW. YinT. GouJ. HeH. ZhangY. WangY. TangX. Improving plasma stability and antitumor effect of gemcitabine via PEGylated liposome prepared by active drug loading.J. Drug Deliv. Sci. Technol.20205710153810.1016/j.jddst.2020.101538
    [Google Scholar]
  39. HammoudZ. GharibR. FourmentinS. ElaissariA. Greige-GergesH. Drug-in-hydroxypropyl-β-cyclodextrin-in-lipoid S100/cholesterol liposomes: Effect of the characteristics of essential oil components on their encapsulation and release.Int. J. Pharm.202057911915110.1016/j.ijpharm.2020.11915132070761
    [Google Scholar]
  40. GilK.A. JerkovićI. MarijanovićZ. MancaM.L. CaddeoC. TuberosoC.I.G. Evaluation of an innovative sheep cheese with antioxidant activity enriched with different thyme essential oil lecithin liposomes.Lebensm. Wiss. Technol.202215411280810.1016/j.lwt.2021.112808
    [Google Scholar]
  41. CuiH. ZhangC. LiC. LinL. Inhibition of Escherichia coli O157:H7 biofilm on vegetable surface by solid liposomes of clove oil.Lebensm. Wiss. Technol.202011710865610.1016/j.lwt.2019.108656
    [Google Scholar]
  42. SiyadatpanahA. NorouziR. MirzaeiF. HaghirosadatB.F. NissapatornV. MitsuwanW. NawazM. PereiraM.L. HosseiniS.A. MontazeriM. MajdizadehM. AlmeidaR.S. HematiM. WilairatanaP. CoutinhoH.D.M. Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis.J. Microbiol. Immunol. Infect.202356115016210.1016/j.jmii.2022.06.00635864068
    [Google Scholar]
  43. GaoY. LinD. PengH. ZhangR. ZhangB. YangX. Low oil Pickering emulsion gels stabilized by bacterial cellulose nanofiber/soybean protein isolate: An excellent fat replacer for ice cream.Int. J. Biol. Macromol.202324712562310.1016/j.ijbiomac.2023.12562337392915
    [Google Scholar]
  44. Corredor-ChaparroM.Y. Vargas-RiverosD. Mora-HuertasC.E. Hypromellose – Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems.J. Drug Deliv. Sci. Technol.20227510363710.1016/j.jddst.2022.103637
    [Google Scholar]
  45. DengX. ChenJ. ChenW. Hydrogel particles as a controlled release delivery system for lavender essential oil using pH triggers.Colloids Surf. A Physicochem. Eng. Asp.202060312513410.1016/j.colsurfa.2020.125134
    [Google Scholar]
  46. RezaeiA. EhtesabiH. EbrahimiS. Incorporation of Saqez essential oil into polyvinyl alcohol/chitosan bilayer hydrogel as a potent wound dressing material.Int. J. Biol. Macromol.202322638339610.1016/j.ijbiomac.2022.12.03636493925
    [Google Scholar]
  47. LiuH. LiZ. ZhaoY. FengY. ZvyaginA.V. WangJ. YangX. YangB. LinQ. Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature-tolerant, durable, adhesive, and intrinsic antibacterial properties.ACS Appl. Mater. Interfaces20211323267702678110.1021/acsami.1c0551434096258
    [Google Scholar]
  48. WangY. YuanC. LiuY. CuiB. Fabrication of kappa–carrageenan hydrogels with cinnamon essential oil/hydroxypropyl–β–cyclodextrin composite: Evaluation of physicochemical properties, release kinetics and antimicrobial activity.Int. J. Biol. Macromol.202117059360110.1016/j.ijbiomac.2020.12.17633385448
    [Google Scholar]
  49. WeisanyW. YousefiS. TahirN.A. GolestanehzadehN. McClementsD.J. AdhikariB. GhasemlouM. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review.Adv. Colloid Interface Sci.202230310265510.1016/j.cis.2022.10265535364434
    [Google Scholar]
  50. Iván Martínez-MuñozO. Elizabeth Mora-HuertasC. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting.Int. J. Pharm.202261412144010.1016/j.ijpharm.2021.12144034998924
    [Google Scholar]
  51. HadidiM. PouraminS. AdinepourF. HaghaniS. JafariS.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities.Carbohydr. Polym.202023611607510.1016/j.carbpol.2020.11607532172888
    [Google Scholar]
  52. NiuB. ChenH. WuW. FangX. MuH. HanY. GaoH. Co-encapsulation of chlorogenic acid and cinnamaldehyde essential oil in Pickering emulsion stablized by chitosan nanoparticles.Food Chem. X20221410031210.1016/j.fochx.2022.10031235492257
    [Google Scholar]
  53. CaiM. WangY. WangR. LiM. ZhangW. YuJ. HuaR. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil.Int. J. Biol. Macromol.202220212212910.1016/j.ijbiomac.2022.01.06635041880
    [Google Scholar]
  54. FarragN.S. ShettaA. MamdouhW. Green tea essential oil encapsulated chitosan nanoparticles-based radiopharmaceutical as a new trend for solid tumor theranosis.Int. J. Biol. Macromol.202118681181910.1016/j.ijbiomac.2021.07.07734280444
    [Google Scholar]
  55. RenG. KeG. HuangR. PuQ. ZhaoJ. ZhengQ. YangM. Study of the volatilization rules of volatile oil and the sustained-release effect of volatile oil solidified by porous starch.Sci. Rep.2022121815310.1038/s41598‑022‑11692‑w35581209
    [Google Scholar]
  56. RanaA. MatiyaniM. TewariC. NegiP.B. Chandra AryaM. DasV. PalM. SahooN.G. Functionalized graphene oxide based nanocarrier for enhanced cytotoxicity of Juniperus squamata root essential oil against breast cancer cells.J. Drug Deliv. Sci. Technol.20227210337010.1016/j.jddst.2022.103370
    [Google Scholar]
  57. ZhongX. GaoF. LinH. SuG. ZhouH. ZhouX. One-pot self-assembly strategy to prepare mesoporous silica-based nanocomposites with enhanced and long-term antibacterial performance.Colloids Surf. A Physicochem. Eng. Asp.202265012965410.1016/j.colsurfa.2022.129654
    [Google Scholar]
  58. TimilsenaY.P. AkanbiT.O. KhalidN. AdhikariB. BarrowC.J. Complex coacervation: Principles, mechanisms and applications in microencapsulation.Int. J. Biol. Macromol.20191211276128610.1016/j.ijbiomac.2018.10.14430352231
    [Google Scholar]
  59. MadeneA. JacquotM. ScherJ. DesobryS. Flavour encapsulation and controlled release – a review.Int. J. Food Sci. Technol.200641112110.1111/j.1365‑2621.2005.00980.x
    [Google Scholar]
  60. MahdiA.A. Al-MaqtariQ.A. MohammedJ.K. Al-AnsiW. CuiH. LinL. Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils.Food Biosci.20214310122610.1016/j.fbio.2021.101226
    [Google Scholar]
  61. AntonioliG. FontanellaG. EcheverrigarayS. Longaray DelamareA.P. Fernandes PaulettiG. BarcellosT. Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi.Food Chem.202032612699710.1016/j.foodchem.2020.12699732422511
    [Google Scholar]
  62. Felix da Silva BarbosaR. Gabrieli de SouzaA. RangariV. RosaD.S. The influence of PBAT content in the nanocapsules preparation and its effect in essential oils release.Food Chem.202134412861110.1016/j.foodchem.2020.12861133221104
    [Google Scholar]
  63. ZhaoW. ZengM. LiK. PiC. LiuZ. ZhanC. YuanJ. SuZ. WeiY. WenJ. PiF. SongX. LeeR.J. WeiY. ZhaoL. Solid lipid nanoparticle as an effective drug delivery system of a novel curcumin derivative: formulation, release in vitro and pharmacokinetics in vivo.Pharm. Biol.20226012300230710.1080/13880209.2022.213620536606719
    [Google Scholar]
  64. Sedaghat DoostA. Nikbakht NasrabadiM. KassoziV. NakisoziH. Van der MeerenP. Recent advances in food colloidal delivery systems for essential oils and their main components.Trends Food Sci. Technol.20209947448610.1016/j.tifs.2020.03.037
    [Google Scholar]
  65. WeissJ. DeckerE.A. McClementsD.J. KristbergssonK. HelgasonT. AwadT. Solid lipid nanoparticles as delivery systems for bioactive food components.Food Biophys.20083214615410.1007/s11483‑008‑9065‑8
    [Google Scholar]
  66. ChenJ. LiS. ZhengQ. FengX. TanW. FengK. LiuY. HuW. Preparation of solid lipid nanoparticles of cinnamaldehyde and determination of sustained release capacity.Nanomaterials20221224446010.3390/nano1224446036558312
    [Google Scholar]
  67. MirandaM. CruzM.T. VitorinoC. CabralC. Nanostructuring lipid carriers using Ridolfia segetum (L.) Moris essential oil.Mater. Sci. Eng. C201910310980410.1016/j.msec.2019.10980431349527
    [Google Scholar]
  68. BashiriS. GhanbarzadehB. AyasehA. DehghannyaJ. EhsaniA. Preparation and characterization of chitosan-coated nanostructured lipid carriers (CH-NLC) containing cinnamon essential oil for enriching milk and anti-oxidant activity.Lebensm. Wiss. Technol.202011910883610.1016/j.lwt.2019.108836
    [Google Scholar]
  69. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.00434000392
    [Google Scholar]
  70. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.10605234740786
    [Google Scholar]
  71. EmtiaziH. Salari SharifA. HematiM. Fatemeh HaghiralsadatB. PardakhtiA. Comparative study of nano‐liposome and nano‐niosome for delivery of Achillea Millefolium essential oils: Development, optimization, characterization and their cytotoxicity effects on cancer cell lines and antibacterial activity.Chem. Biodivers.20221910e20220039710.1002/cbdv.20220039736097678
    [Google Scholar]
  72. TrinhL.H. TakzareA. GhafoorD.D. SiddiqiA.F. RavaliS. ShalbafM. BakhtiarM. Trachyspermum copticum essential oil incorporated niosome for cancer treatment.J. Drug Deliv. Sci. Technol.20195281882410.1016/j.jddst.2019.05.046
    [Google Scholar]
  73. García-DíazM. PatiñoB. VázquezC. Gil-SernaJ. A novel niosome-encapsulated essential oil formulation to prevent Aspergillus flavus growth and aflatoxin contamination of maize grains during storage.Toxins2019111164610.3390/toxins1111064631698851
    [Google Scholar]
  74. SeidiF. JinY. XiaoH. Polycyclodextrins: Synthesis, functionalization, and applications.Carbohydr. Polym.202024211627710.1016/j.carbpol.2020.11627732564845
    [Google Scholar]
  75. HediW. JingboL. YidingY. YuxiS. JiyunL. QinqinD. YanC. BoqunL. TingZ. γ-Cyclodextrin-BSA for nano-encapsulation of hydrophobic substance.Food Biosci.20214110100910.1016/j.fbio.2021.101009
    [Google Scholar]
  76. HoS. ThooY.Y. YoungD.J. SiowL.F. Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability.Lebensm. Wiss. Technol.20178523223910.1016/j.lwt.2017.07.028
    [Google Scholar]
  77. ShiC. ZhouA. FangD. LuT. WangJ. SongY. LyuL. WuW. HuangC. LiW. Oregano essential oil/β-cyclodextrin inclusion compound polylactic acid/polycaprolactone electrospun nanofibers for active food packaging.Chem. Eng. J.202244513674610.1016/j.cej.2022.136746
    [Google Scholar]
  78. YangZ. XiaoZ. JiH. Solid inclusion complex of terpinen‐4‐ol/ β ‐cyclodextrin: kinetic release, mechanism and its antibacterial activity.Flavour Fragrance J.201530217918710.1002/ffj.3229
    [Google Scholar]
  79. da Rocha NetoA.C. de Oliveira da RochaA.B. MaraschinM. Di PieroR.M. AlmenarE. Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils.Food Hydrocoll.20187750952310.1016/j.foodhyd.2017.10.029
    [Google Scholar]
  80. BarbosaR.F.S. YudiceE.D.C. MitraS.K. RosaD.S. Characterization of Rosewood and Cinnamon cassia essential oil polymeric capsules: Stability, loading efficiency, release rate and antimicrobial properties.Food Control202112110760510.1016/j.foodcont.2020.107605
    [Google Scholar]
  81. SkollK. RitschkaM. FuchsS. WirthM. GaborF. Characterization of sonochemically prepared human serum albumin nanocapsules using different plant oils as core component for targeted drug delivery.Ultrason. Sonochem.20217610561710.1016/j.ultsonch.2021.10561734126523
    [Google Scholar]
  82. ChatterjeeD. BhattacharjeeP. Supercritical carbon dioxide extraction of eugenol from clove buds.Food Bioprocess Technol.20136102587259910.1007/s11947‑012‑0979‑2
    [Google Scholar]
  83. DingY. FengW. HuangD. LuB. WangP. WangG. JiJ. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers.Eur. Polym. J.2019118455210.1016/j.eurpolymj.2019.05.036
    [Google Scholar]
  84. CuiH.Y. WuJ. LinL. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese.J. Dairy Sci.20169986097610410.3168/jds.2016‑1113327265173
    [Google Scholar]
  85. AllawM. ManconiM. CaboniP. BacchettaG. Escribano-FerrerE. PerisJ.E. NacherA. Diez-SalesO. MancaM.L. Formulation of liposomes loading lentisk oil to ameliorate topical delivery, attenuate oxidative stress damage and improve cell migration in scratch assay.Biomed. Pharmacother.202114411235110.1016/j.biopha.2021.11235134794231
    [Google Scholar]
  86. GhazwaniM. HaniU. AlamA. AlqarniM.H. Quality-by-design-assisted optimization of carvacrol oil-loaded niosomal gel for anti-inflammatory efficacy by topical route.Gels20239540110.3390/gels905040137232993
    [Google Scholar]
  87. NirmalN.P. ChunhavacharatornP. Chandra KhanashyamA. LiL. Al-AsmariF. Cinnamon bark oil in water nanoemulsion formulation, characterization, and antimicrobial activities.Lebensm. Wiss. Technol.202317911467110.1016/j.lwt.2023.114671
    [Google Scholar]
  88. RodriguesR.F. CostaI.C. AlmeidaF.B. CruzR.A.S. FerreiraA.M. VilhenaJ.C.E. FlorentinoA.C. CarvalhoJ.C.T. FernandesC.P. Development and characterization of evening primrose (Oenothera biennis) oil nanoemulsions.Rev. Bras. Farmacogn.201525442242510.1016/j.bjp.2015.07.014
    [Google Scholar]
  89. LuW.C. HuangD.W. WangC.C.R. YehC.H. TsaiJ.C. HuangY.T. LiP.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil.J. Food Drug Anal.2018261828910.1016/j.jfda.2016.12.01829389592
    [Google Scholar]
  90. SakhiM. KhanA. KhanI. Ahmad KhanS. Irum KhanS. Ali KhattakM. UddinM.N. KaziM. NasirF. Effect of polymeric stabilizers on the size and stability of PLGA paclitaxel nanoparticles.Saudi Pharm. J.202331910169710.1016/j.jsps.2023.10169737559864
    [Google Scholar]
  91. SahraeeS. GhanbarzadehB. PezeshkiA. Development of heat-stable gelatin-coated nanostructured lipid carriers (NLC): Colloidal and stability properties.Lebensm. Wiss. Technol.202216011326510.1016/j.lwt.2022.113265
    [Google Scholar]
  92. BarakatH.S. DarwishI.A. El-KhordaguiL.K. KhalafallahN.M. Development of naftifine hydrochloride alcohol-free niosome gel.Drug Dev. Ind. Pharm.200935563163710.1080/0363904080249886418989805
    [Google Scholar]
  93. Abo-zalamH.B. El-DensharyE.S. AbdelsalamR.M. KhalilI.A. KhattabM.M. HamzawyM.A. Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study.Biomed. Pharmacother.202113911149410.1016/j.biopha.2021.11149434243595
    [Google Scholar]
  94. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  95. HajimehdipoorH. KhanaviM. AdibN. BozorgiM. Akbari-AderganiB. ShekarchiM. A validated method for analysis of Swerchirin in Swertia longifolia Boiss. by high performance liquid chromatography.Pharmacogn. Mag.2010621131810.4103/0973‑1296.5996120548931
    [Google Scholar]
  96. PoopromminP. ManasponC. DwivediA. MazumderA. SangkaewS. WanmasaeS. TangpongJ. OngtanasupT. EawsakulK. Alginate/pectin dressing with niosomal mangosteen extract for enhanced wound healing: Evaluating skin irritation by structure-activity relationship.Heliyon2022812e1203210.1016/j.heliyon.2022.e1203236506386
    [Google Scholar]
  97. RehmanA. QunyiT. SharifH.R. KormaS.A. KarimA. ManzoorM.F. MehmoodA. IqbalM.W. RazaH. AliA. MehmoodT. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products.Carbohydrate Polymer Technol. Appl.2021210008210.1016/j.carpta.2021.100082
    [Google Scholar]
  98. Najaf NajafiM. ArianmehrA. SaniA.M. Preparation of barije (Ferula gummosa) essential oil–loaded liposomes and evaluation of physical and antibacterial effect on Escherichia coli O157:H7.J. Food Prot.202083351151710.4315/0362‑028X.JFP‑19‑28532073614
    [Google Scholar]
  99. de OliveiraE.G. CardosoA.M. PaeseK. CoradiniK. de OliveiraC.V. PohlmannA.R. OliveiraM.S. GuterresS.S. BeckR.C.R. Reconstituted spray-dried phenytoin-loaded nanocapsules improve the in vivo phenytoin anticonvulsant effect and the survival time in mice.Int. J. Pharm.20185511-212113210.1016/j.ijpharm.2018.09.02330218826
    [Google Scholar]
  100. Teja SurikutchiB. Obenza-OteroR. RussoE. ZelzerM. Golán CancelaI. CostoyaJ.A. Crecente CampoJ. José AlonsoM. MarlowM. Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration.Int. J. Pharm.202262212182810.1016/j.ijpharm.2022.12182835595041
    [Google Scholar]
  101. MuraP. ValleriM. FabianelliE. MaestrelliF. CirriM. Characterization and evaluation of different mesoporous silica kinds as carriers for the development of effective oral dosage forms of glibenclamide.Int. J. Pharm.2019563435210.1016/j.ijpharm.2019.03.04930926527
    [Google Scholar]
  102. Modarres-GheisariS.M.M. Gavagsaz-GhoachaniR. MalakiM. SafarpourP. ZandiM. Ultrasonic nano-emulsification – A review.Ultrason. Sonochem.2019528810510.1016/j.ultsonch.2018.11.00530482437
    [Google Scholar]
  103. LiuM. PanY. FengM. GuoW. FanX. FengL. HuangJ. CaoY. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork.Ultrason. Sonochem.20229010620110.1016/j.ultsonch.2022.10620136244094
    [Google Scholar]
  104. LadV.N. MurthyZ.V.P. Enhancing the stability of oil-in-water emulsions emulsified by coconut milk protein with the application of acoustic cavitation.Ind. Eng. Chem. Res.201251114222422910.1021/ie202764f
    [Google Scholar]
  105. ChenF. KowaleguetM.G.G.M. ShiW. ZhangS. DaiJ. BanZ. WangL. WuY. WangH. Associating chitosan and nanoemulsion as a delivery system of essential oil; the potential on quality maintenance of minimally processed produce.Lebensm. Wiss. Technol.202215511292510.1016/j.lwt.2021.112925
    [Google Scholar]
  106. HuangZ. LiX. ZhangT. SongY. SheZ. LiJ. DengY. Progress involving new techniques for liposome preparation.Asian J. Pharmaceut. Sci.20149417618210.1016/j.ajps.2014.06.001
    [Google Scholar]
  107. BehnkeM. KlemmP. DahlkeP. ShkodraB. Beringer-SiemersB. CzaplewskaJ.A. StumpfS. JordanP.M. SchubertS. HoeppenerS. VollrathA. WerzO. SchubertU.S. Ethoxy acetalated dextran nanoparticles for drug delivery: A comparative study of formulation methods.Int. J. Pharm. X2023510017310.1016/j.ijpx.2023.10017336908303
    [Google Scholar]
  108. NatrajanD. SrinivasanS. SundarK. RavindranA. Formulation of essential oil-loaded chitosan–alginate nanocapsules.J. Food Drug Anal.201523356056810.1016/j.jfda.2015.01.00128911716
    [Google Scholar]
  109. Galindo-PérezM.J. Quintanar-GuerreroD. Cornejo-VillegasM.Á. Zambrano-ZaragozaM.L. Optimization of the emulsification-diffusion method using ultrasound to prepare nanocapsules of different food-core oils.Lebensm. Wiss. Technol.20188733334110.1016/j.lwt.2017.09.008
    [Google Scholar]
  110. ZhaoY. ChangY.X. HuX. LiuC.Y. QuanL.H. LiaoY.H. Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: Preparation, characterization and in vivo evaluation.Int. J. Pharm.20175161-236437110.1016/j.ijpharm.2016.11.04627884712
    [Google Scholar]
  111. JainN. GhoshS. TiwariT. NagaichU. A detailed insight into nanostructured lipid carriers: A versatile drug delivery system.Recent Pat. Nanotechnol.202317428430610.2174/187221051666622052312173335616677
    [Google Scholar]
  112. ObeidM.A. KhadraI. AlbaloushiA. MullinM. AlyamaniH. FerroV.A. Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release.Beilstein J. Nanotechnol.2019101826183210.3762/bjnano.10.17731579065
    [Google Scholar]
  113. KhanD.H. BashirS. FigueiredoP. SantosH.A. KhanM.I. PeltonenL. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes.J. Drug Deliv. Sci. Technol.201950273310.1016/j.jddst.2019.01.012
    [Google Scholar]
  114. TaoF. HillL.E. PengY. GomesC.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications.Lebensm. Wiss. Technol.201459124725510.1016/j.lwt.2014.05.037
    [Google Scholar]
  115. SuR. GuoX. ChengS. ZhangZ. YangH. WangJ. SongL. LiuZ. WangY. LüX. ShiC. Inactivation of Salmonella using ultrasound in combination with Litsea cubeba essential oil nanoemulsion and its bactericidal application on cherry tomatoes.Ultrason. Sonochem.20239810648110.1016/j.ultsonch.2023.10648137336076
    [Google Scholar]
  116. WangH. MaY. LiuL. LiuY. NiuX. Incorporation of clove essential oil nanoemulsion in chitosan coating to control Burkholderia gladioli and improve postharvest quality of fresh Tremella fuciformis.Lebensm. Wiss. Technol.202217011405910.1016/j.lwt.2022.114059
    [Google Scholar]
  117. SongF. TianS. YangG. SunX. Effect of phospholipid/flaxseed oil ratio on characteristics, structure change, and storage stability of liposomes.Lebensm. Wiss. Technol.202215711304010.1016/j.lwt.2021.113040
    [Google Scholar]
  118. HadidiM. MotamedzadeganA. JelyaniA.Z. KhashadehS. Nanoencapsulation of hyssop essential oil in chitosan-pea protein isolate nano-complex.Lebensm. Wiss. Technol.202114411125410.1016/j.lwt.2021.111254
    [Google Scholar]
  119. MajidiyanN. HadidiM. AzadikhahD. MorenoA. Protein complex nanoparticles reinforced with industrial hemp essential oil: Characterization and application for shelf-life extension of Rainbow trout fillets.Food Chem. X20221310020210.1016/j.fochx.2021.10020235499007
    [Google Scholar]
  120. ZhangF. RamachandranG. MothanaR.A. NomanO.M. AlobaidW.A. RajivgandhiG. ManoharanN. Anti-bacterial activity of chitosan loaded plant essential oil against multi drug resistant K. pneumoniae. Saudi J. Biol. Sci.202027123449345510.1016/j.sjbs.2020.09.02533304155
    [Google Scholar]
  121. MatshetsheK.I. ParaniS. MankiS.M. OluwafemiO.S. Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil.Int. J. Biol. Macromol.2018118Pt A67668210.1016/j.ijbiomac.2018.06.12529959997
    [Google Scholar]
  122. Lopes MartinsR. Bruno Lobato RodriguesA. de Menezes RabeloÉ. Lima SantosL. Barreto BrandãoL. Gomes FaustinoC. Luzia Ferreira FariasA. Maria da Cunha SáD. de Castro CantuáriaP. Kardec Ribeiro GalardoA. Susan Moreira da Silva de AlmeidaS. Development of larvicide nanoemulsion from the essential oil of Aeollanthus suaveolens Mart. ex Spreng against Aedes aegypti, and its toxicity in non-target organism.Arab. J. Chem.202114610314810.1016/j.arabjc.2021.103148
    [Google Scholar]
  123. HoscheidJ. OutukiP.M. KleinubingS.A. GoesP.R.N. LimaM.M.S. CumanR.K.N. CardosoM.L.C. Pterodon pubescens oil nanoemulsions: physiochemical and microbiological characterization and in vivo anti-inflammatory efficacy studies.Rev. Bras. Farmacogn.201727337538310.1016/j.bjp.2016.08.012
    [Google Scholar]
  124. XuY. WeiY. JiangS. XuF. WangH. ShaoX. Preparation and characterization of tea tree oil solid liposomes to control brown rot and improve quality in peach fruit.Lebensm. Wiss. Technol.202216211344210.1016/j.lwt.2022.113442
    [Google Scholar]
  125. QiuC. ChangR. YangJ. GeS. XiongL. ZhaoM. LiM. SunQ. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.Food Chem.20172211426143310.1016/j.foodchem.2016.11.00927979111
    [Google Scholar]
  126. LangerC. SüssR. HPLC-DAD-CAD-based approach for the simultaneous analysis of hydrophobic drugs and lipid compounds in liposomes and for cyclodextrin/drug inclusion complexes.J. Pharm. Biomed. Anal.202120111412010.1016/j.jpba.2021.11412033991808
    [Google Scholar]
  127. del Castillo-SantaellaT. Aguilera-GarridoA. Galisteo-GonzálezF. Gálvez-RuizM.J. Molina-BolívarJ.A. Maldonado-ValderramaJ. Hyaluronic acid and human/bovine serum albumin shelled nanocapsules: Interaction with mucins and in vitro digestibility of interfacial films.Food Chem.202238313233010.1016/j.foodchem.2022.13233035219153
    [Google Scholar]
  128. LiP. LiS. WangY. ZhangY. HanG.Z. Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity.Colloids Surf. A Physicochem. Eng. Asp.2017520263110.1016/j.colsurfa.2017.01.034
    [Google Scholar]
  129. LiH. ZhangL. JiaY. YuanY. LiH. CuiW. YuJ. Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: Applicability of vegetable oil as the oil phase.J. Dairy Sci.2022105129404941610.3168/jds.2022‑2231436307239
    [Google Scholar]
  130. FuhrmannP.L. SalaG. StiegerM. ScholtenE. Effect of oil droplet inhomogeneity at different length scales on mechanical and sensory properties of emulsion-filled gels: Length scale matters.Food Hydrocoll.202010110546210.1016/j.foodhyd.2019.105462
    [Google Scholar]
  131. FerreiraS.G. ConceiçãoV.S. GouveiaN.S. SantosG.S. SantosR.L.C. LiraA.A.M. CavalcantiS.C.H. SarmentoV.H.V. NunesR.S. An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil.J. Colloid Interface Sci.201545619019610.1016/j.jcis.2015.06.01226125515
    [Google Scholar]
  132. ZhaoL. ChenY. YanZ. KongX. HuaY. Physicochemical and rheological properties and oxidative stability of oil bodies recovered from soybean aqueous extract at different pHs.Food Hydrocoll.20166168569410.1016/j.foodhyd.2016.06.032
    [Google Scholar]
  133. LiaoY. SunY. WangZ. ZhongM. LiR. YanS. QiB. LiY. Structure, rheology, and functionality of emulsion-filled gels: Effect of various oil body concentrations and interfacial compositions.Food Chem. X20221610050910.1016/j.fochx.2022.10050936519106
    [Google Scholar]
  134. DiedericksC.F. StoltenV. JideaniV.A. VenemaP. van der LindenE. Effect of pH and mixing ratios on the synergistic enhancement of Bambara groundnut-whey protein gels.Food Hydrocoll.202111710670210.1016/j.foodhyd.2021.106702
    [Google Scholar]
  135. ZhangW. EzatiP. KhanA. AssadpourE. RhimJ.W. JafariS.M. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications.Adv. Colloid Interface Sci.202331810296510.1016/j.cis.2023.10296537480830
    [Google Scholar]
  136. KorolevaM. PortnayaI. MischenkoE. Abutbul-IonitaI. Kolik-ShmuelL. DaninoD. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability.J. Colloid Interface Sci.2022610616910.1016/j.jcis.2021.12.01034922082
    [Google Scholar]
  137. KarthikP. EzhilarasiP.N. AnandharamakrishnanC. Challenges associated in stability of food grade nanoemulsions.Crit. Rev. Food Sci. Nutr.20175771435145010.1080/10408398.2015.100676726114624
    [Google Scholar]
  138. OzkanG. FrancoP. De MarcoI. XiaoJ. CapanogluE. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications.Food Chem.201927249450610.1016/j.foodchem.2018.07.20530309574
    [Google Scholar]
  139. ZhangY. DavisD.A. AboulFotouhK. WangJ. WilliamsD. BhambhaniA. ZakrewskyM. ManiruzzamanM. CuiZ. WilliamsR.O.III Novel formulations and drug delivery systems to administer biological solids.Adv. Drug Deliv. Rev.202117218321010.1016/j.addr.2021.02.01133705873
    [Google Scholar]
  140. ZambitoY. PirasA.M. FabianoA. Bergamot essential oil: A method for introducing it in solid dosage forms.Foods20221123386010.3390/foods1123386036496668
    [Google Scholar]
  141. MajiI. MahajanS. SriramA. MedtiyaP. VasaveR. KhatriD.K. KumarR. SinghS.B. MadanJ. SinghP.K. Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos.J. Control. Release202133764666010.1016/j.jconrel.2021.08.01334384795
    [Google Scholar]
  142. ChatterjeeB. Hamed AlmurisiS. Ahmed Mahdi DukhanA. MandalU.K. SenguptaP. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view.Drug Deliv.20162393639365210.1080/10717544.2016.121499027685505
    [Google Scholar]
  143. PongsamartK. LimwikrantW. RuktanonchaiU.R. CharoenthaiN. PuttipipatkhachornS. Preparation, characterization and antimalarial activity of dihydroartemisinin / β-cyclodextrin spray-dried powder.J. Drug Deliv. Sci. Technol.20227310343410.1016/j.jddst.2022.103434
    [Google Scholar]
  144. AblaK.K. MehannaM.M. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.Int. J. Pharm.202262812223310.1016/j.ijpharm.2022.12223336183914
    [Google Scholar]
  145. HasaniS. OjaghS.M. GhorbaniM. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics.Int. J. Biol. Macromol.201811514315110.1016/j.ijbiomac.2018.04.03829653169
    [Google Scholar]
  146. de SouzaH.J.B. DessimoniA.L.A. FerreiraM.L.A. BotrelD.A. BorgesS.V. VianaL.C. OliveiraC.R. LagoA.M.T. FernandesR.V.B. Microparticles obtained by spray-drying technique containing ginger essential oil with the addition of cellulose nanofibrils extracted from the ginger vegetable fiber.Dry. Technol.202139121912192610.1080/07373937.2020.1851707
    [Google Scholar]
  147. EsparzaY. NgoT.D. BolukY. Preparation of powdered oil particles by spray drying of cellulose nanocrystals stabilized Pickering hempseed oil emulsions.Colloids Surf. A Physicochem. Eng. Asp.202059812482310.1016/j.colsurfa.2020.124823
    [Google Scholar]
  148. SharmaS. MulreyL. ByrneM. JaiswalA.K. JaiswalS. Encapsulation of essential oils in nanocarriers for active food packaging.Foods20221115233710.3390/foods1115233735954103
    [Google Scholar]
  149. HoqueM. McDonaghC. TiwariB.K. KerryJ.P. PathaniaS. Effect of high-pressure processing on the packaging properties of biopolymer-based films: A review.Polymers 20221415300910.3390/polym1415300935893971
    [Google Scholar]
  150. LouH. LianB. HagemanM.J. Applications of machine learning in solid oral dosage form development.J. Pharm. Sci.202111093150316510.1016/j.xphs.2021.04.01333951418
    [Google Scholar]
  151. FengL. ZhaoW. WangJ. FengJ. GuoY. Combining machine learning with a pharmaceutical technology roadmap to analyze technological innovation opportunities.Comput. Ind. Eng.202317610897410.1016/j.cie.2022.108974
    [Google Scholar]
  152. BanniganP. AldeghiM. BaoZ. HäseF. Aspuru-GuzikA. AllenC. Machine learning directed drug formulation development.Adv. Drug Deliv. Rev.202117511380610.1016/j.addr.2021.05.01634019959
    [Google Scholar]
  153. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fernandez-LozanoC. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.01134471498
    [Google Scholar]
  154. Mäki-LohiluomaE. SäkkinenN. PalomäkiM. WinbergO. TaH.X. HeikkinenT. KiljunenE. KauppinenA. Use of machine learning in prediction of granule particle size distribution and tablet tensile strength in commercial pharmaceutical manufacturing.Int. J. Pharm.202160912114610.1016/j.ijpharm.2021.12114634600058
    [Google Scholar]
  155. LiJ. GaoH. YeZ. DengJ. OuyangD. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques.Carbohydr. Polym.202227511871210.1016/j.carbpol.2021.11871234742437
    [Google Scholar]
  156. ChukwumaI.F. UchenduN.O. AsomaduR.O. EzeorbaW.F.C. EzeorbaT.P.C. African and Holy Basil - a review of ethnobotany, phytochemistry, and toxicity of their essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology.Arab. J. Chem.202316710487010.1016/j.arabjc.2023.104870
    [Google Scholar]
  157. GharsanF.N. KamelW.M. AlghamdiT.S. AlghamdiA.A. AlthagafiA.O. AljassimF.J. Al-GhamdiS.N. Toxicity of citronella essential oil and its nanoemulsion against the sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae).Ind. Crops Prod.202218411502410.1016/j.indcrop.2022.115024
    [Google Scholar]
  158. BreakM.K.B. HusseinW. HuwaimelB. AlafnanA. AlmansourK. AlafnanD. AlshammariA.S. AlanaziI.A. AlshammariD.S. AlanziF.S. AlsnaidehF.F. AlmuhaysinA. AlanaziY.S. AlgharbiS. AlHarbiS. Artemisia sieberi Besser essential oil inhibits the growth and migration of breast cancer cells via induction of S-phase arrest, caspase-independent cell death and downregulation of ERK.J. Ethnopharmacol.202331211649210.1016/j.jep.2023.11649237059248
    [Google Scholar]
  159. SharmaM. GrewalK. JandrotiaR. BatishD.R. SinghH.P. KohliR.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement.Biomed. Pharmacother.202214611251410.1016/j.biopha.2021.11251434963087
    [Google Scholar]
  160. IsmanM.B. Plant essential oils for pest and disease management.Crop Prot.2000198-1060360810.1016/S0261‑2194(00)00079‑X
    [Google Scholar]
  161. LinY.E. LinM.H. YehT.Y. LaiY.S. LuK.H. HuangH.S. PengF.C. LiuS.H. SheenL.Y. Genotoxicity and 28-day repeated dose oral toxicity study of garlic essential oil in mice.J. Tradit. Complement. Med.202212653654410.1016/j.jtcme.2022.05.00136325240
    [Google Scholar]
  162. CostaW.K. do NascimentoM.F. Soares BarbosaÉ.L. dos Santos SouzaT.G. ChagasC.A. NapoleãoT.H. dos Santos CorreiaM.T. BraynerF.A. de OliveiraA.M. Vanusa da SilvaM. Cytotoxicity, oral toxicity, genotoxicity, and mutagenicity evaluation of essential oil from Psidium glaziovianum Kiaersk leaves.J. Ethnopharmacol.202330311595510.1016/j.jep.2022.11595536436714
    [Google Scholar]
  163. WangX. LiC. WangY. ChenH. ZhangX. LuoC. ZhouW. LiL. TengL. YuH. WangJ. Smart drug delivery systems for precise cancer therapy.Acta Pharm. Sin. B202212114098412110.1016/j.apsb.2022.08.01336386470
    [Google Scholar]
  164. LiJ. KataokaK. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: The next generation.J. Am. Chem. Soc.2021143253855910.1021/jacs.0c0902933370092
    [Google Scholar]
  165. ZhouS. ZhongQ. WangY. HuP. ZhongW. HuangC.B. YuZ.Q. DingC.D. LiuH. FuJ. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases.Coord. Chem. Rev.202245221430910.1016/j.ccr.2021.214309
    [Google Scholar]
  166. KhanD. QindeelM. AhmedN. AsadM.I. ShahK. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis.Int. J. Pharm.202161012124210.1016/j.ijpharm.2021.12124234737113
    [Google Scholar]
  167. QiuJ. ShiY. XiaY. Polydopamine nanobottles with photothermal capability for controlled release and related applications.Adv. Mater.20213345210472910.1002/adma.20210472934535918
    [Google Scholar]
  168. ZhangG. YuY. ChenX. HanY. DiY. YangB. XiaoF. ShenJ. Silica nanobottles templated from functional polymer spheres.J. Colloid Interface Sci.2003263246747210.1016/S0021‑9797(03)00340‑012909037
    [Google Scholar]
  169. ZhangH. ChenJ. LiN. JiangR. ZhuX.M. WangJ. Au nanobottles with synthetically tunable overall and opening sizes for chemo-photothermal combined therapy.ACS Appl. Mater. Interfaces20191155353536310.1021/acsami.8b1916330638377
    [Google Scholar]
  170. QiuJ. XuJ. XiaY. Nanobottles for controlled release and drug delivery.Adv. Healthc. Mater.2021104200058710.1002/adhm.20200058732543127
    [Google Scholar]
  171. YeH. WangY. XuD. LiuX. LiuS. MaX. Design and fabrication of micro/nano-motors for environmental and sensing applications.Appl. Mater. Today20212310100710.1016/j.apmt.2021.101007
    [Google Scholar]
  172. KaangB.K. HaL. JooJ.U. KimD.P. Laminar flow-assisted synthesis of amorphous ZIF-8-based nano-motor with enhanced transmigration for photothermal cancer therapy.Nanoscale20221430108351084310.1039/D2NR02501A35838155
    [Google Scholar]
  173. ZhangJ. ChenZ. KankalaR.K. WangS.B. ChenA.Z. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery.Int. J. Pharm.202159612027510.1016/j.ijpharm.2021.12027533508344
    [Google Scholar]
  174. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.01819825408
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137293979240709113456
Loading
/content/journals/cnano/10.2174/0115734137293979240709113456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test