Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Poor solubility and bioavailability of various drug compounds are the biggest challenges faced by researchers and industrialists, hindering their therapeutic efficacy. Researchers have developed a versatile approach to enhance the solubility and bioavailability of the drug co-crystallization. Pharmaceutical co-crystals are solid, crystalline materials consisting of Active Pharmaceutical Ingredient (API) and co-formers that have supramolecular chemistry with one another. Co-crystallization helps in enhancing a drug’s physico-chemical properties, such as bioavailability, solubility and dissolution, preserving its therapeutic effect. The API and co-former in co-crystals are bound to each other hydrogen bonding, π-stacking, and Van der Waals forces.

Several methods to prepare co-crystals, such as solvent evaporation method, grinding method, cooling crystallization method, and various research reports, including all the methods of preparation are discussed in this review article. Conventional marketed products and patents on co-crystals are also included. Data has been gathered, and relevant literature reports have been examined utilizing a variety of search engines, including Google Scholar, ScienceDirect, Pubmed, and Google patents. After reviewing the literature, the researchers found that the co-crystallization method is one of the simplest method to enhance drug bioavailability and solubility. Moreover, it enhances the pharmacokinetics parameters, pharmacodynamics properties, and melting point of the drug. In this review article, the researchers have compiled the recent literature reports on enhanced drug solubility co-crystallization method.

The researchers concluded that this review article can help other researchers by providing them with recent literature and can compare the various methods of enhancing drug solubility and bioavailability. It also consists of compiled data of patents and marketed formulations prepared by the co-crystallization technique. Thus, co-crystallization could be established as a versatile approach for enhancing drug solubility and bioavailability.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137305307240815065424
2024-08-30
2025-10-31
Loading full text...

Full text loading...

References

  1. GuoM. SunX. ChenJ. CaiT. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications.Acta Pharm. Sin. B20211182537256410.1016/j.apsb.2021.03.03034522597
    [Google Scholar]
  2. BuddhadevS.S. GaralaK.C. Pharmaceutical Co-crystals—a review;Multidisciplinary Digital Publishing Institute Proceedings202162114
    [Google Scholar]
  3. DuarteA.R.C. FerreiraA.S.D. BarreirosS. CabritaE. ReisR.L. PaivaA. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies.Eur. J. Pharm. Biopharm.201711429630410.1016/j.ejpb.2017.02.00328189620
    [Google Scholar]
  4. YadavA.V. SheteA.S. DabkeA.P. KulkarniP.V. SakhareS.S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients.Indian J. Pharm. Sci.200971435937010.4103/0250‑474X.5728320502540
    [Google Scholar]
  5. PindelskaE. SokalA. KolodziejskiW. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.Adv. Drug Deliv. Rev.201711711114610.1016/j.addr.2017.09.01428931472
    [Google Scholar]
  6. ButlerJ.M. DressmanJ.B. The developability classification system: Application of biopharmaceutics concepts to formulation development.J. Pharm. Sci.201099124940495410.1002/jps.2221720821390
    [Google Scholar]
  7. YadavB.K. KhursheedA.T. SinghR.D. BIJAY KUMAR YADAV ATIF KHURSHEED RATTAN DEEP SINGH Co-crystals: A complete review on conventional and novel methods of its formation and its evaluation.Asian J. Pharm. Clin. Res.2019127687410.22159/ajpcr.2019.v12i7.33648
    [Google Scholar]
  8. ChaudhariS. NikamS.A. KhatriN. WakdeS. Co-crystals: A review.J. Drug Deliv. Ther.201886-s35035810.22270/jddt.v8i6‑s.2194
    [Google Scholar]
  9. BabuN.J. NangiaA. Solubility advantage of amorphous drugs and pharmaceutical Co-crystals.Cryst. Growth Des.20111172662267910.1021/cg200492w
    [Google Scholar]
  10. ChettriA. SubbaA. SinghG.P. BagP.P. Pharmaceutical co-crystals: A green way to enhance drug stability and solubility for improved therapeutic efficacy.J. Pharm. Pharmacol.202476111237934904
    [Google Scholar]
  11. Karimi-JafariM. PadrelaL. WalkerG.M. CrokerD.M. Creating co-crystals: A review of pharmaceutical co-crystal preparation routes and applications.Cryst. Growth Des.201818106370638710.1021/acs.cgd.8b00933
    [Google Scholar]
  12. BagP.P. KothurR.R. Malla ReddyC. Tautomeric preference in polymorphs and pseudopolymorphs of succinylsulfathiazole: Fast evaporation screening and thermal studies.CrystEngComm201416224706471410.1039/C3CE42159G
    [Google Scholar]
  13. AitipamulaS. BanerjeeR. BansalA.K. BiradhaK. CheneyM.L. ChoudhuryA.R. DesirajuG.R. DikundwarA.G. DubeyR. DuggiralaN. GhogaleP.P. GhoshS. GoswamiP.K. GoudN.R. JettiR.R.K.R. KarpinskiP. KaushikP. KumarD. KumarV. MoultonB. MukherjeeA. MukherjeeG. MyersonA.S. PuriV. RamananA. RajamannarT. ReddyC.M. Rodriguez-HornedoN. RogersR.D. RowT.N.G. SanphuiP. ShanN. SheteG. SinghA. SunC.C. SwiftJ.A. ThaimattamR. ThakurT.S. Kumar ThaperR. ThomasS.P. TothadiS. VangalaV.R. VariankavalN. VishweshwarP. WeynaD.R. ZaworotkoM.J. Polymorphs, salts, and Co-crystals: What’s in a name.Cryst. Growth Des.20121252147215210.1021/cg3002948
    [Google Scholar]
  14. KaraD.D. RathnanandM. Cocrystals and drug–drug cocrystals of anticancer drugs: A perception towards screening techniques, preparation, and enhancement of drug properties.Crystals20221210133710.3390/cryst12101337
    [Google Scholar]
  15. DuggiralaN.K. PerryM.L. AlmarssonÖ. ZaworotkoM.J. Pharmaceutical cocrystals: Along the path to improved medicines.Chem. Commun.201652464065510.1039/C5CC08216A26565650
    [Google Scholar]
  16. AakeröyC.B. SalmonD.J. Building co-crystals with molecular sense and supramolecular sensibility.CrystEngComm200577243944810.1039/b505883j
    [Google Scholar]
  17. GhadiR. GhugeA. GhumreS. WaghmareN. KadamV.J. Co-crystals: Emerging approach in pharmaceutical design.Am J Pharm Health Res2014407
    [Google Scholar]
  18. XuJ. ShiQ. WangY. WangY. XinJ. ChengJ. LiF. Recent advances in pharmaceutical cocrystals: A focused review of flavonoid cocrystals.Molecules202328261310.3390/molecules2802061336677670
    [Google Scholar]
  19. PetersonM.L. HickeyM.B. ZaworotkoM.J. AlmarssonO. Expanding the scope of crystal form evaluation in pharmaceutical science.J. Pharm. Pharm. Sci.20069331732617207415
    [Google Scholar]
  20. StolerE. WarnerJ. Non-covalent derivatives: Co-crystals and eutectics.Molecules2015208148331484810.3390/molecules20081483326287141
    [Google Scholar]
  21. DouroumisD. RossS.A. NokhodchiA. Advanced methodologies for cocrystal synthesis.Adv. Drug Deliv. Rev.201711717819510.1016/j.addr.2017.07.00828712924
    [Google Scholar]
  22. SavjaniJ.K. PathakC. Improvement of physicochemical parameters of acyclovir using cocrystallization approach.Braz. J. Pharm. Sci.201652472773410.1590/s1984‑82502016000400017
    [Google Scholar]
  23. KothurR.R. SwethaA.S. BondiliN.P. An outline of crystal engineering of pharmaceutical co-crystal and applications: A review.Int. J. Periodontics Restorative Dent.201248492
    [Google Scholar]
  24. AncheriaR.K. JainS. KumarD. SoniS.L. SharmaM. An overview of pharmaceutical co-crystal.Asian J. Pharm. Res. Dev.201972394610.22270/ajprd.v7i2.483
    [Google Scholar]
  25. Raheem ThayyilA. JuturuT. NayakS. KamathS. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications.Adv. Pharm. Bull.202010220321210.34172/apb.2020.02432373488
    [Google Scholar]
  26. StahlyG.P. Diversity in single-and multiple-component crystals. The search for and prevalence of polymorphs and Co-crystals.Cryst. Growth Des.2007761007102610.1021/cg060838j
    [Google Scholar]
  27. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  28. SoaresF.L.F. CarneiroR.L. Evaluation of analytical tools and multivariate methods for quantification of co-former crystals in ibuprofen-nicotinamide co-crystals.J. Pharm. Biomed. Anal.20148916617510.1016/j.jpba.2013.11.00524291798
    [Google Scholar]
  29. SongX. WangY. WangC. WangD. ZhuangG. KirlikovaliK.O. LiP. FarhaO.K. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities.J. Am. Chem. Soc.202214424106631068710.1021/jacs.2c0259835675383
    [Google Scholar]
  30. Ter HorstJ.H. DeijM.A. CainsP.W. Discovering new co-crystals.Cryst. Growth Des.2009931531153710.1021/cg801200h
    [Google Scholar]
  31. FukteS.R. WaghM.P. RawatS. Coformer selection: An important tool in Co-crystal formation.Int. J. Pharm. Pharm. Sci.201467914
    [Google Scholar]
  32. RemenarJ.F. MorissetteS.L. PetersonM.L. MoultonB. MacPheeJ.M. GuzmánH.R. AlmarssonÖ. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids.J. Am. Chem. Soc.2003125288456845710.1021/ja035776p12848550
    [Google Scholar]
  33. SchultheissN. NewmanA. Pharmaceutical Co-crystals and their physicochemical properties.Cryst. Growth Des.2009962950296710.1021/cg900129f19503732
    [Google Scholar]
  34. QiaoN. LiM. SchlindweinW. MalekN. DaviesA. TrappittG. Pharmaceutical cocrystals: An overview.Int. J. Pharm.20114191-211110.1016/j.ijpharm.2011.07.03721827842
    [Google Scholar]
  35. QiaoS. LiH. YangZ. Decreasing the hygroscopicity of ammonium dinitramide (ADN) through cocrystallization.Energetic Mater. Front.202232848910.1016/j.enmf.2022.03.001
    [Google Scholar]
  36. MukaiM. HagiwaraS. TanakaR. TabeH. NakazonoT. YamadaY. Selective crystallization of linkage isomers, [Rh III (NCS)(SCN) 5 ] 3– and [Rh III (SCN) 6 ] 3–, to investigate structural Trans influence and thermal stability.Inorg. Chem.20236244180981810710.1021/acs.inorgchem.3c0229237862144
    [Google Scholar]
  37. DengZ.P. HuoL.H. ZhaoH. GaoS. A co-crystal strategy to tune the supramolecular patterns and luminescent properties: ten well-designed salts assembled by arenedisulfonic acid with diverse diamines.Cryst. Growth Des.20121263342335510.1021/cg3004855
    [Google Scholar]
  38. JonesW. MotherwellW.D.S. TraskA.V. Pharmaceutical Co-crystals: An emerging approach to physical property enhancement.MRS Bull.2006311187587910.1557/mrs2006.206
    [Google Scholar]
  39. RamyaM.G. KrishnaK.C. Pharmaceutical co-crystals: An overview on synthesis and regulatory aspects.J. Drug Deliv. Tech.201994623628
    [Google Scholar]
  40. SahuS DasR NahakA. An updated review on pharmaceutical co-crystals: Characterization and preparation.Res. J. Pharm. Life Sci.202310115
    [Google Scholar]
  41. VarmaP.N. HemalathaM. SaiM.J. LakshmiB.D. KavithaK. BinduK.H. PadmalathaK. A comprehensive review on co-crystals.Indo. Am. J. Pharm.2021806242250
    [Google Scholar]
  42. DesirajuG.R. SteinerT. The weak hydrogen bond: in structural chemistry and biology. IUCr.Oxford University press200110.1093/acprof:oso/9780198509707.001.0001
    [Google Scholar]
  43. DesirajuG.R. Crystal engineering: A holistic view.Angewandte Chemie Int Ed2007464483428356
    [Google Scholar]
  44. ShanN. ZaworotkoM.J. The role of cocrystals in pharmaceutical science.Drug Discov. Today2008139-1044044610.1016/j.drudis.2008.03.00418468562
    [Google Scholar]
  45. BernsteinJ. Polymorphism in Molecular Crystals.2nd edOxford University Press202010.1093/oso/9780199655441.001.0001
    [Google Scholar]
  46. BhattacharyaS. PerakaK.S. ZaworotkoM.J. The role of hydrogen bonding in co-crystals. In: Co-crystals: Preparation, characterization and applications.The Royal Society of Chemistry2018337910.1039/9781788012874‑00033
    [Google Scholar]
  47. HeX.T. LuoY.H. HongD.L. ChenF.H. ZhengZ.Y. WangC. WangJ.Y. ChenC. SunB.W. Atomically thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery.ACS Appl. Nano Mater.2019242437244510.1021/acsanm.9b00303
    [Google Scholar]
  48. MadhaviG. Pharmaceutical co-crystals: A review.Asian J. Pharm. Sci.20199321152118
    [Google Scholar]
  49. BhattN.K. HaneefJ. VyasM. KhatikG.L. Development of L-lysine amino acid-based co-crystal of telmisartan using crystal engineering approach to improve solubility, dissolution, and micrometric properties.Curr. Drug Deliv.202118559660610.2174/156720181766620090215152832881671
    [Google Scholar]
  50. AlamQ. GaneshpurkarA. SinghS.K. KrishnamurthyS. Preparation, characterization, in-vitro and in-vivo pharmacokinetic evaluation of thermostable dimethyl fumarate cocrystals.J. Pharm. Sci.2023113364765810.1016/j.xphs.2023.07.00137595751
    [Google Scholar]
  51. LiY. ZhangY. XuH. LiM. LiZ. SongZ.Y. ChenJ.S. LiuY.J. SunY. YangZ. Synthesis and characterization of supramolecular assembly probenecid Co-crystal.J. Mol. Struct.2023136786
    [Google Scholar]
  52. DolokingH. SartikaA.T. TaharN. Formation of hydrochlorothiazide–para-aminobenzoic acid co-crystals by solvent evaporation method.J. Pharm. Sci.20214110.24252/djps.v4i1.21301
    [Google Scholar]
  53. WinantariA.N. NawatilaR. JocelynC. Preparation of acyclovir-isonicotinamideco-crystal by solvent evaporation method with methanol and isopropanol.Jurnal Sains Materi Indonesia202021310911410.17146/jsmi.2020.21.3.5897
    [Google Scholar]
  54. VemurıV.D. LankalapalliS. Co-crystal construction between rosuvastatin calcium and l-asparagine with enhanced solubility and dissolution rate.Turk. J. Pharm. Sci.202118679079810.4274/tjps.galenos.2021.6233334979738
    [Google Scholar]
  55. Hasmukh MehtaC. Pooja SrinivasP. SbA. Fathy MahanyK.B. KoteshwaraK.B. Yogendra NayakU. Computational and experimental insights in design and development of aceclofenac co-crystals.Res. J. Pharm. Technol.202283709371610.52711/0974‑360X.2022.00622
    [Google Scholar]
  56. KaragianniA. MalamatariM. KachrimanisK. Pharmaceutical Co-crystals: New solid phase modification approaches for the formulation of APIs.Pharmaceutics20181011810.3390/pharmaceutics1001001829370068
    [Google Scholar]
  57. AhmedM. LuW. Probing complex chemical processes at the molecular level with vibrational spectroscopy and X-ray tools.J. Phys. Chem. Lett.202314419265927810.1021/acs.jpclett.3c0226337812752
    [Google Scholar]
  58. ZainiE. Afriyani FitrianiL. IsmedF. HorikawaA. UekusaH. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid.Sci. Pharm.20208822110.3390/scipharm88020021
    [Google Scholar]
  59. LuoY.H. ZhangL. FangW.X. MaS.H. DongH. SuS. ZhengZ.Y. LiD.N. ZhaiL.H. 2D hydrogen-bonded organic frameworks: In-site generation and subsequent exfoliation.Chem. Commun.202157485901590410.1039/D1CC01626A34008620
    [Google Scholar]
  60. GutiérrezH.R. Two-dimensional layered materials offering expanded applications in flatland.ACS Appl. Nano Mater.2020376134613910.1021/acsanm.0c01763
    [Google Scholar]
  61. Hossain MithuM.D.S. RossS.A. HurtA.P. DouroumisD. Effect of mechanochemical grinding conditions on the formation of pharmaceutical cocrystals and co-amorphous solid forms of ketoconazole – Dicarboxylic acid.J. Drug Deliv. Sci. Technol.20216310250810.1016/j.jddst.2021.102508
    [Google Scholar]
  62. SathisaranI. DalviS.V. Investigating Co-crystallization of carbamazepine with structurally compatible coformers: New Co-crystal and eutectic phases with enhanced dissolution.AAPS PharmSciTech202122114
    [Google Scholar]
  63. ErvastiT. KetolainenJ. Spontaneous formation of theophylline–nicotinamide cocrystals.Sci. Pharm.201078362210.3797/scipharm.cespt.8.PDD33
    [Google Scholar]
  64. NartowskiK.P. KhimyakY.Z. BerryD.J. Tuning the spontaneous formation kinetics of caffeine : Malonic acid co-crystals.CrystEngComm201618152617262010.1039/C6CE00353B
    [Google Scholar]
  65. HealyA.M. WorkuZ.A. KumarD. MadiA.M. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals.Adv. Drug Deliv. Rev.2017117254610.1016/j.addr.2017.03.00228342786
    [Google Scholar]
  66. SathisaranI. DalviS. Engineering Co-crystals of poorly water-soluble drugs to enhance dissolution in aqueous medium.Pharmaceutics201810310810.3390/pharmaceutics1003010830065221
    [Google Scholar]
  67. WongS.N. WengJ. IpI. ChenR. LakerveldR. TelfordR. BlagdenN. ScowenI.J. ChowS.F. Rational development of a carrier-free dry powder inhalation formulation for respiratory viral infections via quality by design: A drug-drug Co-crystal of favipiravir and theophylline.Pharmaceutics202214230010.3390/pharmaceutics1402030035214034
    [Google Scholar]
  68. UranoM. KitaharaM. KishiK. GotoE. TagamiT. FukamiT. OzekiT. Physical characteristics of cilostazol–hydroxybenzoic acid cocrystals prepared using a spray drying method.Crystals202010431310.3390/cryst10040313
    [Google Scholar]
  69. TawfeekH.M. ChavanT. KundaN.K. Effect of spray drying on amorphization of indomethacin nicotinamide Co-crystals; Optimization, characterization, and stability study.AAPS PharmSci-Tech.202021518110.1208/s12249‑020‑01732‑x32607628
    [Google Scholar]
  70. HibbardT. ShanklandK. Al-ObaidiH. Evaluation of two and three fluid nozzle spray drying to prepare co-crystals of salicylic acid and caffeine with improved physicochemical properties.J. Drug Deliv. Sci. Technol.20238910507310.1016/j.jddst.2023.105073
    [Google Scholar]
  71. MacEachernL.A. Walwyn-VenugopalR. Kermanshahi-pourA. MirmehrabiM. Ternary phase diagram development and production of niclosamide-urea co-crystal by spray drying.J. Pharm. Sci.202111052063207310.1016/j.xphs.2020.11.03633285181
    [Google Scholar]
  72. KitagawaT. ItoT. TakatsuN. YamazoeE. TaharaK. Granulation of ibuprofen/isonicotinamide co-crystals by continuous spray granulator (CTS-SGR).Adv. Powder Technol.202334710404210.1016/j.apt.2023.104042
    [Google Scholar]
  73. LuoY.H. HeX.T. HongD.L. ChenC. ChenF.H. JiaoJ. ZhaiL.H. GuoL.H. SunB.W. A dynamic 3d hydrogen‐bonded organic frameworks with highly water affinity.Adv. Funct. Mater.20182848180482210.1002/adfm.201804822
    [Google Scholar]
  74. HouY.J. FangS. ZhangX.Y. WangJ. RuanQ. XiangZ. WangZ. ZhuX.J. Tetrazolyl porphyrin-based hydrogen-bonded organic frameworks: Active sites-mediated host-guest synergy for advanced antimicrobial applications.ACS Appl. Mater. Interfaces20221444498754988510.1021/acsami.2c1586936288457
    [Google Scholar]
  75. Al-AniA.J. SugdenP. WilsonC.C. Castro-DominguezB. Elusive seed formation via electrical confinement: Control of a novel cocrystal in cooling crystallization.Cryst. Growth Des.20212163310331510.1021/acs.cgd.1c00085
    [Google Scholar]
  76. TupeS.A. KhandagaleS.P. JadhavA.B. Pharmaceutical Co-crystals: An emerging approach to modulate physicochemical properties of active pharmaceutical ingredients.J. Drug. Deliv. Technol.2023134101112
    [Google Scholar]
  77. SetyawanD. JovitaR.O. IqbalM. ParamanandanaA. YusufH. LestariM.L.A.D. Co-crystalization of quercetin and malonic acid using solvent-drop grinding method.Trop. J. Pharm. Res.2018176997100210.4314/tjpr.v17i6.3
    [Google Scholar]
  78. RahmanF. WinantariA.N. SetyawanD. SiswandonoS. Comparison study of grinding and slurry method on physicochemical characteristic of acyclovir—succinic acid co-crystal.Asian J. Pharm. Clin. Res.201710315315810.22159/ajpcr.2017.v10i3.15925
    [Google Scholar]
  79. JiaS. YangP. GaoZ. LiZ. FangC. GongJ. Recent progress in antisolvent crystallization.CrystEngComm202224173122313510.1039/D2CE00059H
    [Google Scholar]
  80. HaskinsM.M. ZaworotkoM.J. Screening and preparation of cocrystals: A comparative study of mechanochemistry vs slurry methods.Cryst. Growth Des.20212174141415010.1021/acs.cgd.1c0041834267601
    [Google Scholar]
  81. KulkarniA. BachhavR. HolV. SheteS. Co-crystals of active pharmaceutical ingredient-ibuprofen lysine.Int. J. Appl. Pharm.202012223210.22159/ijap.2020v12i3.36463
    [Google Scholar]
  82. NovenaL.M. AthimoolamS. AnithaR. BahadurS.A. Synthesis, crystal structure, hirshfeld surface analysis, spectral and quantum chemical studies of pharmaceutical cocrystals of a bronchodilator drug (Theophylline).J. Mol. Struct.2022124913158510.1016/j.molstruc.2021.131585
    [Google Scholar]
  83. HuangZ. StaufenbielS. BodmeierR. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs.Pharm. Res.202239594996110.1007/s11095‑022‑03243‑935552985
    [Google Scholar]
  84. AfzalH. AbbasN. HussainA. LatifS. FatimaK. ArshadM.S. BukhariN.I. Physicomechanical, stability, and pharmacokinetic evaluation of aceclofenac dimethyl urea cocrystals.AAPS PharmSciTech20212226810.1208/s12249‑021‑01938‑733564940
    [Google Scholar]
  85. LeeC. ChoA.Y. YoonW. YunH. KangJ.W. LeeJ. Co-crystal formation via resorcinol–urea interactions: Naringenin and carbamazepine.Cryst. Growth Des.20191973807381410.1021/acs.cgd.9b00269
    [Google Scholar]
  86. LatifS. AbbasN. HussainA. ArshadM.S. BukhariN.I. AfzalH. RiffatS. AhmadZ. Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance.Drug Dev. Ind. Pharm.20184471099110810.1080/03639045.2018.143568729385849
    [Google Scholar]
  87. UllhZ. Al-OtaibiJ.S. Sheena MaryY. Wook KwonH. Computational study of furosemide-piperazine (FS – PZ) and 2,3,5,6-tetramethylpyrazine (FS-TP) co-crystals.J. Mol. Liq.202236011953710.1016/j.molliq.2022.119537
    [Google Scholar]
  88. SinghM. BaruaH. JyothiV.G.S.S. DhondaleM.R. NambiarA.G. AgrawalA.K. KumarP. ShastriN.R. KumarD. Cocrystals by design: A rational coformer selection approach for tackling the api problems.Pharmaceutics2023154116110.3390/pharmaceutics1504116137111646
    [Google Scholar]
  89. ManinA.N. DrozdK.V. ChurakovA.V. PerlovichG.L. Hydrogen bond donor/acceptor ratios of the coformers: Do they really matter for the prediction of molecular packing in Co-crystals? The case of benzamide derivatives with dicarboxylic acids.Cryst. Growth Des.20181895254526910.1021/acs.cgd.8b00711
    [Google Scholar]
  90. SurovA.O. RamazanovaA.G. VoroninA.P. DrozdK.V. ChurakovA.V. PerlovichG.L. Virtual screening, structural analysis, and formation thermodynamics of carbamazepine cocrystals.Pharmaceutics202315383610.3390/pharmaceutics1503083636986697
    [Google Scholar]
  91. ZhaoJ. XiaN. TianZ. XieF. DongH. GongG. BaiX. WangJ. WangL. ChenS. Ligand exchanges among [N-I + -N] halogen bonds: A robust strategy for the construction of functional halogen-bonded organic frameworks (XOFs).ACS Materials Letters20246250851610.1021/acsmaterialslett.3c01276
    [Google Scholar]
  92. KumarS. NandaA. Pharmaceutical cocrystals: An overview.Indian J. Pharm. Sci.201779685887110.4172/pharmaceutical‑sciences.1000302
    [Google Scholar]
  93. VishweshwarP. McMahonJ.A. BisJ.A. ZaworotkoM.J. Pharmaceutical co-crystals.J. Pharm. Sci.200695349951610.1002/jps.2057816444755
    [Google Scholar]
  94. SetyawanD. OktaviaI.P. FarizkaR. SariR. Physicochemical characterization and in vitro dissolution test of quercetin-succinic acid co-crystals prepared using solvent evaporation.Turk. J. Pharm. Sci.201714328028410.4274/tjps.1636232454625
    [Google Scholar]
  95. De PauwE. VervaetC. VanhoorneV. Formation of delta-mannitol by co-spray drying: Enhancing the tabletability of paracetamol/mannitol formulations.J. Drug Deliv. Sci. Technol.20227710390710.1016/j.jddst.2022.103907
    [Google Scholar]
  96. GuanJ. YuanH. YuS. MaoS. Tony ZhouQ. Spray dried inhalable ivacaftor co-amorphous microparticle formulations with leucine achieved enhanced in vitro dissolution and superior aerosol performance.Int. J. Pharm.202262212185910.1016/j.ijpharm.2022.12185935643348
    [Google Scholar]
  97. O’SullivanA RyanKM PadrelaL Amorphization versus Co-crystallization of celecoxib-tramadol hydrochloride using CO2-assisted nano-spray drying.J CO2 Util202373102529
    [Google Scholar]
  98. ZhaoX. YangZ. QiaoS. PiaoJ. LiH. Morphology and properties of CL-20/MTNP cocrystal prepared via facile spray drying.FirePhysChem20233215816310.1016/j.fpc.2022.10.002
    [Google Scholar]
  99. AlatasF. StiawanD. Al-HakimN.A. Solubility and scale-up potency of norfloxacin-urea co-crystal prepared by ultrasound-assisted slurry co-crystallization method.Borneo J. Pharm.20236215816710.33084/bjop.v6i2.4173
    [Google Scholar]
  100. LiY. YangC.X. QianH.L. ZhaoX. YanX.P. Carboxyl-functionalized covalent organic frameworks for the adsorption and removal of triphenylmethane dyes.ACS Appl. Nano Mater.20192117290729810.1021/acsanm.9b01781
    [Google Scholar]
  101. Kumar BandaruR. RoutS.R. KenguvaG. GorainB. AlhakamyN.A. KesharwaniP. DandelaR. Recent advances in pharmaceutical Co-crystals: From bench to market.Front. Pharmacol.20211278058210.3389/fphar.2021.78058234858194
    [Google Scholar]
  102. AakeroyC.B. AakeroyA. SinhaA.S. Co-crystals: Introduction and Scope. Co-crystals: Preparation, characterization and applications.R. Soc. Chem.2018241
    [Google Scholar]
  103. CherukuvadaS. KaurR. Guru RowT.N. Co-crystallization and small molecule crystal form diversity: From pharmaceutical to materials applications.CrystEngComm201618448528855510.1039/C6CE01835A
    [Google Scholar]
  104. SinhaA.S. MaguireA.R. LawrenceS.E. Cocrystallization of nutraceuticals.Cryst. Growth Des.2015152984100910.1021/cg501009c
    [Google Scholar]
  105. ChezanoglouE. GoulaA.M. Co-crystallization in sucrose: A promising method for encapsulation of food bioactive components.Trends Food Sci. Technol.202111426227410.1016/j.tifs.2021.05.036
    [Google Scholar]
  106. JiangM. ZhenC. LiS. ZhangX. HuW. Organic Co-crystals: Recent advances and perspectives for electronic and magnetic applications.Front Chem.2021976462810.3389/fchem.2021.76462834957044
    [Google Scholar]
  107. PawarN. SahaA. NandanN. ParambilJ. Solution Co-crystallization: A scalable approach for Co-crystal production.Crystals202111330310.3390/cryst11030303
    [Google Scholar]
  108. SinghM. AnthalS. SrijanaP.J. NarayanaB. SarojiniB.K. LikhithaU. Kamal KantR. Novel supramolecular co-crystal of 3-aminobenzoic acid with 4-acetyl-pyridine: Synthesis, X-ray structure, DFT and Hirshfeld surface analysis.J. Mol. Struct.2022126213306110.1016/j.molstruc.2022.133061
    [Google Scholar]
  109. BollaG. SarmaB. NangiaA.K. Crystal engineering of pharmaceutical Co-crystals in the discovery and development of improved drugs.Chem. Rev.202212213115141160310.1021/acs.chemrev.1c0098735642550
    [Google Scholar]
  110. ParkJ. JooS.H. KimY.J. ParkJ.H. KwakS.K. AhnS. KangS.J. Organic semiconductor Co-crystal for highly conductive lithium host electrode.Adv. Funct. Mater.20192932190288810.1002/adfm.201902888
    [Google Scholar]
  111. BorchersT. ArhangelskisM. VainauskasJ. TitiH. BushuyevO. BarrettC. FriscicT. Three-in-one: Dye-volatile Co-crystals exhibiting intensity-dependent photo-chromic, photo-mechanical and photo-carving response.ChemRxiv202324636
    [Google Scholar]
  112. PooleR.M. DungoR.T. Ipragliflozin: First global approval.Drugs201474561161710.1007/s40265‑014‑0204‑x24668021
    [Google Scholar]
  113. Entresto.Available from: https://www.drugs.com/entresto.html
  114. Steglatro-Uses Steglatro-uses, side effects, and more.Available from: https://www.webmd.com/drugs/2/drug-174602/steglatro-oral/details
  115. Depakote-Uses , Side effects and more. Web MD.Available from: https://www.webmd.com/drugs/2/drug-1788/depakote-oral/details
  116. Escitalopram Oxalate-Uses Escitalopram Oxalate-Uses, Side effects and more. Web MD.Available from: https://www.webmd.com/drugs/2/drug-63989/escitalopram-oxalate-oral/details
  117. TabletB. Betachlor tablet. MediBuddy.Available from: www.medibuddy.in/medicines/betachlor-tablet
  118. Viagra.Available from: www.drugs.com/viagra.html
  119. Generic Tegretol Availability Generic Tegretol Availability..Available from: www.drugs.com/availability/generic-tegretol.html
  120. Machado CruzR. BoleslavskáT. BeránekJ. TiegerE. TwamleyB. Santos-MartinezM.J. DammerO. TajberL. Identification and pharmaceutical characterization of a new itraconazole terephthalic acid Co-crystal.Pharmaceutics202012874110.3390/pharmaceutics1208074132781726
    [Google Scholar]
  121. ChildsS.L. ChyallL.J. DunlapJ.T. SmolenskayaV.N. StahlyB.C. StahlyG.P. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids.J. Am. Chem. Soc.200412641133351334210.1021/ja048114o15479089
    [Google Scholar]
  122. KumarA. KumarS. NandaA. A review about regulatory status and recent patents of pharmaceutical co-crystal.Adv. Pharm. Bull.20188335536310.15171/apb.2018.04230276131
    [Google Scholar]
  123. AlmarssonO. HickeyM.B. PetersonM.L. ZaworotkoM.J. MoultonB. Rodriguez-HornedoN. Pharmaceutical co-crystal compositions.U.S. Patent 7927613B2,2011
    [Google Scholar]
  124. ResnatiG. MetrangoloP. TerraneoG. BaldrighiM. Co-crystals of 3-iodopropynyl butylcarbamate.E.P. Patent 2836074A1,2015
  125. Intravenous formulation eith water-soluble co-crystals of acetylsalicylic acid and theanine.U.S. Patent US20100286099A1,2014
  126. HannaM. NingS.H. CheneyM.L. WeynaD.R. Crystalization of pharmaceutical compounds.E.P. Patent 2400848A1,2010
  127. NangiaA. Stable co-crystals of temozolomide.W.O. Patent 2011036676A22011
  128. JanelleM. Co-crystals of p-coumaric acid.U.S. Patent 2014/0073674 A1,2018
/content/journals/cnano/10.2174/0115734137305307240815065424
Loading
/content/journals/cnano/10.2174/0115734137305307240815065424
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): co-crystallization; co-crystals; dissolution; hydrates; Nanotechnology; polymorphs; solvates
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test