Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Foodborne diseases (FBDs) are a major global public health problem, causing millions of deaths annually and substantial economic losses. Antimicrobial treatment is increasingly challenged by bacterial resistance. Essential oils from herbs and spices, such as carvacrol from thyme and oregano, offer potential solutions due to their broad-spectrum antimicrobial properties. However, its stability and its controlled release are affected by media and environmental conditions. Nanoencapsulation presents a promising alternative to address these challenges. This review analyzes 44 original papers and 21 patents concerning the recent advancements in the nanoencapsulation of carvacrol over the past decade, focusing on natural matrices and their applications in food, packaging, and human health fields. Various encapsulation techniques and matrices have been explored, demonstrating that nanoencapsulation can maintain the stability and antimicrobial efficacy of carvacrol. Moreover, nanoencapsulated carvacrol shows promising applications in inhibiting biofilm formation and quorum sensing, as well as exhibiting anticancer and anti-inflammatory effects. Patents related to nanoencapsulated carvacrol highlight its potential for intelligent packaging and healthcare. Nanoencapsulated carvacrol is a promising alternative to synthetic antimicrobials and as an adjuvant in inflammatory disease treatments and cancer, offering enhanced efficacy and versatility in applications.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137326553240917142721
2024-10-03
2025-09-30
Loading full text...

Full text loading...

References

  1. World Health Organization (WHO)Estimaciones de la OMS sobre la carga mundial de enfermedades de transmisión alimentaria.2015Available From: https://iris.who.int/bitstream/handle/10665/200047/WHO_FOS_15.02_spa.pdf;jsessionid=6C6C6CDD1134F5F0D7EBB7E2E7F290B3?sequence=1
  2. Novoa-FaríasO. Frati-MunariA.C. PeredoM.A. Flores-JuárezS. Novoa-GarcíaO. Galicia-TapiaJ. Romero-CarpioC.E. Susceptibilidad de las bacterias aisladas de infecciones gastrointestinales agudas a la rifaximina y otros agentes antimicrobianos en México.Rev. Gastroenterol. Mex.201681131010.1016/j.rgmx.2015.07.00326525276
    [Google Scholar]
  3. Miranda-NovalesM.G. Resistencia antimicrobiana del Staphylococcus aureus en México.Bol. Méd. Hosp. Infant. México2011684262270
    [Google Scholar]
  4. KachurK. SuntresZ. The antibacterial properties of phenolic isomers, carvacrol and thymol.Crit. Rev. Food Sci. Nutr.202060183042305310.1080/10408398.2019.1675585
    [Google Scholar]
  5. GranataG. StracquadanioS. LeonardiM. NapoliE. ConsoliG.M.L. CafisoV. StefaniS. GeraciC. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation.Food Chem.201826928629210.1016/j.foodchem.2018.06.14030100436
    [Google Scholar]
  6. AyresC.F. DalmásM. MadersC. Ataíde I.H. BrandelliA. da Silva MalheirosP. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel.Food Res. Int.202013313310914310.1016/j.foodres.2020.10914332466924
    [Google Scholar]
  7. TampauA. González-MartínezC. ChiraltA. Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning.React. Funct. Polym.202015315310460310.1016/j.reactfunctpolym.2020.104603
    [Google Scholar]
  8. TampauA. González-MartinezC. ChiraltA. Carvacrol encapsulation in starch or PCL based matrices by electrospinning.J. Food Eng.201721424525610.1016/j.jfoodeng.2017.07.005
    [Google Scholar]
  9. TampauA. González-MartínezC. ChiraltA. Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films.Food Hydrocoll.20187915816910.1016/j.foodhyd.2017.12.021
    [Google Scholar]
  10. GalvãoJ.G. SantosR.L. SilvaA.R.S.T. SantosJ.S. CostaA.M.B. ChandasanaH. Andrade-NetoV.V. Torres-SantosE.C. LiraA.A.M. DolabellaS. ScherR. KimaP.E. DerendorfH. NunesR.S. Carvacrol loaded nanostructured lipid carriers as a promising parenteral formulation for leishmaniasis treatment.Eur. J. Pharm. Sci.2020150April10533510.1016/j.ejps.2020.10533532272211
    [Google Scholar]
  11. da Silva LimaA. MacielA.P. MendonçaC.J.S. Costa JrL.M. Use of encapsulated carvacrol with yeast cell walls to control resistant strains of Rhipicephalus microplus (Acari: Ixodidae).Ind. Crops Prod.2017108June19019410.1016/j.indcrop.2017.06.037
    [Google Scholar]
  12. Figueroa-LopezK.J. VicenteA.A. ReisM.A.M. Torres-GinerS. LagaronJ.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers.Nanomaterials (Basel)20199214410.3390/nano902014430678126
    [Google Scholar]
  13. HecklerC. Marques MS.C. Ayres C.F. DaroitD.J. da Silva MalheirosP. Thymol and carvacrol in nanoliposomes: Characterization and a comparison with free counterparts against planktonic and glass-adhered Salmonella.Lebensm. Wiss. Technol.2020127March10938210.1016/j.lwt.2020.109382
    [Google Scholar]
  14. BazanaM.T. CodevillaC.F. de MenezesC.R. Nanoencapsulation of bioactive compounds: Challenges and perspectives.Curr. Opin. Food Sci.201926475610.1016/j.cofs.2019.03.005
    [Google Scholar]
  15. LunaM. BeltranO. Encinas-BasurtoD.A. Ballesteros-MonrrealM.G. TopeteA. HassanN. López-MataM.A. Reyes-MárquezV. ValdezM.A. JuarezJ. High antibacterial performance of hydrophobic chitosan-based nanoparticles loaded with Carvacrol.Colloids Surf. B Biointerfaces2021202220910.1016/j.colsurfb.2021.11219134781078
    [Google Scholar]
  16. RequenaR. VargasM. ChiraltA. Eugenol and carvacrol migration from PHBV films and antibacterial action in different food matrices.Food Chem.2019277384510.1016/j.foodchem.2018.10.09330502160
    [Google Scholar]
  17. GorevaA.V. ShishatskayaE.I. VolovaT.G. SinskeyA.J. Characterization of polymeric microparticles based on resorbable polyesters of oxyalkanoic acids as a platform for deposition and delivery of drugs.Polym. Sci. Ser. A20125429410510.1134/S0965545X12020022
    [Google Scholar]
  18. AnandharamakrishnanC. Techniques for nanoencapsulation of food ingredients.2014Available From: http://www.springer.com/series/10203%0Ahttp://link.springer.com/10.1007/978-1-4614-9387-7
  19. VitaliA. StringaroA. ColoneM. MuntiuA. AngiolellaL. Antifungal Carvacrol Loaded Chitosan Nanoparticles.Antibiotics (Basel)20211111110.3390/antibiotics1101001135052888
    [Google Scholar]
  20. Faridi EsfanjaniA. JafariS.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds.Colloids Surf. B Biointerfaces201614653254310.1016/j.colsurfb.2016.06.05327419648
    [Google Scholar]
  21. PisoschiA.M. PopA. CimpeanuC. TurcuşV. PredoiG. IordacheF. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view.Eur. J. Med. Chem.20181571326134510.1016/j.ejmech.2018.08.07630196058
    [Google Scholar]
  22. TaouzinetL. DjaoudeneO. FatmiS. BouicheC. Amrane-AbiderM. BougherraH. RezguiF. MadaniK. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry.Processes (Basel)2023115145910.3390/pr11051459
    [Google Scholar]
  23. AnandharamakrishnanC. Nanoencapsulation of Food Bioactive Compounds.Techniques for Nanoencapsulation of Food IngredientsBerlin, HeidelbergSpringer Link201410.1007/978‑1‑4614‑9387‑7_1
    [Google Scholar]
  24. ShakeriF. ShakeriS. HojjatoleslamiM. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods.J. Food Sci.2014794N697N70510.1111/1750‑3841.1240624621231
    [Google Scholar]
  25. MuruevaA.V. ShishatskayaE.I. KuzminaA.M. VolovaT.G. SinskeyA.J. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug.J. Mater. Sci. Mater. Med.20132481905191510.1007/s10856‑013‑4941‑223674057
    [Google Scholar]
  26. RostamiE. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery.Polym. Bull.20227996885690410.1007/s00289‑021‑03781‑z
    [Google Scholar]
  27. BaoH. DingH.H. CharlesA.P.R. HuiD. RakshitS. NahashonS. WuY. Application of yellow mustard mucilage in encapsulation of essential oils and polyphenols using spray drying.Food Hydrocoll.202314310881510.1016/j.foodhyd.2023.108815
    [Google Scholar]
  28. EstevinhoB. N. RochaF. A Key for the Future of the Flavors in Food Industry: Nanoencapsulation and Microencapsulation.Nanotechnology Applications in Food: Flavor, Stability, Nutrition and SafetyCambridge, MassachusettsAcademic Press201710.1016/B978‑0‑12‑811942‑6.00001‑7
    [Google Scholar]
  29. JaiswalL. ShankarS. RhimJ. W. Applications of nanotechnology in food microbiology.Methods in MicrobiologyAmsterdamElsevier201910.1016/bs.mim.2019.03.002
    [Google Scholar]
  30. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh D.F. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  31. Bernal-MercadoA.T. JuarezJ. ValdezM.A. Ayala-ZavalaJ.F. Del-Toro-SánchezC.L. Encinas-BasurtoD. Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas aeruginosa Biofilms.Molecules202227369910.3390/molecules2703069935163966
    [Google Scholar]
  32. ShishirM.R.I. XieL. SunC. ZhengX. ChenW. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters.Trends Food Sci. Technol.201878346010.1016/j.tifs.2018.05.018
    [Google Scholar]
  33. SunX. CameronR.G. BaiJ. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol.Food Hydrocoll.202010010542010.1016/j.foodhyd.2019.105420
    [Google Scholar]
  34. PateiroM. GómezB. MunekataP.E.S. BarbaF.J. PutnikP. KovačevićD.B. LorenzoJ.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products.Molecules2021266154710.3390/molecules2606154733799855
    [Google Scholar]
  35. BinX JiyaoZ. Carvacrol-loaded zein-based nano-particles and preparation method thereof.CN Patent 1158440072022
  36. AshbyM.F. Material profiles.Materials and the Environment: Eco-informed Material ChoiceAmsterdamElsevier201310.1016/B978‑0‑12‑385971‑6.00015‑4
    [Google Scholar]
  37. Castro-MayorgaJ.L. FabraM.J. PourrahimiA.M. OlssonR.T. LagaronJ.M. The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications.Food Bioprod. Process.2017101324410.1016/j.fbp.2016.10.007
    [Google Scholar]
  38. Manoj K.S. Jifrina PB. ParimelazhaganR. GovindasamyC. SeralathanK.K. NamasivayamN. Anticancer effects of pH- sensitive carvacrol zinc oxide quantum dots on DMBA induced mammary carcinoma in female sprague dawley rats.J. King Saud Univ. Sci.202436210302910.1016/j.jksus.2023.103029
    [Google Scholar]
  39. Esquivel-CastroT.A. Robledo-TrujilloG. OlivaJ. RosuH.C. Rodríguez-GonzálezV. A functional SiO2-TiO2 mesoporous assembly designed for the controlled release of carvacrol.Appl. Surf. Sci. Adv.202220231310.1016/j.apsadv.2023.100378
    [Google Scholar]
  40. AkhlaqA. AshrafM. OmerM.O. AltafI. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells.ACS Omega2023835318263183810.1021/acsomega.3c0333737692253
    [Google Scholar]
  41. GamalA. AboelhadidS.M. Abo El-ElaF.I. Abdel-BakiA.A.S. IbrahiumS.M. EL-MallahA.M. Al-QuraishyS. HassanA.O. GadelhaqS.M. Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks.Microorganisms202311373310.3390/microorganisms1103073336985306
    [Google Scholar]
  42. OsanlooM. AlipanahH. FarjamM. TaheriA. ZarenezhadE. Anticancer Activity of Chitosan Nanoparticles Containing Satureja khuzistanica Essential Oil, and Carvacrol against Human Melanoma and Breast Cancer.Russ. J. Bioorganic Chem.202349359460110.1134/S1068162023030160
    [Google Scholar]
  43. ZhangJ. CranM.J. Production of polyhydroxyalkanoate nanoparticles using a green solvent.J. Appl. Polym. Sci.2022139235231910.1002/app.52319
    [Google Scholar]
  44. YammineJ. GharsallaouiA. FadelA. KaramL. IsmailA. ChihibN.E. Encapsulation of carvacrol and thymol for a persistent removal of Listeria innocua biofilms.J. Drug Deliv. Sci. Technol.20238410444310.1016/j.jddst.2023.104443
    [Google Scholar]
  45. YammineJ. GharsallaouiA. FadelA. MechmechaniS. KaramL. IsmailA. ChihibN-E. Enhanced antimicrobial, antibiofilm and ecotoxic activities of nanoencapsulated carvacrol and thymol as compared to their free counterparts.Food Control202314314310931710.1016/j.foodcont.2022.109317
    [Google Scholar]
  46. JiangG. MohideenA.P. SeshadriV.D. RengarajanT. Biosynthesized tin oxide-sodium alginate-polyethylene glycol-carvacrol nanocomposite shows anticancer activity on esophagus squamous carcinoma cells.Process Biochem.202212140341210.1016/j.procbio.2022.07.005
    [Google Scholar]
  47. CharlesA.P.R. MuR. JinT.Z. LiD. PanZ. RakshitS. CuiS.W. WuY. Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray.Carbohydr. Polym.202229812014810.1016/j.carbpol.2022.12014836241308
    [Google Scholar]
  48. FuentesC. FuentesA. ByrneH.J. BaratJ.M. RuizM.J. In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol.Food Chem. Toxicol.2021202216010.1016/j.fct.2021.11277834958804
    [Google Scholar]
  49. ZhengH. WangJ. YouF. ZhouM. ShiS. Fabrication, Characterization, and Antimicrobial Activity of Carvacrol-Loaded Zein Nanoparticles Using the pH-Driven Method.Int. J. Mol. Sci.20222316922710.3390/ijms2316922736012491
    [Google Scholar]
  50. Mondéjar-LópezM. López-JimenezA.J. García MartínezJ.C. AhrazemO. Gómez-GómezL. NizaE. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics.Int. J. Biol. Macromol.202220628829710.1016/j.ijbiomac.2022.02.16435240208
    [Google Scholar]
  51. KhaksarianM. BahmaniM. TaherikalaniM. AshrafiB. Rafieian-KopaeiM. AbbasiN. Biosynthesis of titanium dioxide nanoparticles using Hypericum perforatum and Origanum vulgare extracts and their main components, hypericin and carvacrol as promising antibacterial agents.J. Tradit. Chin. Med.202242216717510.19852/j.cnki.jtcm.2022.02.00235473336
    [Google Scholar]
  52. CuiH. LuJ. LiC. RashedM.M.A. LinL. Antibacterial and physical effects of cationic starch nanofibers containing carvacrol@casein nanoparticles against Bacillus cereus in soy products.Int. J. Food Microbiol.202236436410953010.1016/j.ijfoodmicro.2022.10953035026445
    [Google Scholar]
  53. RaoS. SunM. HuY. ZhengX. YangZ. JiaoX. ε-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: Preparation, characterization, and antibacterial activities.Lebensm. Wiss. Technol.202114611142210.1016/j.lwt.2021.111422
    [Google Scholar]
  54. NiazT. SarkarA. MackieA. ImranM. Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions.Int. J. Biol. Macromol.202116917118210.1016/j.ijbiomac.2020.12.08533340623
    [Google Scholar]
  55. TianZ. ChinnathambiA. Awad A.T. Krishna M.S. PriyaV.V. Kumar J.S. Anti-arthritic activity of Tin oxide-Chitosan-Polyethylene glycol carvacrol nanoparticles against Freund’s adjuvant induced arthritic rat model via the inhibition of cyclooxygenase‑2 and prostaglandin E2.Arab. J. Chem.202114910329310.1016/j.arabjc.2021.103293
    [Google Scholar]
  56. ShindeP. AgravalH. SrivastavA.K. YadavU.C.S. KumarU. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking.Int. J. Pharm.202058811979510.1016/j.ijpharm.2020.11979532853712
    [Google Scholar]
  57. RaoS. XuG. LuX. ZhangR. GaoL. WangQ. YangZ. JiaoX. Characterization of ovalbumin-carvacrol inclusion complexes as delivery systems with antibacterial application.Food Hydrocoll.202010510510575310.1016/j.foodhyd.2020.105753
    [Google Scholar]
  58. RaoS. XuG. ZengH. ZhengX. HuQ. WangQ. YangZ. JiaoX. Physicochemical and antibacterial properties of fabricated ovalbumin–carvacrol gel nanoparticles.Food Funct.20201165133514110.1039/D0FO00755B32432306
    [Google Scholar]
  59. NizaE. BožikM. BravoI. Clemente-CasaresP. Lara-SanchezA. JuanA. KloučekP. Alonso-MorenoC. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol.Food Chem.202032812713110.1016/j.foodchem.2020.12713132485586
    [Google Scholar]
  60. MirM. PermanaA.D. AhmedN. KhanG.M. RehmanA. DonnellyR.F. Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study.Eur. J. Pharm. Biopharm.2020147576810.1016/j.ejpb.2019.12.00831883906
    [Google Scholar]
  61. GholijaniN. AbolmaaliS.S. KalantarK. RavanrooyM.H. Therapeutic effect of Carvacrol-loaded albumin nanoparticles on arthritic rats.Iran. J. Pharm. Res.202019131232010.22037/ijpr.2019.15494.1313132922489
    [Google Scholar]
  62. MirM. PermanaA.D. TekkoI.A. McCarthyH.O. AhmedN. RehmanA. DonnellyR.F. Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: A promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds.Int. J. Pharm.202058711964310.1016/j.ijpharm.2020.11964332702455
    [Google Scholar]
  63. HeJ. HuangS. SunX. HanL. ChangC. ZhangW. ZhongQ. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: Preparation, characterization, and synergistic antimicrobial activity.Nanomaterials (Basel)201998116210.3390/nano908116231416170
    [Google Scholar]
  64. GalvãoJ.G. SantosR.L. LiraA.A.M. KaminskiR. SarmentoV.H. SeverinoP. DolabellaS.S. ScherR. SoutoE.B. NunesR.S. Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers.Appl. Sci. (Basel)20201018626710.3390/app10186267
    [Google Scholar]
  65. FonsecaL.M. CruxenC.E.S. BruniG.P. FiorentiniÂ.M. ZavarezeE.R. LimL.T. DiasA.R.G. Development of antimicrobial and antioxidant electrospun soluble potato starch nanofibers loaded with carvacrol.Int. J. Biol. Macromol.20191391182119010.1016/j.ijbiomac.2019.08.09631415859
    [Google Scholar]
  66. ShakeriM. RazaviS.H. ShakeriS. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities.Lebensm. Wiss. Technol.201910710728029010.1016/j.lwt.2019.03.031
    [Google Scholar]
  67. CarvalhoF.O. SilvaÉ.R. NunesP.S. FelipeF.A. RamosK.P.P. FerreiraL.A.S. LimaV.N.B. ShanmugamS. OliveiraA.S. GuterresS.S. CamargoE.A. Cravalho OliveraT.V. de Albuquerque JúniorR.L.C. de Lucca JuniorW. Quintans-JúniorL.J. AraújoA.A.S. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation.Naunyn Schmiedebergs Arch. Pharmacol.2020393344545510.1007/s00210‑019‑01731‑131655855
    [Google Scholar]
  68. CamposE.V.R. ProençaP.L.F. OliveiraJ.L. PereiraA.E.S. de Morais R.L.N. FernandesF.O. GonçalvesK.C. PolanczykR.A. Pasquoto-StiglianiT. LimaR. MelvilleC.C. Della VechiaJ.F. AndradeD.J. FracetoL.F. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control.Sci. Rep.201881762310.1038/s41598‑018‑26043‑x29769620
    [Google Scholar]
  69. SokolikC.G. LelloucheJ.P. Hybrid-silica nanoparticles as a delivery system of the natural biocide carvacrol.RSC Advances2018864367123672110.1039/C8RA05898A35558928
    [Google Scholar]
  70. HusseinJ. El-BannaM. MahmoudK.F. MorsyS. Abdel LatifY. MedhatD. RefaatE. FarragA.R. El-DalyS.M. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.Biomed. Pharmacother.20179088088710.1016/j.biopha.2017.04.02028437891
    [Google Scholar]
  71. Martínez-HernándezG.B. AmodioM.L. ColelliG. Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots.Innov. Food Sci. Emerg. Technol.201741566310.1016/j.ifset.2017.02.005
    [Google Scholar]
  72. MaryamK. ShakeriS. KianiK. Preparation and in vitro investigation of antigastric cancer activities of carvacrol‐loaded human serum albumin nanoparticles.IET Nanobiotechnol.20159529429910.1049/iet‑nbt.2014.004026435283
    [Google Scholar]
  73. da RosaC.G. de Oliveira Brisola MacielM.V. de CarvalhoS.M. de MeloA.P.Z. JummesB. da SilvaT. MartelliS.M. VillettiM.A. BertoldiF.C. BarretoP.L.M. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes.Colloids Surf. A Physicochem. Eng. Asp.201548133734410.1016/j.colsurfa.2015.05.019
    [Google Scholar]
  74. NazzaroF. FratianniF. De MartinoL. CoppolaR. De FeoV. Effect of essential oils on pathogenic bacteria.Pharmaceuticals (Basel)20136121451147410.3390/ph612145124287491
    [Google Scholar]
  75. ChurklamW. ChaturongakulS. NgamwongsatitB. AunpadR. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage.Food Control202010810686410.1016/j.foodcont.2019.106864
    [Google Scholar]
  76. PrakashB. KujurA. YadavA. KumarA. SinghP.P. DubeyN.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system.Food Control20188911110.1016/j.foodcont.2018.01.018
    [Google Scholar]
  77. NóbregaR.O. TeixeiraA.P.C. OliveiraW.A. LimaE.O. LimaI.O. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans.Pharm. Biol.201654112591259610.3109/13880209.2016.117231927225838
    [Google Scholar]
  78. NarayananA. Neera M RamanaK.V. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.Appl. Biochem. Biotechnol.201317061379138810.1007/s12010‑013‑0267‑223666640
    [Google Scholar]
  79. LoprestiF. BottaL. ScaffaroR. BilelloV. SettanniL. GaglioR. Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics.Eur. Polym. J.2019121July10929810.1016/j.eurpolymj.2019.109298
    [Google Scholar]
  80. NakajimaM. Antimicrobial Oil-in-Water Nanoemulsions: Synergistic Effect of Nisin and Carvacrol against Bacillus subtilis.J. Food Sci. Eng.201662637410.17265/2159‑5828/2016.02.002
    [Google Scholar]
  81. CacciatoreF.A. MadersC. AlexandreB. BarretoC.M. BrandelliA. da Silva MalheirosP. Carvacrol encapsulation into nanoparticles produced from chia and flaxseed mucilage: Characterization, stability and antimicrobial activity against Salmonella and Listeria monocytogenes.Food Microbiol.202210810411610.1016/j.fm.2022.10411636088121
    [Google Scholar]
  82. DesetaM.L. SpontonO.E. ErbenM. OsellaC.A. FrisónL.N. FenoglioC. PiagentiniA.M. SantiagoL.G. PerezA.A. Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life.Food Res. Int.202114811059710.1016/j.foodres.2021.11059734507742
    [Google Scholar]
  83. ZhengH. WangJ. ZhangY. XvQ. ZengQ. WangJ. Preparation and Characterization of Carvacrol-Loaded Caseinate/Zein-Composite Nanoparticles Using the Anti-Solvent Precipitation Method.Nanomaterials (Basel)20221213218910.3390/nano1213218935808025
    [Google Scholar]
  84. PredaV.G. SăndulescuO. Communication is the key: Biofilms, quorum sensing, formation and prevention.Discoveries (Craiova)201973e1010.15190/d.2019.1332309618
    [Google Scholar]
  85. ZhangD. GanR.Y. GeY.Y. YangQ.Q. GeJ. LiH.B. CorkeH. Research progress on the antibacterial mechanisms of carvacrol: A mini review.Bioactive Compd. Health Dis.201816718110.31989/bchd.v1i6.551
    [Google Scholar]
  86. AsadiS. Nayeri-FasaeiB. Zahraei-SalehiT. Yahya-RayatR. ShamsN. SharifiA. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli.BMC Microbiol.20232315510.1186/s12866‑023‑02797‑x36864390
    [Google Scholar]
  87. ThomasR.E. ThomasB.C. Reducing biofilm infections in burn patients’ wounds and biofilms on surfaces in hospitals, medical facilities and medical equipment to improve burn care: A systematic review.Int. J. Environ. Res. Public Health202118241319510.3390/ijerph18241319534948803
    [Google Scholar]
  88. Zapién-ChavarríaK.A. Plascencia-TerrazasA. Venegas-OrtegaM.G. Varillas-TorresM. Rivera-ChaviraB.E. Adame-GallegosJ.R. González-RangelM.O. Nevárez-MoorillónG.V. Susceptibility of multidrug-resistant and biofilm-forming uropathogens to Mexican oregano essential oil.Antibiotics (Basel)20198418610.3390/antibiotics804018631618938
    [Google Scholar]
  89. WangJ. QinT. ChenK. PanL. XieJ. XiB. Antimicrobial and Antivirulence Activities of Carvacrol against Pathogenic Aeromonas hydrophila. Microorganisms20221011217010.3390/microorganisms1011217036363761
    [Google Scholar]
  90. MittalR.P. RanaA. JaitakV. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance.Curr. Drug Targets201920660562410.2174/138945011966618103112291730378496
    [Google Scholar]
  91. AshrafudoullaM. Rahaman MizanM.F. ParkS.H. HaS-D. Antibiofilm activity of carvacrol against Listeria monocytogenes and Pseudomonas aeruginosa biofilm on MBEC™ biofilm device and polypropylene surface.Lebensm. Wiss. Technol.2021147April11157510.1016/j.lwt.2021.111575
    [Google Scholar]
  92. MarinelliL. Di StefanoA. CacciatoreI. Carvacrol and its derivatives as antibacterial agents.Phytochem. Rev.201817490392110.1007/s11101‑018‑9569‑x
    [Google Scholar]
  93. World Health Organization (WHO)Global cancer burden growing, amidst mounting need for services.2023Available From: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  94. World Health Organization (WHO)Cancer Key facts.2017Available From: https://www.who.int/es/news-room/fact-sheets/detail/cancer
  95. LiL. HeL. WuY. ZhangY. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation.Life Sci.202126611889410.1016/j.lfs.2020.11889433310045
    [Google Scholar]
  96. LiangW. ChouC. LuT. ChiC. TsengL. PanC. LinK. KuoC. JanC. The mechanism of carvacrol-evoked [Ca2+]i rises and non-Ca2+-triggered cell death in OC2 human oral cancer cells.Toxicology201330315261
    [Google Scholar]
  97. TrindadeG.G.G. ThrivikramanG. MenezesP.P. FrançaC.M. LimaB.S. CarvalhoY.M.B.G. SouzaE.P.B.S.S. DuarteM.C. ShanmugamS. Quintans-JúniorL.J. BezerraD.P. BertassoniL.E. AraújoA.A.S. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells.Food Chem. Toxicol.2019125January19820910.1016/j.fct.2019.01.00330615955
    [Google Scholar]
  98. SharmaS.H. ThulasingamS. NagarajanS. Terpenoids as anti-colon cancer agents – A comprehensive review on its mechanistic perspectives.Eur. J. Pharmacol.201779516917810.1016/j.ejphar.2016.12.00827940056
    [Google Scholar]
  99. BalusamyS.R. PerumalsamyH. HuqM.A. BalasubramanianB. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines.Biomed. Pharmacother.20181081835184410.1016/j.biopha.2018.10.02830372889
    [Google Scholar]
  100. AndreF. Annals of Oncology 2018-2023.Ann. Oncol.202334121069107010.1016/j.annonc.2023.08.019
    [Google Scholar]
  101. Romero-CastelánE. Rodríguez-HernándezA.I. Chavarría-HernándezN. López-OrtegaM.A. López-CuellarM. del R. Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications — A review.Int. J. Biol. Macromol.2022202323310.1016/j.ijbiomac.2023.12341836731700
    [Google Scholar]
  102. MedhatD. El-mezayenH.A. El-NaggarM.E. FarragA.R. AbdelgawadM.E. HusseinJ. KamalM.H. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles.Mol. Biol. Rep.20194644517452710.1007/s11033‑019‑04907‑331209743
    [Google Scholar]
  103. ManouchehrabadiM. FarhadiM. AziziZ. Torkaman-BoutorabiA. Carvacrol Protects Against 6-Hydroxydopamine-Induced Neurotoxicity in In Vivo and In Vitro Models of Parkinson’s Disease.Neurotox. Res.202037115617010.1007/s12640‑019‑00088‑w31364033
    [Google Scholar]
  104. MasafumiY. RosenB.P. LiJ. NiuG. Arsinothricin as a multi-stage antimalarial.US Patent 202318219903A2024
    [Google Scholar]
  105. EleyC.G.S. Re-oiled and hyper-oiled lecithin carrier vehicles.US Patent 11622556B22023
  106. SinghG. PaiR.S. Optimization (central composite design) and validation of HPLC method for investigation of emtricitabine loaded poly(lactic-co-glycolic acid) nanoparticles: In vitro drug release and in vivo pharmacokinetic studies.Sci World J2014201411210.1155/2014/58309024672337
    [Google Scholar]
  107. DemokritouP. VazeN.D. PyrgiotakisG. EleftheriadouM. Nanocarriers for the delivery of active ingredients.US Patent 11554190B22023
  108. ShraibomN. SteinbergE. JaggiM. SinghA.T. VermaR. MadaanA. Herbal nanoformulations for treating psoriasis and other skin conditions.US Patent 11344598B22022
  109. AthanassiadisB. WalshL.J. Alkaline compositions and their dental and medical use.EU Patent 2736519A12022
  110. PreslarA.T. MouatA.R. Compositions for controlled release of active ingredients and methods of making same.US Patent 11278023B22022
  111. KyriakouC.S. NapoleontosB.C. AsimakiR.A.K. MarianthiK. DimitriouM.A. KonstantinouR.P. AchilleaP.C. MichailM.T. GeorgiouZ.P. MetaxaK.N. KyriakouC.S. NapoleontosB.C. KonstantinouR.A. AsimakiK.M. New hydrogels for the development of sterile contact lenses.GK Patent 1010095B2021
    [Google Scholar]
  112. BauA.B. MañezR.M. KloucekP. BozikM. Mesoporous silica materials for the controlled release of active substances and their applications.EU Patent 3544594A12021
  113. BavieraJ.M.B. MartínezM.D.M. MañezR.M. EsteveE.P. RicoM.R. GalarzaF.S. Antimicrobial, insecticidal and acaricidal system.EU Patent 3326971A12021
  114. SuiZ. WenwenS. HuaG. LiangW. AndL.H. JunD. Preparation method of essential oil microcapsule.CN Patent 1136675412021
  115. GabrielD.W. ZhangS. Use of aldehydes formulated with nanoparticles and/or nanoemulsions to enhance disease resistance of plants to liberibacters.US Patent 10772326B22020
  116. ShengqiR. YishengY. ZhenquanY. MingY. YuhongL. CaochenJ. FengH. LuL. X. Ovalbumin-carvacrol nanoparticle and preparation method and antibacterial application thereof.CN Patent 116762850A2020
  117. LuY. DuJ. LiJ. LiuY. Therapeutic hyperbranched polyglycerol encapsulated biomolecules.US Patent 10668161B22020
  118. SarkasH.W. HooperA.R. HoffmanN.H. Coated powders having high photostability.US Patent 10590278B22020
  119. RotelloV.M. LandisR.F. GuptaA. LeeY. Stabilized polymeric nanocapsules, dispersions comprising the nanocapsules, and methods for the treatment of bacterial biofilms.US Patent 10493039B22019
  120. RotelloV.M. Crosslinked Particles, Composition Comprising the Crosslinked Particles, Method for the Manufacture Thereof, and Method of Treating an Infection.World Wide20192019118444
    [Google Scholar]
  121. DuncanB. LiX. RotelloV. M. Nanoparticle-stabilized microcapsules, dispersions comprising nanoparticle-stabilized microcapsules, and method for the treatment of bacterial biofilms.US Patent 10272126B22019
  122. GaillardP.J. Glutathione-based drug delivery system.EU Patent 2398500B12019
  123. TopolkaraevV.A. SchollN.T. McEneanyR.J. EbyT.A. Delivery system for active agents.US Patent 10195157B22019
  124. HeJ. ShungshuangH. LijuanH. ZhangW. Carvacrol solid lipid nanoparticle dispersion liquid with bacteriostatic activity, preparation method and application thereof.CN Patent 1109122684A2019
/content/journals/cnano/10.2174/0115734137326553240917142721
Loading
/content/journals/cnano/10.2174/0115734137326553240917142721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test