Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

Titanium Dioxide (TiO) is popular in the scientific community due to its wide variety of applications in optoelectronic devices, solar cells, gas sensors, photocatalytic reagents, and the biomedical industry. It is a wide band gap semiconductor with a band gap of 3.2eV. Usually, it shows three different phases, like anatase, rutile, and brookite, based on the synthesis method and annealing temperature.

Methods

Here, we report a simple chemical process to synthesize TiO nanostructures (NSs) at low temperatures to study the impact of growth time on structural and morphological properties. During synthesis, we permitted the samples to grow for 5 hr (sample-T5) and 7 hr (sample-T7) and continued the stirring process accordingly. We performed XRD, UV-Vis, and FESEM analysis with the samples.

Results

XRD confirmed the effect of growth time on the size of the structures, and a shift in the absorption edge was observed in UV-Vis spectra, which indicated a change in the band gap. FESEM confirmed the change in nanostructures’ size in both samples.

Conclusion

The tuning in band gap due to growth time variation may be an interesting phenomenon to explore for modern scientific applications.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137306442240630051459
2024-07-10
2025-09-09
Loading full text...

Full text loading...

References

  1. ReddyM.V. AdamsS. LiangG.T.J. MingzeI.F. Van Tu AnH. ChowdariB.V.R. Low temperature molten salt synthesis of anatase TiO2 and its electrochemical properties.Solid State Ion.201426212012310.1016/j.ssi.2013.11.030
    [Google Scholar]
  2. RoyR. KandrapuV.K. KempterL. IslamR. KalčíkováG. SchulzR. BundschuhM. Nanosized titanium dioxide elevates toxicity of cationic metals species for Daphnia – have aging and natural organic matter an unexpected impact?Nanotoxicology2022161162810.1080/17435390.2022.202753835085470
    [Google Scholar]
  3. ZhuP. WuY. ReddyM.V. Sreekumaran NairA. ChowdariB.V.R. RamakrishnaS. Long term cycling studies of electrospun TiO 2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries.RSC Advances20122253153710.1039/C1RA00514F
    [Google Scholar]
  4. ShuklaG. MishraP.K. KhareA. Effect of annealing and O2 pressure on structural and optical properties of pulsed laser deposited TiO2 thin films.J. Alloys Compd.2010489124625110.1016/j.jallcom.2009.09.064
    [Google Scholar]
  5. RichardsB.S. CotterJ.E. HonsbergC.B. Enhancing the surface passivation of TiO2 coated silicon wafers.Appl. Phys. Lett.20028071123112510.1063/1.1445810
    [Google Scholar]
  6. ArmstrongA.R. ArmstrongG. CanalesJ. GarcíaR. BruceP.G. Lithium‐ion intercalation into TiO2‐B nanowires.Adv. Mater.200517786286510.1002/adma.200400795
    [Google Scholar]
  7. WatanabeT. NakajimaA. WangR. MinabeM. KoizumiS. FujishimaA. HashimotoK. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass.Thin Solid Films19993511-226026310.1016/S0040‑6090(99)00205‑9
    [Google Scholar]
  8. Eliahou-NivS. DahanR. GolanG. Design and analysis of a novel tunable optical filter.Microelectronics200637430230710.1016/j.mejo.2005.05.018
    [Google Scholar]
  9. BangeK. OttermannC.R. AndersonO. JeschkowskiU. LaubeM. FeileR. Investigations of TiO2 films deposited by different techniques.Thin Solid Films19911971-227928510.1016/0040‑6090(91)90238‑S
    [Google Scholar]
  10. SrivastavaA.K. DeepaM. BhandariS. FuessH. Tunable nanostructures and crystal structures in titanium oxide films.Nanoscale Res. Lett.200941546210.1007/s11671‑008‑9202‑920596447
    [Google Scholar]
  11. TungW.S. DaoudW.A. Photocatalytic formulations for protein fibers: Experimental analysis of the effect of preparation on compatibility and photocatalytic activities.J. Colloid Interface Sci.2008326128328810.1016/j.jcis.2008.07.03718691723
    [Google Scholar]
  12. ZiaeifarF. AlizadehA. ShariatiniaZ. Dye sensitized solar cells fabricated based on nanocomposite photoanodes of TiO2 and AlMo0.5O3 perovskite nanoparticles.Sol. Energy202121843544410.1016/j.solener.2021.03.024
    [Google Scholar]
  13. FrankA.W. KopidakisN. Van De LagemaatJ. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties.Coord. Chem. Rev.200424813-141165117910.1016/j.ccr.2004.03.015
    [Google Scholar]
  14. GrätzelM. Sol-gel processed TiO2 films for photovoltaic applications.J. Sol-Gel Sci. Technol.2001221/271310.1023/A:1011273700573
    [Google Scholar]
  15. MahalaP. PatelM. BanD.K. NguyenT.T. YiJ. KimJ. High-performing self-driven ultraviolet photodetector by TiO2/Co3O4 photovoltaics.J. Alloys Compd.202082715437610.1016/j.jallcom.2020.154376
    [Google Scholar]
  16. ZhengL. DengX. WangY. ChenJ. FangX. WangL. ShiX. ZhengH. Self‐powered flexible TiO 2 fibrous photodetectors: Heterojunction with P3HT and boosted responsivity and selectivity by au nanoparticles.Adv. Funct. Mater.20203024200160410.1002/adfm.202001604
    [Google Scholar]
  17. LaiY-K. WangQ. HuangJ-Y. LiH-Q. ChenZ. ZhaoA.Z-J. WangY. ZhangK-Q. SunH-T. Al-DeyabS.S. TiO2 nanotube platforms for smart drug delivery: A review.Int. J. Nanomedicine2016114819483410.2147/IJN.S10884727703349
    [Google Scholar]
  18. ZengL. RenW. XiangL. ZhengJ. ChenB. WuA. Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy.Nanoscale2013552107211310.1039/c3nr33978e23381832
    [Google Scholar]
  19. BoutillierS. FourmentinS. LapercheB. History of titanium dioxide regulation as a food additive: A review.Environ. Chem. Lett.20222021017103310.1007/s10311‑021‑01360‑2
    [Google Scholar]
  20. JaroenworaluckA. SunsaneeyamethaW. KosachanN. StevensR. Characteristics of silica‐coated TiO 2 and its UV absorption for sunscreen cosmetic applications.Surf. Interface Anal.200638447347710.1002/sia.2313
    [Google Scholar]
  21. BraunJ.H. BaidinsA. MarganskiR.E. TiO2 pigment technology: A review.Prog. Org. Coat.199220210513810.1016/0033‑0655(92)80001‑D
    [Google Scholar]
  22. NisarJ. TopalianZ. De SarkarA. ÖsterlundL. AhujaR. TiO2-based gas sensor: A possible application to SO2.ACS Appl. Mater. Interfaces20135178516852210.1021/am401883523915321
    [Google Scholar]
  23. YadavS. JaiswarG. Review on undoped/doped TiO 2 nanomaterial : Synthesis and photocatalytic and antimicrobial activity.J. Chin. Chem. Soc.201764110311610.1002/jccs.201600735
    [Google Scholar]
  24. Rashed, M.N., Ed.; Organic Pollutants: Monitoring, Risk and Treatment.InTech201319520810.5772/55953
    [Google Scholar]
  25. SugimotoT. ZhouX. MuramatsuA. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method.J. Colloid Interface Sci.20032591435210.1016/S0021‑9797(03)00036‑512651132
    [Google Scholar]
  26. MisraK.P. KumawatA. BandopadhyayA. ModakB. MukherjeeS.K. BabuP.D. KabiS. ChattopadhyayS. MisraR.D.K. Structural analysis and magnetic properties of cobalt-doped nanotitania.Mater. Sci. Eng. B202228211576110.1016/j.mseb.2022.115761
    [Google Scholar]
  27. DeyD. HalderN. MisraK.P. ChattopadhyayS. JainS.K. BeraP. KumarN. MukhopadhyayA.K. Systematic study on the effect of Ag doping in shaping the magnetic properties of sol-gel derived TiO2 nanoparticles.Ceram. Int.20204617278322784810.1016/j.ceramint.2020.07.282
    [Google Scholar]
  28. MisraK. P. ChattopadhyayS. DeyD. BhattP. HalderN. Annealing induced red shift in the absorption edge of TiO2 films prepared by sol-gel technique.J. Nano. Electr. Phys.202113202017
    [Google Scholar]
  29. YuT. JooJ. ParkY.I. HyeonT. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes.Angew. Chem. Int. Ed.200544457411741410.1002/anie.20050099216247811
    [Google Scholar]
  30. PawarV. KumarM. DubeyP.K. SinghM.K. SinhaA.S.K. SinghP. Influence of synthesis route on structural, optical, and electrical properties of TiO2.Appl. Phys., A Mater. Sci. Process.2019125965710.1007/s00339‑019‑2948‑3
    [Google Scholar]
  31. MakułaP. PaciaM. MacykW. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra.J. Phys. Chem. Lett.20189236814681710.1021/acs.jpclett.8b0289230990726
    [Google Scholar]
  32. SankapalB.R. Lux-SteinerM.C. EnnaouiA. Synthesis and characterization of anatase-TiO2 thin films.Appl. Surf. Sci.2005239216517010.1016/j.apsusc.2004.05.142
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137306442240630051459
Loading
/content/journals/cnano/10.2174/0115734137306442240630051459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test