Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Recently, there has been a lot of interest in environmentally friendly nanoparticle synthesis. Silver nanoparticles (AgNPs) are promising against antibiotic resistance due to their high surface energy, robust action, and excellent adsorbability.

Aim

The primary objective of this study was to assess the antibacterial efficacy of AgNPs that were manufactured using three environmentally friendly methods (lemon, , and chitosan). Furthermore, the study attempted to investigate the potential toxicity of these nanoparticles on mice.

Methods

The synthesis of AgNPs was characterized by XRD, TEM FTIR, and TGA. The antimicrobial effect of AgNPs was studied using the disc diffusion method and minimum inhibitory concentration (MIC). The antibacterial mechanism of AgNPs was determined using different methods, such as released glucose and proteins, respiratory chain inhibition, plasma membrane fluorescence anisotropy, DNA fragmentation, gel electrophoresis, and cell membrane potential.

Results

The TEM analysis of Ag NPs showed predominantly spherical particles with a size distribution of 10-60 nm. AgNPs synthesized by the three green methods showed antibacterial and fungal activity. The antibacterial mechanisms of AgNPs involved inhibition of LDH activity, increased protein and glucose leakage, DNA and protein damage, and depolarization and destabilization of the plasma membrane. AgNPs, on the other hand, increased alanine aminotransferase, aspartate aminotransferase, urea, creatinine, malondialdehyde, and nitric oxide levels in mice while decreasing glutathione reduced.

Conclusion

Our study showed that AgNPs synthesized by Chitosan-AgNPs showed the most pronounced antibacterial action, although it displayed significant toxicity in mice. Conversely, lemon-AgNPs revealed the least notable impact.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137275299231220093929
2024-09-26
2025-11-04
Loading full text...

Full text loading...

References

  1. SamtiyaM. MatthewsK.R. DhewaT. PuniyaA.K. Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies.Foods20221119296610.3390/foods11192966 36230040
    [Google Scholar]
  2. Bryan-WilsonJ. No time to wait.Artforum Int.201654113114
    [Google Scholar]
  3. LinD.M. KoskellaB. LinH.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.World J. Gastrointest. Pharmacol. Ther.20178316217310.4292/wjgpt.v8.i3.162 28828194
    [Google Scholar]
  4. MunitaJ.M. AriasC.A. UnitA.R. SantiagoA. De HHS Public Access.2016413710.1128/microbiolspec.VMBF‑0016‑2015.Mechanisms
    [Google Scholar]
  5. DugassaJ. ShukuriN. Review on antibiotic resistance and its mechanism of development review on antibiotic resistance and its mechanism of development.J. Health20171117
    [Google Scholar]
  6. KouraR. AbdAllahA. MohamedR. H.H. AhmedK.A. BaiomyA.A. BahaaeldineM.A. A, MohamedS. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats.Biointerface Res. App. Chem.2023136595
    [Google Scholar]
  7. DakhilA.S. Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats.J. King Saud Univ. Sci.201729446246710.1016/j.jksus.2017.05.013
    [Google Scholar]
  8. PalauM. MuñozE. GustaM.F. LarrosaN. GomisX. GilabertJ. AlmiranteB. PuntesV. TexidóR. GavaldàJ. In vitro antibacterial activity of silver nanoparticles conjugated with amikacin and combined with hyperthermia against drug-resistant and biofilm-producing strains.Microbiol. Spectr.2023113e00280e2310.1128/spectrum.00280‑23 37078875
    [Google Scholar]
  9. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  10. FranciG. FalangaA. GaldieroS. PalombaL. RaiM. MorelliG. GaldieroM. Silver nanoparticles as potential antibacterial agents.Molecules20152058856887410.3390/molecules20058856 25993417
    [Google Scholar]
  11. SharminS. RahamanM.M. SarkarC. AtolaniO. IslamM.T. AdeyemiO.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study.Heliyon202173e0645610.1016/j.heliyon.2021.e06456 33763612
    [Google Scholar]
  12. BahaaeldineM.A. GarhyM.E. FahmyS.R. MohamedA.S. Reproductive and biochemical toxicity of biobased silver nanoparticles against Toxocara vitulorum.Curr. Nanomed.202313213214610.2174/2468187313666230613121100
    [Google Scholar]
  13. AbdelazizM.H. El-DakdokyM.H. AhmedT.A. MohamedA.S. Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses.Birth Defects Res.2023115444145710.1002/bdr2.2131 36448314
    [Google Scholar]
  14. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  15. WanX. ZhuangL. SheB. DengY. ChenD. TangJ. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance.Mater. Sci. Eng. C20166532333010.1016/j.msec.2016.04.058 27157758
    [Google Scholar]
  16. BahaaeldineM.A. El GarhyM. FahmyS.R. MohamedA.S. In vitro anti-Toxocara vitulorum effect of silver nanoparticles.J. Parasit. Dis.202246240942010.1007/s12639‑021‑01464‑0 35692463
    [Google Scholar]
  17. AbduraimovaA. MolkenovaA. DuisembekovaA. MulikovaT. KanayevaD. AtabaevT.S. Cetyltrimethylammonium Bromide (CTAB)-Loaded SiO2-Ag mesoporous nanocomposite as an efficient antibacterial agent.Nanomaterials20211147710.3390/nano11020477
    [Google Scholar]
  18. DoveA.S. DzurnyD.I. DeesW.R. QinN. Nunez RodriguezC.C. AltL.A. EllwardG.L. BestJ.A. RudawskiN.G. FujiiK. CzyżD.M. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria.Front. Microbiol.202313106409510.3389/fmicb.2022.1064095 36798870
    [Google Scholar]
  19. FerreiraA.M. VikulinaA. LoughlinM. VolodkinD. How similar is the antibacterial activity of silver nanoparticles coated with different capping agents?RSC Advances20231316105421055510.1039/D3RA00917C 37021104
    [Google Scholar]
  20. VankarP.S. ShuklaD. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric.Appl. Nanosci.20122216316810.1007/s13204‑011‑0051‑y
    [Google Scholar]
  21. FernandesM. González-BallesterosN. da CostaA. MachadoR. GomesA.C. Rodríguez-ArgüellesM.C. Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts.Eur. J. Biochem.202328443945010.1007/s00775‑023‑01999‑y 37083842
    [Google Scholar]
  22. KhaneY. BenouisK. AlbukhatyS. SulaimanG.M. AbomughaidM.M. Al AliA. AoufD. FennicheF. KhaneS. ChaibiW. HenniA. BourasH.D. DizgeN. Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties.Nanomaterials20221212201310.3390/nano12122013 35745352
    [Google Scholar]
  23. ProzorovaG. PozdnyakovA. KuznetsovaN. KorzhovaS. Emel’yanovA. ErmakovaT. FadeevaT. SosedovaL. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles.Int. J. Nanomedicine201491883188910.2147/IJN.S57865 24790430
    [Google Scholar]
  24. KulikouskayaV. HileuskayaK. KraskouskiA. KozerozhetsI. StepanovaE. KuzminskiI. YouL. AgabekovV. Chitosan‐capped silver nanoparticles: A comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential.SPE Polym.202232779010.1002/pls2.10069
    [Google Scholar]
  25. BaygarT. UgurA. Biosynthesis of silver nanoparticles by Streptomyces griseorubens isolated from soil and their antioxidant activity.IET Nanobiotechnol.201711328629110.1049/iet‑nbt.2015.0127 28476986
    [Google Scholar]
  26. KumariS. TehriN. GahlautA. HoodaV. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorg.Nano-Metal Chem.202151101386139510.1080/24701556.2020.1835978
    [Google Scholar]
  27. RangaswamyB.E. VanithaK.P. HungundB.S. Microbial cellulose production from bacteria isolated from rotten fruit.Int. J. Polym. Sci.201520151810.1155/2015/280784
    [Google Scholar]
  28. Regiel-FutyraA. Kus-LiśkiewiczM. SebastianV. IrustaS. ArrueboM. KyziołA. StochelG. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes.RSC Advances2017783523985241310.1039/C7RA08359A 29308194
    [Google Scholar]
  29. Khair-AllahD.H. Al-CharrakhA.H. Al-DujailiN.H. Antimicrobial activity of silver nanoparticles biosynthesized by Streptomyces spp.Ann. Trop. Med. Public Health2019221017118310.36295/ASRO.2019.221024
    [Google Scholar]
  30. MohamedM.R.M. AhmedJ.S. Antibacterial potential of silver nanoparticle synthesized by marine actinomycetes in reference with standard antibiotics against hospital acquired infectious pathogens.Afr. J. Biotechnol.201615382115212310.5897/AJB2015.14963
    [Google Scholar]
  31. El-wafaW.M.A. SaidW. AbdM. Biosynthesis of silver nanoparticles by egyptian streptomyces-WNE isolate and evaluation their antibacterial activity alone and in combination with biosynthesis of silver nanoparticles by egyptian streptomyces – WNE isolate and evaluation their antibacter.2018
    [Google Scholar]
  32. JohnstonK.A. StabrylaL.M. SmithA.M. GanX.Y. GilbertsonL.M. MillstoneJ.E. Impacts of broth chemistry on silver ion release, surface chemistry composition, and bacterial cytotoxicity of silver nanoparticles.Environ. Sci. Nano20185230431210.1039/C7EN00974G
    [Google Scholar]
  33. RadhakrishnanV.S. Reddy MudiamM.K. KumarM. DwivediS.P. SinghS.P. PrasadT. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans).Int. J. Nanomedicine2018132647266310.2147/IJN.S150648 29760548
    [Google Scholar]
  34. LooY.Y. RukayadiY. Nor-KhaizuraM.A.R. KuanC.H. ChiengB.W. NishibuchiM. RaduS. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens.Front. Microbiol.20189155510.3389/fmicb.2018.01555 30061871
    [Google Scholar]
  35. S SP. RudayniH.A. BepariA. NiaziS.K. NayakaS. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549.Saudi J. Biol. Sci.202229122823810.1016/j.sjbs.2021.08.084 35002413
    [Google Scholar]
  36. HassanienA.A. ShakerE.M. Investigation of the effect of chitosan and silver nanoparticles on the antibiotic resistance of Escherichia coli O157:H7 isolated from some milk products and diarrheal patients in Sohag city, Egypt.Vet. World20201381647165310.14202/vetworld.2020.1647‑1653 33061240
    [Google Scholar]
  37. PankeyG.A. SabathL.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections.Clin. Infect. Dis.200438686487010.1086/381972 14999632
    [Google Scholar]
  38. AbdallahB.M. AliE.M. Green synthesis of silver nanoparticles using the Lotus lalambensis aqueous leaf extract and their anti-candidal activity against oral candidiasis.ACS Omega20216128151816210.1021/acsomega.0c06009 33817474
    [Google Scholar]
  39. QayyumS. OvesM. KhanA.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles.PLoS One2017128e018136310.1371/journal.pone.0181363 28771501
    [Google Scholar]
  40. YuanY.G. PengQ.L. GurunathanS. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy.Int. J. Mol. Sci.201718356910.3390/ijms18030569 28272303
    [Google Scholar]
  41. NaikL.S. Ramana DeviC.V. Phyto‐fabricated silver nanoparticles inducing microbial cell death via reactive oxygen species‐mediated membrane damage.IET Nanobiotechnol.202115549250410.1049/nbt2.12036 34694754
    [Google Scholar]
  42. PoojariC. WilkoszN. LiraR.B. DimovaR. JurkiewiczP. PetkaR. KepczynskiM. RógT. Behavior of the DPH fluorescence probe in membranes perturbed by drugs.Chem. Phys. Lipids201922310478410.1016/j.chemphyslip.2019.104784 31199906
    [Google Scholar]
  43. SinghM. Elucidation of biogenic silver nanoparticles susceptibility towards Escherichia coli: An investigation on the antimicrobial mechanism.IET Nanobiotechnol.201610527628010.1049/iet‑nbt.2015.0063 27676374
    [Google Scholar]
  44. TamiyakulH. RoytrakulS. JaresitthikunchaiJ. PhaonakropN. TanasupawatS. WarisnoicharoenW. Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer.Asian Biomed.2019132394710.1515/abm‑2019‑0039
    [Google Scholar]
  45. YuQ. LiJ. ZhangY. WangY. LiuL. LiM. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.Sci. Rep.2016612666710.1038/srep26667 27220400
    [Google Scholar]
  46. ArabiY.M. MandourahY. Al-HameedF. SindiA.A. AlmekhlafiG.A. HusseinM.A. JoseJ. PintoR. Al-OmariA. KharabaA. AlmotairiA. Al KhatibK. AlraddadiB. ShalhoubS. AbdulmomenA. QushmaqI. MadyA. SolaimanO. Al-AithanA.M. Al-RaddadiR. RagabA. BalkhyH.H. Al HarthyA. DeebA.M. Al MutairiH. Al-DawoodA. MersonL. HaydenF.G. FowlerR.A. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome.Am. J. Respir. Crit. Care Med.2018197675776710.1164/rccm.201706‑1172OC 29161116
    [Google Scholar]
  47. AbdelmawgoodI.A. MahanaN.A. BadrA.M. MohamedA.S. Echinochrome exhibits anti-asthmatic activity through the suppression of airway inflammation, oxidative stress, and histopathological alterations in ovalbumin-induced asthma in BALB/c mice.Naunyn Schmiedebergs Arch. Pharmacol.202439731803181510.1007/s00210‑023‑02678‑0 37750936
    [Google Scholar]
  48. WadyA.F. MachadoA.L. FoggiC.C. ZamperiniC.A. ZucolottoV. MoffaE.B. VerganiC.E. Effect of a silver nanoparticles solution on Staphylococcus aureus and Candida spp.J. Nanomater.201420141710.1155/2014/545279
    [Google Scholar]
  49. SimW. BarnardR. BlaskovichM.A.T. ZioraZ. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017).Antibiotics2018749310.3390/antibiotics7040093 30373130
    [Google Scholar]
  50. BrunaT. Maldonado-BravoF. JaraP. CaroN. Silver nanoparticles and their antibacterial applications.Int. J. Mol. Sci.20212213720210.3390/ijms22137202 34281254
    [Google Scholar]
  51. KimS-H. LeeH.S. RyuD-S. ChoiS-J. LeeD-S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli.Korean J. Microbiol. Biotechnol2011397785
    [Google Scholar]
  52. UrnukhsaikhanE. BoldB.E. GunbilegA. SukhbaatarN. Mishig-OchirT. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from carduus crispus.Scientific Reports20211111210.1038/s41598‑021‑00520‑2
    [Google Scholar]
  53. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine2020152555256210.2147/IJN.S246764 32368040
    [Google Scholar]
  54. OthmanA.M. ElsayedM.A. Al-BalakocyN.G. HassanM.M. ElshafeiA.M. Correction to: Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities.J. Genet. Eng. Biotechnol.2019188110.1186/s43141‑019‑0008‑1
    [Google Scholar]
  55. LiaoC. LiY. TjongS. Bactericidal and cytotoxic properties of silver nanoparticles.Int. J. Mol. Sci.201920244910.3390/ijms20020449 30669621
    [Google Scholar]
  56. QingY. ChengL. LiR. LiuG. ZhangY. TangX. WangJ. LiuH. QinY. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.Int. J. Nanomedicine2018133311332710.2147/IJN.S165125 29892194
    [Google Scholar]
  57. MillerK.P. WangL. BenicewiczB.C. DechoA.W. Inorganic nanoparticles engineered to attack bacteria.Chem. Soc. Rev.201544217787780710.1039/C5CS00041F 26190826
    [Google Scholar]
  58. AbbaszadeganA. GhahramaniY. GholamiA. HemmateenejadB. DorostkarS. NabavizadehM. SharghiH. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study.J. Nanomater.201520151810.1155/2015/720654
    [Google Scholar]
  59. ChatterjeeT. ChatterjeeB.K. MajumdarD. ChakrabartiP. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model.Biochim. Biophys. Acta, Gen. Subj.20151850229930610.1016/j.bbagen.2014.10.022
    [Google Scholar]
  60. AhamadI. BanoF. AnwerR. SrivastavaP. KumarR. FatmaT. Antibiofilm activities of biogenic silver nanoparticles against Candida albicans.Front. Microbiol.20221274149310.3389/fmicb.2021.741493 35069463
    [Google Scholar]
  61. HeW. ZhuY. ChenY. ShenQ. HuaZ. WangX. XueP. Inhibitory effect and mechanism of chitosan–ag complex hydrogel on fungal disease in grape.Molecules2022275168810.3390/molecules27051688 35268789
    [Google Scholar]
  62. JalalM. AnsariM.A. AlzohairyM.A. AliS.G. KhanH.M. AlmatroudiA. SiddiquiM.I. Anticandidal activity of biosynthesized silver nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida species.Int. J. Nanomedicine2019144667467910.2147/IJN.S210449 31308652
    [Google Scholar]
  63. LaraH.H. Romero-UrbinaD.G. PierceC. Lopez-RibotJ.L. Arellano-JiménezM.J. Jose-YacamanM. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study.J. Nanobiotechnology20151319110.1186/s12951‑015‑0147‑8 26666378
    [Google Scholar]
  64. SinghP. MijakovicI. Antibacterial effect of silver nanoparticles is stronger if the production host and the targeted pathogen are closely related.Biomedicines202210362810.3390/biomedicines10030628 35327429
    [Google Scholar]
  65. MammariN. LamourouxE. BoudierA. DuvalR.E. Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles.Microorganisms202210243710.3390/microorganisms10020437 35208891
    [Google Scholar]
  66. ShanshouryA.E.R.E. SabaeS.Z. ShounyW.A.E. ShadyA.M.A. BadrH.M. Extracellular biosynthesis of silver nanoparticles using aquatic bacterial isolate and its antibacterial and antioxidant potentials. Egypt.J. Aquat. Biol. Fish.20202418320110.21608/ejabf.2020.119399
    [Google Scholar]
  67. GunawanC. FaizM.B. MannR. TingS.R.S. SotiriouG.A. MarquisC.P. AmalR. Nanosilver targets the bacterial cell envelope: The link with generation of reactive oxygen radicals.ACS Appl. Mater. Interfaces20201255557556810.1021/acsami.9b20193 31927911
    [Google Scholar]
  68. SwolanaD. WojtyczkaR.D. Activity of silver nanoparticles against Staphylococcus spp.Int. J. Mol. Sci.2022238429810.3390/ijms23084298 35457115
    [Google Scholar]
  69. AnsariM.A. KhanH.M. KhanA.A. AhmadM.K. MahdiA.A. PalR. CameotraS.S. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules.J. Basic Microbiol.201454990591510.1002/jobm.201300457 24026946
    [Google Scholar]
  70. PanáčekA. SmékalováM. VečeřováR. BogdanováK. RöderováM. KolářM. KilianováM. HradilováŠ. FroningJ.P. HavrdováM. PrucekR. ZbořilR. KvítekL. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae.Colloids Surf. B Biointerfaces201614239239910.1016/j.colsurfb.2016.03.007 26970828
    [Google Scholar]
  71. Vazquez-MuñozR. Meza-VillezcasA. FournierP.G.J. Soria-CastroE. Juarez-MorenoK. Gallego-HernándezA.L. BogdanchikovaN. Vazquez-DuhaltR. Huerta-SaqueroA. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane.PLoS One20191411e022490410.1371/journal.pone.0224904 31703098
    [Google Scholar]
  72. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  73. GomaaE.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria.J. Gen. Appl. Microbiol.2017631364310.2323/jgam.2016.07.004 28123131
    [Google Scholar]
  74. HorneJ.E. BrockwellD.J. RadfordS.E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria.J. Biol. Chem.202029530103401036710.1074/jbc.REV120.011473 32499369
    [Google Scholar]
  75. PaulowskiL. DonoghueA. NehlsC. GrothS. KoistinenM. HaggeS.O. BöhlingA. WinterhalterM. GutsmannT. The beauty of asymmetric membranes: Reconstitution of the outer membrane of gram-negative bacteria.Front. Cell Dev. Biol.2020858610.3389/fcell.2020.00586 32766244
    [Google Scholar]
  76. EbbensgaardA. MordhorstH. AarestrupF.M. HansenE.B. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides.Front. Microbiol.20189215310.3389/fmicb.2018.02153 30245684
    [Google Scholar]
  77. LiW.R. XieX.B. ShiQ.S. ZengH.Y. OU-YangY.S. ChenY.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.Appl. Microbiol. Biotechnol.20108541115112210.1007/s00253‑009‑2159‑5 19669753
    [Google Scholar]
  78. GurunathanS. JeongJ.K. HanJ.W. ZhangX.F. ParkJ.H. KimJ.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.Nanoscale Res. Lett.20151013510.1186/s11671‑015‑0747‑0 25852332
    [Google Scholar]
  79. GurunathanS. HanJ.W. KwonD.N. KimJ.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria.Nanoscale Res. Lett.20149137310.1186/1556‑276X‑9‑373 25136281
    [Google Scholar]
  80. SiddiqueM.H. AslamB. ImranM. AshrafA. NadeemH. HayatS. KhurshidM. AfzalM. MalikI.R. ShahzadM. QureshiU. KhanZ.U.H. MuzammilS. Effect of silver nanoparticles on biofilm formation and eps production of multidrug-resistant Klebsiella pneumoniae.BioMed Res. Int.202020201910.1155/2020/6398165 32382563
    [Google Scholar]
  81. SenthilB. DevasenaT. PrakashB. RajasekarA. Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity.J. Photochem. Photobiol. B20171771710.1016/j.jphotobiol.2017.10.010 29028495
    [Google Scholar]
  82. AliE.M. AbdallahB.M. Effective inhibition of candidiasis using an eco-friendly leaf extract of calotropis-gigantean-mediated silver nanoparticles.Nanomaterials202010342210.3390/nano10030422 32121137
    [Google Scholar]
  83. LeeB. LeeM.J. YunS.J. KimK. ChoiI.H. ParkS. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in Candida albicans, but not in Saccharomyces cerevisiae.Int. J. Nanomedicine2019144801481610.2147/IJN.S205736 31308659
    [Google Scholar]
  84. SuchodolskiJ. KrasowskaA. Plasma membrane potential of candida albicans measured by Di-4-ANEPPS fluorescence depends on growth phase and regulatory factors.Microorganisms20197411010.3390/microorganisms7040110 31022974
    [Google Scholar]
  85. LiL. SunJ. XiaS. TianX. CheserekM.J. LeG. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: Intracellular DNA binding and cell cycle arrest.Appl. Microbiol. Biotechnol.201610073245325310.1007/s00253‑015‑7265‑y 26743655
    [Google Scholar]
  86. YangY. WangC. ZhugeY. ZhangJ. XuK. ZhangQ. ZhangH. ChenH. ChuM. JiaC. Photodynamic antifungal activity of hypocrellin A against Candida albicans.Front. Microbiol.201910181010.3389/fmicb.2019.01810 31447816
    [Google Scholar]
  87. Dąbrowska-BoutaB. SulkowskiG. StrużyńskiW. StrużyńskaL. Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin.Neurotox. Res.201935349550410.1007/s12640‑018‑9977‑0 30406926
    [Google Scholar]
  88. PaciorekP. ŻuberekM. GrzelakA. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles.Materials20201311246010.3390/ma13112460 32481688
    [Google Scholar]
  89. AdeyemiO.S. ShittuE.O. AkporO.B. RotimiD. BatihaG.E.S. Silver nanoparticles restrict microbial growth by promoting oxidative stress and DNA damage.EXCLI J.20201949250010.17179/excli2020‑1244 32398973
    [Google Scholar]
  90. McNeillyO. MannR. HamidianM. GunawanC. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria.Front. Microbiol.20211265286310.3389/fmicb.2021.652863 33936010
    [Google Scholar]
  91. JianY. ChenX. AhmedT. ShangQ. ZhangS. MaZ. YinY. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum.J. Adv. Res.20223811210.1016/j.jare.2021.09.006 35572400
    [Google Scholar]
  92. ŻarowskaB. KoźleckiT. PiegzaM. Jaros-KoźleckaK. RobakM. New look on antifungal activity of silver nanoparticles (AgNPs).Pol. J. Microbiol.201968451552510.33073/pjm‑2019‑051 31880895
    [Google Scholar]
  93. XuM. YangQ. XuL. RaoZ. CaoD. GaoM. LiuS. Protein target identification and toxicological mechanism investigation of silver nanoparticles-induced hepatotoxicity by integrating proteomic and metallomic strategies.Part. Fibre Toxicol.20191614610.1186/s12989‑019‑0322‑4 31775802
    [Google Scholar]
  94. HalderS. YadavK.K. SarkarR. MukherjeeS. SahaP. HaldarS. KarmakarS. SenT. Alteration of Zeta potential and membrane permeability in bacteria: A study with cationic agents.Springerplus20154167210.1186/s40064‑015‑1476‑7 26558175
    [Google Scholar]
  95. BondarenkoO.M. SihtmäeM. KuzmičiovaJ. RagelienėL. KahruA. DaugelavičiusR. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa.Int. J. Nanomedicine2018136779679010.2147/IJN.S177163 30498344
    [Google Scholar]
  96. QuinterosM.A. VivianaC.A. OnnaintyR. MaryV.S. TheumerM.G. GraneroG.E. ParajeM.G. PáezP.L. Biosynthesized silver nanoparticles: Decoding their mechanism of action in Staphylococcus aureus and Escherichia coli.Int. J. Biochem. Cell Biol.2018104879310.1016/j.biocel.2018.09.006 30243952
    [Google Scholar]
  97. PokhrelL.R. JacobsZ.L. DikinD. AkulaS.M. Five nanometer size highly positive silver nanoparticles are bactericidal targeting cell wall and adherent fimbriae expression.Sci. Rep.2022121672910.1038/s41598‑022‑10778‑9 35468937
    [Google Scholar]
  98. Ferreyra MaillardA.P.V. DalmassoP.R. López de MishimaB.A. HollmannA. Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity.Colloids Surf. B Biointerfaces201817132032610.1016/j.colsurfb.2018.07.044 30055472
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137275299231220093929
Loading
/content/journals/cnano/10.2174/0115734137275299231220093929
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antibacterial; antifungal; chitosan; lemon; oxidative stress; Silver nanoparticle; Streptomyces
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test