Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction

This article presents structural and morphological analysis for graphene oxide (GO) synthesized Hummers' method and for reduced Graphene Oxide (rGO) prepared by chemical reduction. Graphene Oxide is synthesized from graphite powder at room temperature. Hydrazine hydrate is used as a reducing agent to reduce the accumulated GO.

Methods

To understand the impact of reduction time on structural parameters of produced rGO, three different time limits, . 4, 5, and 6 hrs at 800°C are used. FTIR spectra show the presence of all functional groups to confirm the authenticity of rGO samples. The XRD peaks are utilized to calculate different structural parameters for all the samples to identify the effect of reduction time. A change in the band gap energy may be noticed from UV-Vis absorption spectra.

Results

It indicates that with the increase in reduction time, the absorption edge shifts to a lower wavelength value. FESEM micrographs reveal a flake-like random growth of rGO with prominent wrinkled structures, which is a signature of graphene-like 2D material.

Conclusion

Hence, from the structural and absorption studies, it can be concluded that an increase in reduction time will produce smaller rGO flakes in the synthesis method.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137295957240420064719
2024-05-10
2025-09-08
Loading full text...

Full text loading...

References

  1. TarcanR. BoerT.O. PetrovaiI. LeordeanC. AstileanS. BotizI. Reduced graphene oxide today.J. Mater. Chem. C Mater. Opt. Electron. Devices2020841198122410.1039/C9TC04916A
    [Google Scholar]
  2. PeiS. ChengH.M. The reduction of graphene oxide.Carbon20125093210322810.1016/j.carbon.2011.11.010
    [Google Scholar]
  3. AnumA. NazirM.A. IbrahimS.M. ShahS.S.A. TahirA.A. MalikM. WattooM.A. RehmanA. Synthesis of bi-metallic-sulphides/MOF-5@graphene oxide nanocomposites for the removal of hazardous moxifloxacin.Catalysts202313698410.3390/catal13060984
    [Google Scholar]
  4. KhanN.A. ShaheenS. NajamT. ShahS.S.A. JavedM.S. NazirM.A. HussainE. ShaheenA. HussainS. AshfaqM. Efficient removal of norfloxacin by MOF@GO composite: isothermal, kinetic, statistical, and mechanistic study.Toxin Rev.202140491592710.1080/15569543.2020.1801750
    [Google Scholar]
  5. MaH. FashandiM. RejebZ.B. MingX. LiuY. GongP. LiG. ParkC.B. Efficient electromagnetic wave absorption and thermal infrared stealth in PVTMS@MWCNT nano-aerogel via abundant nano-sized cavities and attenuation interfaces.Nano-Micro Lett.20241612010.1007/s40820‑023‑01218‑y
    [Google Scholar]
  6. LiZ. LinZ. HanM. ZhangY. YuJ. Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding.ACS Appl. Nano Mater.2021477461747010.1021/acsanm.1c01471
    [Google Scholar]
  7. MuY. LiZ. WuB. HuangH. WuF. ChuY. ZouL. YangM. HeJ. YeL. HanM. ZhaoT. ZengL. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries.Nat. Commun.2023141420510.1038/s41467‑023‑39947‑837452017
    [Google Scholar]
  8. KarthikaV. AlSalhiM.S. DevanesanS. GopinathK. ArumugamA. GovindarajanM. Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications.Sci. Rep.20201011891210.1038/s41598‑020‑76015‑333144607
    [Google Scholar]
  9. DebP. DharJ.C. Boosted photoresponsivity using silver nanoparticle decorated TiO 2 nanowire/reduced graphene oxide thin-film heterostructure.Nanotechnology2020312828520210.1088/1361‑6528/ab808432182602
    [Google Scholar]
  10. TamangS. RaiS. BhujelR. BhattacharyyaN.K. SwainB.P. BiswasJ. A concise review on GO, rGO and metal oxide/rGO composites: Fabrication and their supercapacitor and catalytic applications.J. Alloys Compd.202394716958816958810.1016/j.jallcom.2023.169588
    [Google Scholar]
  11. IliutM. GabudeanA-M. LeordeanC. SimonT. TeodorescuC-M. AstileanS. Riboflavin enhanced fluorescence of highly reduced graphene oxide.Chem. Phys. Lett.201358612713110.1016/j.cplett.2013.09.032
    [Google Scholar]
  12. IliutM. LeordeanC. CanpeanV. TeodorescuC-M. AstileanS. A new green, ascorbic acid-assisted method for versatile synthesis of Au–graphene hybrids as efficient surface-enhanced Raman scattering platforms.J. Mater. Chem. C Mater. Opt. Electron. Devices20131264094409410.1039/c3tc30177j
    [Google Scholar]
  13. AnS.J. ZhuY. LeeS.H. StollerM.D. EmilssonT. ParkS. VelamakanniA. AnJ. RuoffR.S. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition.J. Phys. Chem. Lett.2010181259126310.1021/jz100080c
    [Google Scholar]
  14. IskandarF. HikmahU. StavilaE. AimonA.H. Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO).RSC Advances2017783523915239710.1039/C7RA10013B
    [Google Scholar]
  15. ZhangY. GuoL. WeiS. HeY. XiaH. ChenQ. SunH.B. XiaoF.S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction.Nano Today201051152010.1016/j.nantod.2009.12.009
    [Google Scholar]
  16. ZhanD. NiZ. ChenW. SunL. LuoZ. LaiL. YuT. WeeA.T.S. ShenZ. Electronic structure of graphite oxide and thermally reduced graphite oxide.Carbon20114941362136610.1016/j.carbon.2010.12.002
    [Google Scholar]
  17. MaR. TsukrukV.V. Seriography‐guided reduction of graphene oxide biopapers for wearable sensory electronics.Adv. Funct. Mater.20172710160480210.1002/adfm.201604802
    [Google Scholar]
  18. KumarP. SubrahmanyamK. S. RaoC. N. R. Graphene produced by radiation-induced reduction of graphene oxide.Int. J. Nano.20111004n0555956610.1142/S0219581X11008824
    [Google Scholar]
  19. OlorunkosebiA.A. ElerujaM.A. AdedejiA.V. OlofinjanaB. FasakinO. OmotosoE. OyedotunK.O. AjayiE.O.B. ManyalaN. Optimization of graphene oxide through various Hummers’ methods and comparative reduction using green approach.Diamond Relat. Mater.202111710845610.1016/j.diamond.2021.108456
    [Google Scholar]
  20. ChuaC.K. PumeraM. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach.Chem. Commun.2016521727510.1039/C5CC08170J26525927
    [Google Scholar]
  21. MohanV.B. BrownR. JayaramanK. BhattacharyyaD. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity.Mater. Sci. Eng. B2015193496010.1016/j.mseb.2014.11.002
    [Google Scholar]
  22. ZaabaN.I. FooK.L. HashimU. TanS.J. LiuW.W. VoonC.H. Synthesis of graphene oxide using modified hummers method: Solvent influence.Procedia Eng.201718446947710.1016/j.proeng.2017.04.118
    [Google Scholar]
  23. SainiA. KumarA. AnandV.K. SoodS.C. Synthesis of graphene oxide using modified Hummer’s method and its reduction using hydrazine hydrate.Int. J. Eng. Trends and Technology2016402677110.14445/22315381/IJETT‑V40P211
    [Google Scholar]
  24. XuC. YuanR. WangX. Selective reduction of graphene oxide.N. Carbon Mater.2014291616610.1016/S1872‑5805(14)60126‑8
    [Google Scholar]
  25. RenP.G. YanD.X. JiX. ChenT. LiZ.M. Temperature dependence of graphene oxide reduced by hydrazine hydrate.Nanotechnology201122505570510.1088/0957‑4484/22/5/05570521178230
    [Google Scholar]
  26. MangavatiS. RaoA. DevadigaD. SelvakumarM. MisraK.P. UpadhyayaA. ChattopadhyayS. Defects and band gap shrinkage in ZnO/rGO composite nano-pebbles prepared by solid–state reaction.Diamond Relat. Mater.202212310888610.1016/j.diamond.2022.108886
    [Google Scholar]
  27. OssononB.D. BélangerD. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets.RSC Advances2017744272242723410.1039/C6RA28311J
    [Google Scholar]
  28. EmiruT.F. AyeleD.W. Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production.Egyptian J. Basic Appl. Sciences201741747910.1016/j.ejbas.2016.11.002
    [Google Scholar]
  29. LowF.W. LaiC.W. Abd HamidS.B. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed.Ceram. Int.20154145798580610.1016/j.ceramint.2015.01.008
    [Google Scholar]
  30. ThakurS. KarakN. Green reduction of graphene oxide by aqueous phytoextracts.Carbon201250145331533910.1016/j.carbon.2012.07.023
    [Google Scholar]
  31. ChattopadhyayS. MisraK.P. AgarwalaA. ShaheeA. JainS. HalderN. RaoA. BabuP.D. SaranM. MukhopadhyayA.K. Dislocations and particle size governed band gap and ferromagnetic ordering in Ni doped ZnO nanoparticles synthesized via co-precipitation.Ceram. Int.20194517233412335410.1016/j.ceramint.2019.08.034
    [Google Scholar]
  32. LinS. TangJ. ZhangK. ChenY. GaoR. YinH. QinL.C. Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability.Nanoscale Adv.2023541163117110.1039/D2NA00506A36798501
    [Google Scholar]
  33. RazaA. QumarU. HassanJ. IkramM. HamidU.A. HaiderJ. ImranM. AliS. A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior.Appl. Nanosci.202010103875389910.1007/s13204‑020‑01475‑y
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137295957240420064719
Loading
/content/journals/cnano/10.2174/0115734137295957240420064719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test