Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Bone tissue engineering has been continuously developing since the concept of “Tissue Engineering” was introduced. First, this paper, the summarized literature, defines the term of “Bone Tissue Engineering” and explains the physiology, cells, and ECM of bone. Then, it will review the bioactivity and osteogenic properties such as osteoconductivity, osteoinductivity, and osteogenesis. Finally, this paper will introduce polymer-based and ceramic-based biomaterials that can be used in bone tissue. To be detailed, calcium phosphate, calcium magnesium, and calcium silicate materials will be explained in the category of nano bioceramics. In addition, natural, synthetic, and composite polymers will be explained in the category of polymers.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137304537240828061334
2024-09-11
2025-09-09
Loading full text...

Full text loading...

References

  1. DibazarZ.E. NieL. AziziM. NekounamH. HamidiM. ShavandiA. IzadiZ. DelattreC. Bioceramics/electrospun polymeric nanofibrous and carbon nanofibrous scaffolds for bone tissue engineering applications.Materials2023167279910.3390/ma1607279937049093
    [Google Scholar]
  2. PereiraH.F. CengizI.F. SilvaF.S. ReisR.L. OliveiraJ.M. Scaffolds and coatings for bone regeneration.J. Mater. Sci. Mater. Med.20203132710.1007/s10856‑020‑06364‑y32124052
    [Google Scholar]
  3. RuffiniA. SandriM. DapportoM. CampodoniE. TampieriA. SprioS. Nature-inspired unconventional approaches to develop 3d bioceramic scaffolds with enhanced regenerative ability.Biomedicines20219891610.3390/biomedicines908091634440120
    [Google Scholar]
  4. KoE. AlbertiK. LeeJ.S. YangK. JinY. ShinJ. YangH.S. XuQ. ChoS.W. Nanostructured tendon-derived scaffolds for enhanced bone regeneration by human adipose-derived stem cells.ACS Appl. Mater. Interfaces2016835228192282910.1021/acsami.6b0535827502160
    [Google Scholar]
  5. LinX. PatilS. GaoY.G. QianA. The bone extracellular matrix in bone formation and regeneration.Front. Pharmacol.20201175710.3389/fphar.2020.0075732528290
    [Google Scholar]
  6. ZhangS. ChenX. ShanM. HaoZ. ZhangX. MengL. ZhaiZ. ZhangL. LiuX. WangX. Convergence of 3D bioprinting and nanotechnology in tissue engineering scaffolds.Biomimetics2023819410.3390/biomimetics801009436975324
    [Google Scholar]
  7. ChiaH.N. WuB.M. Recent advances in 3D printing of biomaterials.J. Biol. Eng.201591410.1186/s13036‑015‑0001‑425866560
    [Google Scholar]
  8. NosratiH. Aramideh KhouyR. NosratiA. KhodaeiM. Banitalebi-DehkordiM. Ashrafi-DehkordiK. SanamiS. AlizadehZ. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis.J. Nanobiotechnology2021191110.1186/s12951‑020‑00755‑733397416
    [Google Scholar]
  9. ZhouC. YeC. ZhaoC. LiaoJ. LiY. ChenH. HuangW. A composite tissue engineered bone material consisting of bone mesenchymal stem cells, bone morphogenetic protein 9 (BMP9) gene lentiviral vector, and P3HB4HB thermogel (BMSCs-LV-BMP9-P3HB4HB) repairs calvarial skull defects in rats by expression of osteo.Med. Sci. Monit.202026e92466610.12659/MSM.92466632894745
    [Google Scholar]
  10. HeY. LinS. AoQ. HeX. The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats.Stem Cell Res. Ther.202011133810.1186/s13287‑020‑01858‑632746906
    [Google Scholar]
  11. WuD. WangZ. WangJ. GengY. ZhangZ. LiY. LiQ. ZhengZ. CaoY. ZhangZ.Y. Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment.Stem Cell Res. Ther.20189133110.1186/s13287‑018‑1064‑130486863
    [Google Scholar]
  12. LiuM. NakasakiM. ShihY.R.V. VargheseS. Effect of age on biomaterial-mediated in situ bone tissue regeneration.Acta Biomater.20187832934010.1016/j.actbio.2018.06.03529966759
    [Google Scholar]
  13. Florencio-SilvaR. SassoG.R.S. Sasso-CerriE. SimõesM.J. CerriP.S. Biology of bone tissue: Structure, function, and factors that influence bone cells.BioMed Res. Int.2015201511710.1155/2015/42174626247020
    [Google Scholar]
  14. CaoZ. BianY. HuT. YangY. CuiZ. WangT. YangS. WengX. LiangR. TanC. Recent advances in two-dimensional nanomaterials for bone tissue engineering.J. Materiomics20239593095810.1016/j.jmat.2023.02.016
    [Google Scholar]
  15. ChenX. WangZ. DuanN. ZhuG. SchwarzE.M. XieC. Osteoblast–osteoclast interactions.Connect. Tissue Res.20185929910710.1080/03008207.2017.129008528324674
    [Google Scholar]
  16. MatsuoK. IrieN. Osteoclast–osteoblast communication.Arch. Biochem. Biophys.2008473220120910.1016/j.abb.2008.03.02718406338
    [Google Scholar]
  17. WangP. ZhaoL. LiuJ. WeirM.D. ZhouX. XuH.H.K. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells.Bone Res.20151401710.1038/boneres.2014.1726273526
    [Google Scholar]
  18. GuptaK. MeenaK. Artificial bone scaffolds and bone joints by additive manufacturing: A review.Bioprinting202331e0026810.1016/j.bprint.2023.e00268
    [Google Scholar]
  19. StanoviciJ. Le NailL.R. BrennanM.A. VidalL. TrichetV. RossetP. LayrolleP. Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery.Curr. Res. Transl. Med.2016642839010.1016/j.retram.2016.04.00627316391
    [Google Scholar]
  20. AbdelazizA.G. NagehH. AbdoS.M. AbdallaM.S. AmerA.A. Abdal-hayA. BarhoumA. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges.Bioengineering202310220410.3390/bioengineering1002020436829698
    [Google Scholar]
  21. BeheshtizadehN. ZareiM. AzamiM. Could we use metallic wood for bone tissue engineering applications?Results in Engineering20231710084510.1016/j.rineng.2022.100845
    [Google Scholar]
  22. LopesD. Martins-CruzC. OliveiraM.B. ManoJ.F. Bone physiology as inspiration for tissue regenerative therapies.Biomaterials201818524027510.1016/j.biomaterials.2018.09.02830261426
    [Google Scholar]
  23. de VilliersT.J. GoldsteinS.R. Bone health 2022: An update.Climacteric20222511310.1080/13697137.2021.196540835041568
    [Google Scholar]
  24. WalshJ.S. Normal bone physiology, remodelling and its hormonal regulation.Surgery20183611610.1016/j.mpsur.2017.10.006
    [Google Scholar]
  25. MertzE.L. MakareevaE. MirigianL.S. LeikinS. Bone formation in 2D culture of primary cells.JBMR Plus202371e1070110.1002/jbm4.1070136699640
    [Google Scholar]
  26. MatsuokaK. ParkK. ItoM. IkedaK. TakeshitaS. Osteoclast-derived complement component 3a stimulates osteoblast differentiation.J. Bone Miner. Res.20142971522153010.1002/jbmr.218724470120
    [Google Scholar]
  27. WangL. LiuS. ZhaoY. LiuD. LiuY. ChenC. KarrayS. ShiS. JinY. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass.Cell Death Differ.201522101654166410.1038/cdd.2015.1425744024
    [Google Scholar]
  28. AidunA. ZamanianA. GhorbaniF. Novel bioactive porous starch–siloxane matrix for bone regeneration: Physicochemical, mechanical, and in vitro properties.Biotechnol. Appl. Biochem.2019661435210.1002/bab.169430257060
    [Google Scholar]
  29. CoxB.D. De SimoneA. TorniniV.A. SinghS.P. Di TaliaS. PossK.D. In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone.Curr Biol201828243937394710.1016/j.cub.2018.10.052
    [Google Scholar]
  30. R NairA. A KumarA. e MB. SS. H GladstoneS. Prasad PgM. Prosthodontic review on postmenopausal osteoporosis.J Prosthet Implant Dent20236310.55231/jpid.2023.v06.i03.08
    [Google Scholar]
  31. SkalnyA.V. AschnerM. SilinaE.V. StupinV.A. ZaitsevO.N. SotnikovaT.I. TazinaS.I. ZhangF. GuoX. TinkovA.A. The role of trace elements and minerals in osteoporosis: A review of epidemiological and laboratory findings.Biomolecules2023136100610.3390/biom1306100637371586
    [Google Scholar]
  32. ChenZ. ChenG. ZhouK. ZhangP. RenX. MeiX. Toxicity of food sweetener-sodium cyclamate on osteoblasts cells.Biochem. Biophys. Res. Commun.2019508250751110.1016/j.bbrc.2018.11.17230509495
    [Google Scholar]
  33. AndersenT.L. JensenP.R. SikjaerT.T. RejnmarkL. EjerstedC. DelaisseJ.M. A critical role of the bone marrow envelope in human bone remodeling.J. Bone Miner. Res.202038691892810.1002/jbmr.481537038371
    [Google Scholar]
  34. SoysaN.S. AllesN. Osteoclast function and bone-resorbing activity: An overview.Biochem. Biophys. Res. Commun.2016476311512010.1016/j.bbrc.2016.05.01927157135
    [Google Scholar]
  35. MunirA. ReselandJ.E. TiainenH. HaugenH.J. SikorskiP. ChristiansenE.F. ReinholtF.P. SyversenU. SolbergL.B. Osteocyte‐like cells differentiated from primary osteoblasts in an artificial human bone tissue model.JBMR Plus202379e1079210.1002/jbm4.1079237701151
    [Google Scholar]
  36. KomoriT. A review of the differing roles of dead and live osteocytes.J. Oral. Biosci.201456310110410.1016/j.job.2014.05.001
    [Google Scholar]
  37. HosseiniF.S. SoleimanifarF. AidunA. EnderamiS.E. SaburiE. MarzouniH.Z. KhaniM.M. KhojastehA. ArdeshirylajimiA. Poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix.J. Cell. Physiol.20192347115371154410.1002/jcp.2780730478907
    [Google Scholar]
  38. PatiF. SongT.H. RijalG. JangJ. KimS.W. ChoD.W. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.Biomaterials20153723024110.1016/j.biomaterials.2014.10.01225453953
    [Google Scholar]
  39. AskariE. NaghibS.M. ZahediA. SeyfooriA. ZareY. RheeK.Y. Local delivery of chemotherapeutic agent in tissue engineering based on gelatin/graphene hydrogel.J. Mater. Res. Technol.20211241242210.1016/j.jmrt.2021.02.084
    [Google Scholar]
  40. RezaeiM. MohammadiM.T. Application of extracellular matrix to repair the tissue injuries and damages induced by combat: A review study.J. Mil. Med.2022241372138510.30491/JMM.24.6.1372
    [Google Scholar]
  41. DashD. KailashiyaJ. MukherjeeA. Essentials of medical biochemistry: With clinical cases.Indian J. Med. Res.2017145457610.4103/0971‑5916.213764
    [Google Scholar]
  42. FerbeyreG. Aberrant signaling and senescence associated protein degradation.Exp. Gerontol.2018107505410.1016/j.exger.2017.06.01628658610
    [Google Scholar]
  43. KornbergT.B. Distributing signaling proteins in space and time: The province of cytonemes.Curr. Opin. Genet. Dev.201745222710.1016/j.gde.2017.02.01028242479
    [Google Scholar]
  44. McDermottM.I. MousleyC.J. Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus.Chem. Phys. Lipids2016200426110.1016/j.chemphyslip.2016.06.00527353530
    [Google Scholar]
  45. Ochoa-LizarraldeB. GaoY.G. PopovA.N. SamyginaV.R. ZhaiX. MishraS.K. BoldyrevI.A. MolotkovskyJ.G. SimanshuD.K. PatelD.J. BrownR.E. MalininaL. Structural analyses of 4-phosphate adaptor protein 2 yield mechanistic insights into sphingolipid recognition by the glycolipid transfer protein family.J. Biol. Chem.201829343167091672310.1074/jbc.RA117.00073330206120
    [Google Scholar]
  46. TuufJ. MattjusP. Membranes and mammalian glycolipid transferring proteins.Chem. Phys. Lipids2014178273710.1016/j.chemphyslip.2013.10.01324220498
    [Google Scholar]
  47. JacobF. MonodJ. Genetic regulatory of protein synthesis.J. Mol. Biol.1961331835610.1016/S0022‑2836(61)80072‑713718526
    [Google Scholar]
  48. ArcosD. Sánchez-SalcedoS. Izquierdo-BarbaI. RuizL. González-CalbetJ. Vallet-RegíM. Crystallochemistry, textural properties, and in vitro biocompatibility of different silicon-doped calcium phosphates.J. Biomed. Mater. Res. - Part A200678476277110.1002/jbm.a.30790
    [Google Scholar]
  49. QiuQ. DingX. WangY. ZhengY. ZhuL. LiY. LiuT. Rational design of nanofibrous scaffolds via bionic coating: Microstructural behavior and in vitro biological evaluation.Mater. Today Commun.20223210409810.1016/j.mtcomm.2022.104098
    [Google Scholar]
  50. GreenJ. SchotlandS. StauberD.J. KleemanC.R. ClemensT.L. Cell-matrix interaction in bone: Type I collagen modulates signal transduction in osteoblast-like cells.Am. J. Physiol. Cell Physiol.19952685C1090C110310.1152/ajpcell.1995.268.5.C10907762601
    [Google Scholar]
  51. MahnaviA. Shahriari-KhalajiM. HosseinpourB. AhangarianM. AidunA. BungauS. HassanS.S. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine.Front. Bioeng. Biotechnol.202310105769910.3389/fbioe.2022.105769936727042
    [Google Scholar]
  52. KuppanP. SethuramanS. KrishnanU.M. Interaction of human smooth muscle cells with nanofibrous scaffolds: Effect of fiber orientation on cell adhesion, proliferation, and functional gene expression.J Biomed Mater Res - Part A2015103722365010.1002/jbm.a.35360
    [Google Scholar]
  53. Surya RaghavendraS. JadhavG.R. GathaniK.M. KotadiaP. Bioceramics in endodontics – A review.J. Istanb. Univ. Fac. Dent.2017513 Suppl 1S128S13710.17096/jiufd.63659
    [Google Scholar]
  54. AliA. BanoS. PriyadarshiR. NegiY.S. Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering.Mater. Today Proc.20191517318210.1016/j.matpr.2019.04.189
    [Google Scholar]
  55. DashB.S. JoseG. LuY.J. ChenJ.P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy.Int. J. Mol. Sci.2021226298910.3390/ijms2206298933804239
    [Google Scholar]
  56. MostafaviE. Medina-CruzD. KalantariK. TaymooriA. SoltantabarP. WebsterT.J. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine.Bioelectricity20202212014910.1089/bioe.2020.002134471843
    [Google Scholar]
  57. KimJ.M. SonJ.S. KangS.S. KimG. ChoiS.H. Bone regeneration of hydroxyapatite/alumina bilayered scaffold with 3 mm passage-like medullary canal in canine tibia model.BioMed. Res. Int.201520151610.1155/2015/23510825688353
    [Google Scholar]
  58. ChenX. LiM. LinM. LuC. KumarA. PanY. LiuJ. PengY. Correction: Current and promising applications of Hf( iv )-based MOFs in cancer therapy.J. Mater. Chem. B Mater. Biol. Med.202311317516751610.1039/D3TB90133E37519266
    [Google Scholar]
  59. LiM. YinS. LinM. ChenX. PanY. PengY. SunJ. KumarA. LiuJ. Current status and prospects of metal–organic frameworks for bone therapy and bone repair.J. Mater. Chem. B Mater. Biol. Med.202210275105512810.1039/D2TB00742H35766423
    [Google Scholar]
  60. ChenJ. ChengF. LuoD. HuangJ. OuyangJ. Nezamzadeh-EjhiehA. KhanM.S. LiuJ. PengY. Recent advances in Ti-based MOFs in biomedical applications.Dalton Trans.20225139148171483210.1039/D2DT02470E36124915
    [Google Scholar]
  61. ZouY. HuangB. CaoL. DengY. SuJ. Tailored mesoporous inorganic biomaterials: Assembly, functionalization, and drug delivery engineering.Adv. Mater.2021332200521510.1002/adma.20200521533251635
    [Google Scholar]
  62. TheusA.S. NingL. KabboulG. HwangB. TomovM.L. LaRockC.N. Bauser-HeatonH. MahmoudiM. SerpooshanV. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties.iScience202225910494710.1016/j.isci.2022.10494736065192
    [Google Scholar]
  63. HaqueS. KotcherlakotaR. BhamidipatiP. MuralidharanK. SreedharB. AmanchyR. PatraC.R. Smartly engineered casein manganese oxide nanobiomaterials and its potential therapeutic angiogenesis applications for wound healing and limb ischemia.Adv. Ther.202369230014210.1002/adtp.202300142
    [Google Scholar]
  64. MaziarzA. KocanB. BesterM. BudzikS. CholewaM. OchiyaT. BanasA. How electromagnetic fields can influence adult stem cells: Positive and negative impacts.Stem Cell Res. Ther.2016715410.1186/s13287‑016‑0312‑527086866
    [Google Scholar]
  65. HanS. NieK. LiJ. SunQ. WangX. LiX. LiQ. 3D electrospun nanofiber-based scaffolds: From preparations and properties to tissue regeneration applications.Stem Cells Int.2021202112210.1155/2021/879014334221024
    [Google Scholar]
  66. RanaD. RamasamyK. LeenaM. JiménezC. CamposJ. IbarraP. HaidarZ.S. RamalingamM. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.Biotechnol. Prog.201632355456710.1002/btpr.226227006260
    [Google Scholar]
  67. ZhaoC. LiuW. ZhuM. WuC. ZhuY. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review.Bioact. Mater.20221838339810.1016/j.bioactmat.2022.02.01035415311
    [Google Scholar]
  68. RasouliM. DarghiasiS.F. NaghibS.M. RahmanianM. Multifunctional hydroxyapatite-based nanoparticles for biomedicine: Recent progress in drug delivery and local controlled release.Curr. Mech. Adv. Mater.20211131610.2174/2666184501999200420072949
    [Google Scholar]
  69. Safaei FiroozabadyA. AidunA. Kowsari-EsfahanR. AllahyariA. Characterization and evaluation of graphene oxide incorporated into nanofibrous scaffold for bone tissue engineering.J. Tissues Mater.20192113
    [Google Scholar]
  70. Krut’KoV.K. Bioactive calcium phosphate foam ceramics modified by biomimetic apatite.Proc. Natl. Acad. Sci. Belarus. Chem. Ser.20225815816810.29235/1561‑8331‑2022‑58‑2‑158‑168
    [Google Scholar]
  71. DarghiasiS.F. NaghibS.M. Materials based on Hydroxyapatite nanoparticles in drug delivery.Dep. Adv. Technol. Iran Univ. Sci. Technol.20161120
    [Google Scholar]
  72. BoseS. TarafderS. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review.Acta Biomater.2012841401142110.1016/j.actbio.2011.11.01722127225
    [Google Scholar]
  73. StanislavovA.S. SukhodubL.F. SukhodubL.B. KuznetsovV.N. BychkovK.L. KravchenkoM.I. Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials.Ultrason. Sonochem.201842849610.1016/j.ultsonch.2017.11.01129429738
    [Google Scholar]
  74. SoleymaniS. NaghibS.M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration.Heliyon202399e1936310.1016/j.heliyon.2023.e1936337662765
    [Google Scholar]
  75. OjoS.A. AbereD.V. AdejoH.O. RobertR.A. OluwasegunK.M. Additive manufacturing of hydroxyapatite-based composites for bioengineering applications.Bioprinting202332e0027810.1016/j.bprint.2023.e00278
    [Google Scholar]
  76. SathiyavimalS. VasantharajS. LewisOscarF. PugazhendhiA. SubashkumarR. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications.Int. J. Biol. Macromol.201912984485210.1016/j.ijbiomac.2019.02.05830769044
    [Google Scholar]
  77. GuM. LiW. JiangL. LiX. Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications.Acta Biomater.2022148224310.1016/j.actbio.2022.06.00635675891
    [Google Scholar]
  78. QiaoH. SongG. HuangY. YangH. HanS. ZhangX. WangZ. MaJ. BuX. FuL. Si, Sr, Ag co-doped hydroxyapatite/TiO 2 coating: enhancement of its antibacterial activity and osteoinductivity.RSC Advances2019924133481336410.1039/C9RA01168D35519590
    [Google Scholar]
  79. YuanQ. XuA. ZhangZ. ChenZ. WanL. ShiX. LinS. YuanZ. DengL. Bioactive silver doped hydroxyapatite composite coatings on metal substrates: Synthesis and characterization.Mater. Chem. Phys.201821813013910.1016/j.matchemphys.2018.07.038
    [Google Scholar]
  80. ChenW. LiuY. CourtneyH.S. BettengaM. AgrawalC.M. BumgardnerJ.D. OngJ.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating.Biomaterials200627325512551710.1016/j.biomaterials.2006.07.00316872671
    [Google Scholar]
  81. LaskusA. ZgadzajA. KolmasJ. Zn2+ and SeO32− co-substituted hydroxyapatite: Physicochemical properties and biological usefulness.Ceram. Int.20194517227072271510.1016/j.ceramint.2019.07.308
    [Google Scholar]
  82. FuX. LiuP. ZhaoD. YuanB. XiaoZ. ZhouY. YangX. ZhuX. TuC. ZhangX. Effects of nanotopography regulation and silicon doping on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant.Int. J. Nanomedicine2020154171418910.2147/IJN.S25293632606671
    [Google Scholar]
  83. ThianE.S. HuangJ. BestS.M. BarberZ.H. BonfieldW. Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study.Biomaterials200526162947295610.1016/j.biomaterials.2004.07.05815603789
    [Google Scholar]
  84. BalakrishnanS. PadmanabhanV.P. KulandaiveluR. Sankara Narayanan NellaiappanT.S. SagadevanS. PaimanS. MohammadF. Al-LohedanH.A. ObulapuramP.K. OhW.C. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite.Ceram. Int.20214745061507010.1016/j.ceramint.2020.10.084
    [Google Scholar]
  85. HashimotoY. UedaM. KohigaY. ImuraK. HontsuS. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.Dent. Mater. J.201837340841310.4012/dmj.2017‑12229279546
    [Google Scholar]
  86. PajorK. PajchelL. KolmasJ. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review.Materials20191217268310.3390/ma1217268331443429
    [Google Scholar]
  87. ZhangX WangB MaL XieL YangH LiY Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: A potential multifunctional biological coating.Ceram Int.202046277582777310.1016/j.ceramint.2020.07.275
    [Google Scholar]
  88. UllahI. ZhangW. YangL. UllahM.W. AttaO.M. KhanS. WuB. WuT. ZhangX. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute.Mater. Sci. Eng. C202011011063310.1016/j.msec.2020.11063332204069
    [Google Scholar]
  89. FaidtT. ZeitzC. GrandthyllS. HansM. HannigM. JacobsK. MüllerF. Time dependence of fluoride uptake in hydroxyapatite.ACS Biomater. Sci. Eng.2017381822182610.1021/acsbiomaterials.6b0078233429663
    [Google Scholar]
  90. YinX. BaiY. ZhouS. MaW. BaiX. ChenW. Solubility, mechanical and biological properties of fluoridated hydroxyapatite/calcium silicate gradient coatings for orthopedic and dental applications.J. Therm. Spray Technol.202029347148810.1007/s11666‑020‑00981‑3
    [Google Scholar]
  91. WangL. HeS. WuX. LiangS. MuZ. WeiJ. DengF. DengY. WeiS. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties.Biomaterials201435256758677510.1016/j.biomaterials.2014.04.08524835045
    [Google Scholar]
  92. GeX LengY BaoC XuSL WangR RenF Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants.J Biomed Mater Res A201095A58859910.1002/jbm.a.32862
    [Google Scholar]
  93. ChenS. ShiY. ZhangX. MaJ. Biomimetic synthesis of Mg‐substituted hydroxyapatite nanocomposites and three‐dimensional printing of composite scaffolds for bone regeneration.J. Biomed. Mater. Res. A2019107112512252110.1002/jbm.a.3675731319006
    [Google Scholar]
  94. VeljovicD. MaticT. StamenicT. KojicV. Dimitrijevic-BrankovicS. LukicM.J. JevticS. RadovanovicZ. PetrovicR. JanackovicD. Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity.Ceram. Int.20194517220292203910.1016/j.ceramint.2019.07.219
    [Google Scholar]
  95. PredoiD. IconaruS.L. PredoiM.V. StanG.E. ButonN. Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions.Nanomaterials201999129510.3390/nano909129531514280
    [Google Scholar]
  96. MiyajiF. KonoY. SuyamaY. Formation and structure of zinc-substituted calcium hydroxyapatite.Mater. Res. Bull.200540220922010.1016/j.materresbull.2004.10.020
    [Google Scholar]
  97. OfudjeE.A. AdeogunA.I. IdowuM.A. KareemS.O. Synthesis and characterization of Zn-Doped hydroxyapatite: Scaffold application, antibacterial and bioactivity studies.Heliyon201955e0171610.1016/j.heliyon.2019.e0171631193510
    [Google Scholar]
  98. ArcosD. Vallet-RegíM. Substituted hydroxyapatite coatings of bone implants.J. Mater. Chem. B Mater. Biol. Med.2020891781180010.1039/C9TB02710F32065184
    [Google Scholar]
  99. KulanthaivelS. RoyB. AgarwalT. GiriS. PramanikK. PalK. RayS.S. MaitiT.K. BanerjeeI. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.Mater. Sci. Eng. C20165864865810.1016/j.msec.2015.08.05226478356
    [Google Scholar]
  100. WuJ. RuanC. MaY. WangY. LuoY. Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds.J. Mater. Sci. Technol.201834350350710.1016/j.jmst.2017.01.008
    [Google Scholar]
  101. DebP. BaruaE. DeoghareA.B. LalaS.D. Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations.Ceram. Int.2019458100041001210.1016/j.ceramint.2019.02.044
    [Google Scholar]
  102. ChenS. ShiY. LuoY. MaJ. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery.Colloids Surf. B Biointerfaces201917912112710.1016/j.colsurfb.2019.03.06330954012
    [Google Scholar]
  103. DuJ. ZuoY. LinL. HuangD. NiuL. WeiY. WangK. LinQ. ZouQ. LiY. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.J. Mech. Behav. Biomed. Mater.20188815015910.1016/j.jmbbm.2018.08.02830172080
    [Google Scholar]
  104. SayedM. MahmoudE.M. BondioliF. NagaS.M. Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process.Ceram. Int.20194579025903110.1016/j.ceramint.2019.01.236
    [Google Scholar]
  105. BabilotteJ. MartinB. GuduricV. BareilleR. AgnielR. RoquesS. HéroguezV. DussauzeM. GaudonM. Le NihouannenD. CatrosS. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering.Mater. Sci. Eng. C202111811133410.1016/j.msec.2020.11133433254966
    [Google Scholar]
  106. LiR. YingB. WeiY. XingH. QinY. LiD. Comparative evaluation of Sr-incorporated calcium phosphate and calcium silicate as bioactive osteogenesis coating orthopedics applications.Colloids Surf. A Physicochem. Eng. Asp.202060012483410.1016/j.colsurfa.2020.124834
    [Google Scholar]
  107. KermaniF. MollazadehS. KargozarS. Vahdati KhakhiJ. Improved osteogenesis and angiogenesis of theranostic ions doped calcium phosphates (CaPs) by a simple surface treatment process: A state-of-the-art study.Mater. Sci. Eng. C202112411208210.1016/j.msec.2021.11208233947573
    [Google Scholar]
  108. CestariF. PetrettaM. YangY. MottaA. GrigoloB. SglavoV.M. 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering.Sustain. Mater. Technol.202129e0031810.1016/j.susmat.2021.e00318
    [Google Scholar]
  109. DarusF. IsaR.M. MamatN. JaafarM. Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: Effect on pores size, porosity and compressive strength.Ceram. Int.20184415184001840710.1016/j.ceramint.2018.07.056
    [Google Scholar]
  110. KOMAROVAI. Formation, structure and properties of modified with forsterite microarc oxidation coating on MЛ10 (ML10) magnesium alloy.Mech. Mach. Mech. Mater.20224616710.46864/1995‑0470‑2022‑4‑61‑61‑67
    [Google Scholar]
  111. NiS. ChouL. ChangJ. Preparation and characterization of forsterite (Mg2SiO4) bioceramics.Ceram. Int.2007331838810.1016/j.ceramint.2005.07.021
    [Google Scholar]
  112. EcheverríaL.M. Enstatite ceramics: A multicomponent system via sol-gel.J. Non-Cryst. Solids1992147-14855956410.1016/S0022‑3093(05)80676‑3
    [Google Scholar]
  113. PtáčekP. LangK. ŠoukalF. OpravilT. BartoníčkováE. TvrdíkL. Preparation and properties of enstatite ceramic foam from talc.J. Eur. Ceram. Soc.201434251552210.1016/j.jeurceramsoc.2013.08.007
    [Google Scholar]
  114. GoeuriotD. DuboisJ.C. MerleD. ThevenotF. ExbrayatP. Enstatite based ceramics for machinable prosthesis applications.J. Eur. Ceram. Soc.199818142045205610.1016/S0955‑2219(98)00117‑4
    [Google Scholar]
  115. HuangY. JinX. ZhangX. SunH. TuJ. TangT. ChangJ. DaiK. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration.Biomaterials200930285041504810.1016/j.biomaterials.2009.05.07719545889
    [Google Scholar]
  116. DarghiasiS.F. AskariE. NaghibS.M. The effect of a novel in situ akermanite-monticilite nanocomposite on osteogenic differentiation of mouse mesenchymal.Stem Cells202110.32393/csme.2021.27
    [Google Scholar]
  117. AskariE. NaghibS.M. Detection and monitoring of stem cell differentiation using nanotechnology.Methods Mol. Biol.2019212519720410.1007/7651_2019_27231802433
    [Google Scholar]
  118. AskariE. RasouliM. DarghiasiS.F. NaghibS.M. ZareY. RheeK.Y. Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering.Biodes. Manuf.20214224325710.1007/s42242‑020‑00113‑4
    [Google Scholar]
  119. GhorbaniF. ZamanianA. AidunA. Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application.J. Appl. Polym. Sci.2019136244765610.1002/app.47656
    [Google Scholar]
  120. FilippiM. BornG. ChaabanM. ScherberichA. Natural polymeric scaffolds in bone regeneration.Front. Bioeng. Biotechnol.2020847410.3389/fbioe.2020.0047432509754
    [Google Scholar]
  121. ZhangK. WangS. ZhouC. ChengL. GaoX. XieX. SunJ. WangH. WeirM.D. ReynoldsM.A. ZhangN. BaiY. XuH.H.K. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration.Bone Res.2018613110.1038/s41413‑018‑0032‑930374416
    [Google Scholar]
  122. AsadollahiM GerashiE ZohrevandM ZareiM SayedainSS AlizadehR Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method.Bioprinting202227e00228
    [Google Scholar]
  123. PinaS. OliveiraJ.M. ReisR.L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review.Adv. Mater.20152771143116910.1002/adma.20140335425580589
    [Google Scholar]
  124. ReddyM.S.B. PonnammaD. ChoudharyR. SadasivuniK.K. A comparative review of natural and synthetic biopolymer composite scaffolds.Polymers2021137110510.3390/polym1307110533808492
    [Google Scholar]
  125. NoorN.Q.I.M. RazaliR.S. IsmailN.K. RamliR.A. RazaliU.H.M. BahauddinA.R. ZaharudinN. RozzamriA. BakarJ. ShaaraniS.M. Application of green technology in gelatin extraction: A review.Processes2021912222710.3390/pr9122227
    [Google Scholar]
  126. SunW. GregoryD.A. TomehM.A. ZhaoX. Silk fibroin as a functional biomaterial for tissue engineering.Int. J. Mol. Sci.2021223149910.3390/ijms2203149933540895
    [Google Scholar]
  127. QiY. WangH. WeiK. YangY. ZhengR.Y. KimI. ZhangK.Q. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures.Int. J. Mol. Sci.201718323710.3390/ijms1803023728273799
    [Google Scholar]
  128. Grabska-ZielińskaS. SionkowskaA. How to improve physico‐chemical properties of silk fibroin materials for biomedical applications?—blending and cross‐linking of silk fibroin—a review.Materials2021146151010.3390/ma1406151033808809
    [Google Scholar]
  129. AidunA. Safaei FiroozabadyA. MoharramiM. AhmadiA. HaghighipourN. BonakdarS. FaghihiS. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering.Artif. Organs20194310E264E28110.1111/aor.1347431013365
    [Google Scholar]
  130. KeC.L. DengF.S. ChuangC.Y. LinC.H. Antimicrobial actions and applications of Chitosan.Polymers202113690410.3390/polym1306090433804268
    [Google Scholar]
  131. SaeediM. VahidiO. MoghbeliM.R. AhmadiS. AsadniaM. AkhavanO. SeidiF. RabieeM. SaebM.R. WebsterT.J. VarmaR.S. SharifiE. ZarrabiA. RabieeN. Customizing nano-chitosan for sustainable drug delivery.J. Control. Release202235017519210.1016/j.jconrel.2022.07.03835914615
    [Google Scholar]
  132. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications.Polymers20211319325610.3390/polym1319325634641071
    [Google Scholar]
  133. Abka-khajoueiR. TounsiL. ShahabiN. PatelA.K. AbdelkafiS. MichaudP. Structures, properties and applications of alginates.Mar. Drugs202220636410.3390/md2006036435736167
    [Google Scholar]
  134. ZhangS. DongJ. PanR. XuZ. LiM. ZangR. Structures, properties, and bioengineering applications of alginates and hyaluronic acid.Polymers2023159214910.3390/polym1509214937177293
    [Google Scholar]
  135. TripathiG. MiyazakiT. Fabrication and properties of alginate/calcium phosphate hybrid beads: A comparative study.Biomed. Mater. Eng.2021321152710.3233/BME‑20601233252063
    [Google Scholar]
  136. Ahmad RausR. Wan NawawiW.M.F. NasaruddinR.R. Alginate and alginate composites for biomedical applications.Asian J. Pharm. Sci.202116328030610.1016/j.ajps.2020.10.00134276819
    [Google Scholar]
  137. MohajeriM. EskandariM. GhazaliZ.S. GhazaliH.S. Cell encapsulation in alginate-based microgels using droplet microfluidics; A review on gelation methods and applications.Biomed. Phys. Eng. Express20228202200110.1088/2057‑1976/ac4e2d35073537
    [Google Scholar]
  138. FeketshaneZ. AlvenS. AderibigbeB.A. Gellan gum in wound dressing scaffolds.Polymers20221419409810.3390/polym1419409836236046
    [Google Scholar]
  139. AhmedE.M. Hydrogel: Preparation, characterization, and applications: A review.J. Adv. Res.20156210512110.1016/j.jare.2013.07.00625750745
    [Google Scholar]
  140. GracielaC.Q. José JuanE.C. GieraldinC.L. Xóchitl AlejandraP.M. GabrielA.Á. Hyaluronic acid. Extraction methods, sources and applications.Polymers20231516347310.3390/polym1516347337631529
    [Google Scholar]
  141. ZhaiP. PengX. LiB. LiuY. SunH. LiX. The application of hyaluronic acid in bone regeneration.Int. J. Biol. Macromol.20201511224123910.1016/j.ijbiomac.2019.10.16931751713
    [Google Scholar]
  142. TianH. TangZ. ZhuangX. ChenX. JingX. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application.Prog. Polym. Sci.201237223728010.1016/j.progpolymsci.2011.06.004
    [Google Scholar]
  143. GobiR. RavichandiranP. BabuR.S. YooD.J. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review.Polymers20211312196210.3390/polym1312196234199209
    [Google Scholar]
  144. LiuF. WangX. Synthetic polymers for organ 3D printing.Polymers2020128176510.3390/polym1208176532784562
    [Google Scholar]
  145. Madduma-BandarageU.S.K. MadihallyS.V. Synthetic hydrogels: Synthesis, novel trends, and applications.J. Appl. Polym. Sci.2021138195037610.1002/app.50376
    [Google Scholar]
  146. AidunA. ZamanianA. GhorbaniF. Immobilization of polyvinyl alcohol‐siloxane on the oxygen plasma‐modified polyurethane‐carbon nanotube composite matrix.J. Appl. Polym. Sci.2020137124847710.1002/app.48477
    [Google Scholar]
  147. AhmadipourM MohammadiH PangAL ArjmandM Ayode OtitojuT A review: Silicate ceramic-polymer composite scaffold for bone tissue engineering.Int. J. Polym. Mater. Polym. Biomater.20227118019510.1080/00914037.2020.1817018
    [Google Scholar]
  148. LinC.Y. KangJ.H. Mechanical properties of compact bone defined by the stress-strain curve measured using uniaxial tensile test: A concise review and practical guide.Materials20211415422410.3390/ma1415422434361418
    [Google Scholar]
  149. KimH.J. KimU.J. KimH.S. LiC. WadaM. LeiskG.G. KaplanD.L. Bone tissue engineering with premineralized silk scaffolds.Bone20084261226123410.1016/j.bone.2008.02.00718387349
    [Google Scholar]
  150. ChenL. HuJ. RanJ. ShenX. TongH. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering.Int. J. Biol. Macromol.2014651710.1016/j.ijbiomac.2014.01.00324412151
    [Google Scholar]
  151. BarbaniN. GuerraG.D. CristalliniC. UrciuoliP. AvvisatiR. SalaA. RoselliniE. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction.J. Mater. Sci. Mater. Med.2012231516110.1007/s10856‑011‑4505‑222116662
    [Google Scholar]
  152. NasutionH. HarahapH. DalimuntheN.F. GintingM.H.S. JaafarM. TanO.O.H. AruanH.K. HerfanandaA.L. Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review.Gels20228956810.3390/gels809056836135281
    [Google Scholar]
  153. BashirS. HinaM. IqbalJ. RajparA.H. MujtabaM.A. AlghamdiN.A. WagehS. RameshK. RameshS. Fundamental concepts of hydrogels: Synthesis, properties, and their applications.Polymers20201211270210.3390/polym1211270233207715
    [Google Scholar]
  154. GhazaliH.S. AskariE. GhazaliZ.S. NaghibS.M. BraschlerT. Lithography-based 3D printed hydrogels: From bioresin designing to biomedical application.Colloid Interface Sci. Commun.20225010066710.1016/j.colcom.2022.100667
    [Google Scholar]
  155. RafieianS. MirzadehH. MahdaviH. MasoumiM.E. A review on nanocomposite hydrogels and their biomedical applications.Sci. Eng. Compos. Mater.201926115417410.1515/secm‑2017‑0161
    [Google Scholar]
  156. AskariE. SeyfooriA. AmerehM. GharaieS.S. GhazaliH.S. GhazaliZ.S. KhunjushB. AkbariM. Stimuli-responsive hydrogels for local post-surgical drug delivery.Gels2020621410.3390/gels602001432397180
    [Google Scholar]
  157. ColettaD.J. MissanaL.R. MartinsT. JammalM.V. GarcíaL.A. FarezN. GleeT.D. Paulo Mardegan IssaJ. FeldmanS. Synthetic three-dimensional scaffold for application in the regeneration of bone tissue.J. Biomater. Nanobiotechnol.20189427728910.4236/jbnb.2018.94016
    [Google Scholar]
  158. AlimaN. SnooksR. McCormackJ. Bio Scaffolds: The orchestration of biological growth through robotic intervention.Int. J. Intell. Robot. Appl.20226352252910.1007/s41315‑021‑00218‑8
    [Google Scholar]
  159. ZhuY. GohC. ShresthaA. Biomaterial properties modulating bone regeneration.Macromol. Biosci.2021214200036510.1002/mabi.20200036533615702
    [Google Scholar]
  160. ValdozJ.C. JohnsonB.C. JacobsD.J. FranksN.A. DodsonE.L. SandersC. CribbsC.G. Van RyP.M. The ECM: To scaffold, or not to scaffold, that is the question.Int. J. Mol. Sci.202122231269010.3390/ijms22231269034884495
    [Google Scholar]
  161. ZhangD. LiuY. LiuZ. WangQ. Advances in antibacterial functionalized coatings on mg and its alloys for medical use-a review.Coatings202010982810.3390/coatings10090828
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137304537240828061334
Loading
/content/journals/cnano/10.2174/0115734137304537240828061334
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test