Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

This mini-review article focuses on the recent advancements in nano-biosensors for the detection of epigenetic changes, a burgeoning field at the intersection of nanotechnology and cancer diagnostics. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA expression, play a crucial role in cancer progression and drug resistance. The advent of nano-biosensors has introduced highly sensitive and specific methods for detecting these changes, surpassing the capabilities of traditional diagnostic tools. This article delves into various nano-biosensors, such as gold nanoparticles, quantum dots, carbon nanotubes, and graphene oxide sensors, highlighting their unique properties and applications in detecting epigenetic markers. It emphasizes the significance of early and accurate detection of epigenetic alterations in cancer, which opens new pathways for early diagnosis, monitoring treatment efficacy, and developing personalized therapeutic strategies. The review also addresses the technical challenges and limitations of current nano-biosensor technologies, including issues related to sensitivity, specificity, and biocompatibility. Furthermore, it explores the ethical and safety considerations in the clinical application of these nanotechnologies. The discussion extends to the potential future developments in this field, emphasizing interdisciplinary research and the integration of artificial intelligence for data analysis. This comprehensive overview of nano-biosensors for epigenetic change detection underscores their transformative potential in cancer research, offering insights into their current state, challenges, and future prospects in advancing personalized cancer care.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137310581240513070742
2024-05-24
2025-11-03
Loading full text...

Full text loading...

References

  1. ZhengX. TangH. XieC. ZhangJ. WuW. JiangX. Tracking cancer metastasis in vivo by using an iridium‐based hypoxia‐activated optical oxygen nanosensor.Angew. Chem. Int. Ed.201554288094809910.1002/anie.201503067 26037656
    [Google Scholar]
  2. WangZ. HuangP. BhirdeA. JinA. MaY. NiuG. NeamatiN. ChenX. A nanoscale graphene oxide–peptide biosensor for real-time specific biomarker detection on the cell surface.Chem. Commun.201248789768977010.1039/c2cc31974h 22919703
    [Google Scholar]
  3. SadidaH.Q. AbdullaA. MarzooqiS.A. HashemS. MachaM.A. AkilA.S.A.S. BhatA.A. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance.Transl. Oncol.20243910182110.1016/j.tranon.2023.101821 37931371
    [Google Scholar]
  4. HajjafariA. SadrS. RahdarA. BayatM. LotfalizadehN. DianatyS. RezaeiA. MoghaddamS.P. HajjafariK. SimabP.A. KharabaZ. BorjiH. PandeyS. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer.Inorg. Chem. Commun.202416411240910.1016/j.inoche.2024.112409
    [Google Scholar]
  5. AdampourezareM. NikzadB. AminiM. SheibaniN. Fluorimetric detection of DNA methylation by cerium oxide nanoparticles for early cancer diagnosis.Heliyon2024107e2869510.1016/j.heliyon.2024.e28695 38586346
    [Google Scholar]
  6. GaneshS. PremachandranS. VenkatakrishnanK. TanB. Enhancing the cancer metastasis diagnosis: Ultrasensitive nano sensors exploiting Cancer stem cell associated DNA methylation as a liquid biopsy marker.Sens. Actuators B Chem.202440313520610.1016/j.snb.2023.135206
    [Google Scholar]
  7. GhahramaniY. MokhberiM. MousaviS.M. HashemiS.A. LaiC.W. Electrochemical biosensors for determination of tumor biomarkers. Semicond Polymer Mater Biosens Appl.Woodhead Publishing202435137710.1016/B978‑0‑323‑95105‑0.00001‑2
    [Google Scholar]
  8. EbrahimiA. NikokarI. ZokaeiM. BozorgzadehE. Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in Triple Negative Breast Cancer.Talanta201818959259810.1016/j.talanta.2018.07.016 30086965
    [Google Scholar]
  9. ZhengX.T. LiC.M. Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor.Biosens. Bioelectron.20102561548155210.1016/j.bios.2009.11.008 19963365
    [Google Scholar]
  10. MittalS. KaurH. GautamN. ManthaA.K. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.Biosens. Bioelectron.20178821723110.1016/j.bios.2016.08.028 27567264
    [Google Scholar]
  11. MosayebiR. AhmadzadehA. WickeW. JamaliV. SchoberR. Nasiri-KenariM. Early cancer detection in blood vessels using mobile nanosensors.IEEE Trans. Nanobiosci.201918210311610.1109/TNB.2018.2885463 30530333
    [Google Scholar]
  12. D’OrazioP. Biosensors in clinical chemistry — 2011 update.Clin. Chim. Acta201141219-201749176110.1016/j.cca.2011.06.025 21729694
    [Google Scholar]
  13. TangL. LiS. XuL. MaW. KuangH. WangL. XuC. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection.ACS Appl. Mater. Interfaces2015723127081271210.1021/acsami.5b01259 26018359
    [Google Scholar]
  14. ShobhaB.N. MunirajN.J.R. Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer.Microsyst. Technol.201521479180010.1007/s00542‑014‑2281‑x
    [Google Scholar]
  15. ThapaA. SoaresA.C. SoaresJ.C. AwanI.T. VolpatiD. MelendezM.E. FregnaniJ.H.T.G. CarvalhoA.L. OliveiraO.N.Jr Carbon nanotube matrix for highly sensitive biosensors to detect pancreatic cancer biomarker CA19-9.ACS Appl. Mater. Interfaces2017931258782588610.1021/acsami.7b07384 28696659
    [Google Scholar]
  16. TeowJ.Y. ZhangQ. AbidinS.A.Z. TanC.C. Abdul RahmanS.N.S. KarsaniS.A. OthmanI. ChenY. LakshmipriyaT. GopinathS.C.B. Pioneering biosensor approaches for oral squamous cell carcinoma diagnosis: A comprehensive review.Process Biochem.2024141718110.1016/j.procbio.2024.02.015
    [Google Scholar]
  17. ChoudhuryS.D. GhoshS. KumarP. BhardwajA. SinghK. SinghA. KumarA. BasuB. GiriR. ChoudhuryD. Attenuation of c-Myc expression in breast cancer by hesperidin-mediated stabilization of its promoter proximal G quadruplex region.Research Square202410.21203/rs.3.rs‑4275818/v1
    [Google Scholar]
  18. GuptaA. GuptaA. VarshneyV. SewakA. Applications of nanobiosensors for biomedical and healthcare monitoring systems: a review and prospective study. Opto-VLSI Devices Circuits Biomed Healthc Appl2024119130
    [Google Scholar]
  19. RatreP. NazeerN. SoniN. KaurP. TiwariR. MishraP.K. Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro(nano)plastics: An artificial intelligence perspective.Environ. Sci. Pollut. Res. Int.20243168429845210.1007/s11356‑023‑31779‑9 38182954
    [Google Scholar]
  20. VishnuP.G. SuruthiG.S. NivedhaR. OviyaM. SivaprakashV. MuruganM. PreethiA.R. AnandA.V. Polymer nanocomposites of 2D nanomaterials for biosensing and imaging applications. Nanomaterials Biomed Bioeng Appl.SingaporeSpringer Nature Singapore202436338410.1007/978‑981‑97‑0221‑3_15
    [Google Scholar]
  21. ZhangG.J. NingY. Silicon nanowire biosensor and its applications in disease diagnostics: A review.Anal. Chim. Acta201274911510.1016/j.aca.2012.08.035 23036462
    [Google Scholar]
  22. ShandilyaR. BhargavaA. BunkarN. TiwariR. GoryachevaI.Y. MishraP.K. Nanobiosensors: Point-of-care approaches for cancer diagnostics.Biosens. Bioelectron.201913014716510.1016/j.bios.2019.01.034 30735948
    [Google Scholar]
  23. KwonE.J. DudaniJ.S. BhatiaS.N. Ultrasensitive tumour-penetrating nanosensors of protease activity.Nat. Biomed. Eng.201714005410.1038/s41551‑017‑005428970963
    [Google Scholar]
  24. LiuG. MaoX. PhillipsJ.A. XuH. TanW. ZengL. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells.Anal. Chem.20098124100131001810.1021/ac901889s 19904989
    [Google Scholar]
  25. SalvatiE. StellacciF. KrolS. Nanosensors for early cancer detection and for therapeutic drug monitoring.Nanomedicine201510233495351210.2217/nnm.15.180 26606949
    [Google Scholar]
  26. KelleyS.O. MirkinC.A. WaltD.R. IsmagilovR.F. TonerM. SargentE.H. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering.Nat. Nanotechnol.201491296998010.1038/nnano.2014.261 25466541
    [Google Scholar]
  27. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  28. YuanL. WangY. WangJ. XiaoH. LiuX. Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line.Toxicol. Lett.2014225229430410.1016/j.toxlet.2013.12.015 24374571
    [Google Scholar]
  29. CaoL. ZhuY. WangW. WangG. ZhangS. ChengH. Emerging nano-based strategies against drug resistance in tumor chemotherapy.Front. Bioeng. Biotechnol.2021979888210.3389/fbioe.2021.798882 34950650
    [Google Scholar]
  30. MarkmanJ.L. RekechenetskiyA. HollerE. LjubimovaJ.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance.Adv. Drug Deliv. Rev.20136513-141866187910.1016/j.addr.2013.09.019 24120656
    [Google Scholar]
  31. DavodabadiF. MirinejadS. MalikS. DhasmanaA. Ulucan-KarnakF. SargaziS. SargaziS. Fathi-KarkanS. RahdarA. Nanotherapeutic approaches for delivery of long non-coding RNAs: An updated review with emphasis on cancer.Nanoscale20241683881391410.1039/D3NR05656B 38353296
    [Google Scholar]
  32. ShiJ. ZhangY. FanY. LiuY. YangM. Recent advances in droplet‐based microfluidics in liquid biopsy for cancer diagnosis.Droplet202431e9210.1002/dro2.92
    [Google Scholar]
  33. ChenY. WangB. ZhaoY. ShaoX. WangM. MaF. YangL. NieM. JinP. YaoK. SongH. LouS. WangH. YangT. TianY. HanP. HuZ. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer.Nat. Commun.2024151165710.1038/s41467‑024‑46043‑y 38395893
    [Google Scholar]
  34. DasP.P. NagraikR. SharmaA. UpadhyayT.K. LalhlenmawiaH. BalramD. LianK.Y. SinghJ. KumarD. Recent update on biomimetic sensor technology for cancer diagnosis.Talanta Open2024910027610.1016/j.talo.2023.100276
    [Google Scholar]
  35. ShamsabadiA. HaghighiT. CarvalhoS. FrenetteL.C. StevensM.M. The nanozyme revolution: Enhancing the performance of medical biosensing platforms.Adv. Mater.20243610230018410.1002/adma.202300184 37102628
    [Google Scholar]
  36. RamasamyT. RuttalaH.B. SundaramoorthyP. PoudelB.K. YounY.S. KuS.K. ChoiH-G. YongC.S. KimJ.O. Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer.NPG Asia Mater.201810419721610.1038/s41427‑018‑0034‑5
    [Google Scholar]
  37. Niño-MartínezN. Salas OrozcoM.F. Martínez-CastañónG.A. Torres MéndezF. RuizF. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles.Int. J. Mol. Sci.20192011280810.3390/ijms20112808 31181755
    [Google Scholar]
  38. GuptaA. MumtazS. LiC.H. HussainI. RotelloV.M. Combatting antibiotic-resistant bacteria using nanomaterials.Chem. Soc. Rev.201948241542710.1039/C7CS00748E 30462112
    [Google Scholar]
  39. AshrafizadehM. MirzaeiS. GholamiM.H. HashemiF. ZabolianA. RaeiM. HushmandiK. ZarrabiA. VoelckerN.H. ArefA.R. HamblinM.R. VarmaR.S. SamarghandianS. ArostegiI.J. AlzolaM. KumarA.P. ThakurV.K. NabaviN. MakvandiP. TayF.R. OriveG. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression.Carbohydr. Polym.202127211849110.1016/j.carbpol.2021.118491 34420747
    [Google Scholar]
  40. RavichandranS.N. KumarM.M. DasA. BanerjeeA. VeronicaS. Sun-ZhangA. ZhangH. AnbalaganM. SunX.F. PathakS. An updated review on molecular biomarkers in diagnosis and therapy of colorectal cancer.Curr. Cancer Drug Targets202424659561110.2174/0115680096270555231113074003
    [Google Scholar]
  41. KasarR.R. AhirK.N. Current and emerging biomarkers in breast cancer: A revie.Curr Cancer Drug2024246595611
    [Google Scholar]
  42. LeeS.H.; Brianna, Association of microRNA-21 expression with breast cancer subtypes and its potential as an early biomarker.Pathol. Res. Pract.202425415507310.1016/j.prp.2023.155073 38218039
    [Google Scholar]
  43. PaliwalH. ChauhanB. KapoorD.U. SataniB.H. PatelS. PathakY.V. PrajapatiB.G. pH-responsive delivery nanoplatforms in cancer theranostics. Site-specific Cancer NanotheranosticsCRC Press2024
    [Google Scholar]
  44. Ahmed TahaB. Al-JubouriQ. ChahalS. Al MashhadanyY. RustagiS. ChaudharyV. ArsadN. State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-CoV-2 monitoring.Microchem. J.202419710977410.1016/j.microc.2023.109774
    [Google Scholar]
  45. LivneyY.D. AssarafY.G. Rationally designed nanovehicles to overcome cancer chemoresistance.Adv. Drug Deliv. Rev.20136513-141716173010.1016/j.addr.2013.08.006 23954781
    [Google Scholar]
  46. KanamalaM. WilsonW.R. YangM. PalmerB.D. WuZ. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.Biomaterials20168515216710.1016/j.biomaterials.2016.01.061 26871891
    [Google Scholar]
  47. ChengX. XuH.D. RanH.H. LiangG. WuF.G. Glutathione-depleting nanomedicines for synergistic cancer therapy.ACS Nano20211558039806810.1021/acsnano.1c00498 33974797
    [Google Scholar]
  48. YangX. GaoL. GuoQ. LiY. MaY. YangJ. GongC. YiC. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy.Nano Res.202013102579259410.1007/s12274‑020‑2722‑z
    [Google Scholar]
  49. Alvarez-BerríosM.P. Sosa-CintronN. Rodriguez-LugoM. JunejaR. Vivero-EscotoJ.L. Hybrid nanomaterials based on iron oxide nanoparticles and mesoporous silica nanoparticles: Overcoming challenges in current cancer treatments.J. Chem.2016201611510.1155/2016/2672740
    [Google Scholar]
  50. XiaQ. JiangH. LiuX. YinL. WangX. Advances in engineered nano-biosensors for bacteria diagnosis and multidrug resistance inhibition.Biosensors20241425910.3390/bios14020059 38391978
    [Google Scholar]
  51. Mikaeeli KangarshahiB. NaghibS.M. RabieeN. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers.Crit. Rev. Clin. Lab. Sci.202461647349510.1080/10408363.2024.2321202 38450458
    [Google Scholar]
  52. SabaghiM. JamaliS.N. Advancements, challenges, and future prospects of nanobiosensors in food packaging for allergen detection.J. Food Meas. Charact.2024183444345710.1007/s11694‑024‑02416‑x
    [Google Scholar]
  53. RatherS.A. MustafaR.A. AshrafM.V. Hannan KhanM.A. AhmadS. WaniZ.A. Implications of nano-biosensors in the early detection of neuroparasitic diseases. Theranostic Applications of Nanotechnology in Neurological Disorders.SingaporeSpringer Nature Singapore20244383
    [Google Scholar]
  54. KumariM. GuptaV. KumarN. ArunR.K. Microfluidics-based nanobiosensors for healthcare monitoring.Mol. Biotechnol.202466337840110.1007/s12033‑023‑00760‑9 37166577
    [Google Scholar]
  55. MousazadehM. DaneshpourM. Rafizadeh TaftiS. ShoaieN. JahanpeymaF. MousazadehF. KhosraviF. KhashayarP. AzimzadehM. MostafaviE. Nanomaterials in electrochemical nanobiosensors of miRNAs.Nanoscale202416104974501310.1039/D3NR03940D 38357721
    [Google Scholar]
  56. Medrano-LopezJ.A. VillalpandoI. SalazarM.I. Torres-TorresC. Hierarchical nanobiosensors at the end of the SARS-CoV-2 pandemic.Biosensors202414210810.3390/bios14020108 38392027
    [Google Scholar]
  57. CondeJ. OlivaN. ArtziN. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance.Proc. Natl. Acad. Sci. USA201511211E1278E128710.1073/pnas.1421229112 25733851
    [Google Scholar]
  58. MaB. HeL. YouY. MoJ. ChenT. Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy.Drug Deliv.201825129330610.1080/10717544.2018.1425779 29334793
    [Google Scholar]
  59. GaoP. PanW. LiN. TangB. Boosting cancer therapy with organelle-targeted nanomaterials.ACS Appl. Mater. Interfaces20191130265292655810.1021/acsami.9b01370 31136142
    [Google Scholar]
  60. ChenY. BathulaS.R. LiJ. HuangL. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer.J. Biol. Chem.201028529226392265010.1074/jbc.M110.125906 20460382
    [Google Scholar]
  61. MooreT.L. Rodríguez-LorenzoL. HirschV. BalogS. UrbanD. JudC. Rothen-RutishauserB. LattuadaM. Petri-FinkA. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions.Chem. Soc. Rev.201544176287630510.1039/C4CS00487F 26056687
    [Google Scholar]
  62. RoomeN.J. CareyJ.D. Beyond graphene: Stable elemental monolayers of silicene and germanene.ACS Appl. Mater. Interfaces20146107743775010.1021/am501022x 24724967
    [Google Scholar]
  63. BaaloushaM. Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics.NanoImpact20176556810.1016/j.impact.2016.10.005
    [Google Scholar]
  64. Ravi ShankarM. RaoB.C. ChandrasekarS. Dale ComptonW. KingA.H. Thermally stable nanostructured materials from severe plastic deformation of precipitation-treatable Ni-based alloys.Scr. Mater.200858867567810.1016/j.scriptamat.2007.11.040
    [Google Scholar]
  65. DhahiT.S. DafhallaA.K.Y. SaadS.A. ZayanD.M.I. AhmedA.E.T. ElobaidM.E. AdamT. GopinathS.C.B. The importance, benefits, and future of nanobiosensors for infectious diseases.Biotechnol. Appl. Biochem.202471242944510.1002/bab.2550 38238920
    [Google Scholar]
  66. VirkV. DeepakH. TanejaK. SrivastavaR. GiriS. Amelioration in nanobiosensors for the control of plant diseases: Current status and future challenges.Front. Nanotechnol.20246131016510.3389/fnano.2024.1310165
    [Google Scholar]
  67. MobedA. DarvishiM. TahavvoriA. AlipourfardI. KohansalF. GhaziF. AlivirdilooV. Nanobiosensors for procalcitonin (PCT) analysis.J. Clin. Lab. Anal.2024383e2500610.1002/jcla.25006 38268233
    [Google Scholar]
  68. KangarshahiB.M. NaghibS.M. Label-free electrochemical nanobiosensors using Au-SPE for COVID-19 detection: A comparative review of different biomarkers and recognition elements.Curr. Anal. Chem.20242029010810.2174/0115734110286784231221054217
    [Google Scholar]
  69. PathakJ. SinghD.K. SinghP.R. KumariN. JaiswalJ. GuptaA. SinhaR.P. Application of nanoparticles in agriculture: Nano-based fertilizers, pesticides, herbicides, and nanobiosensors. Molecular Impacts of Nanoparticles on Plants and Algae.Academic Press202430533110.1016/B978‑0‑323‑95721‑2.00012‑9
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137310581240513070742
Loading
/content/journals/cnano/10.2174/0115734137310581240513070742
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test