Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

Orthodontic arch wires, typically made of Nickel Titanium (NiTi), are widely utilized in dental procedures for correcting teeth misalignment and jaw issues due to their favorable mechanical attributes and cost-effectiveness. However, these NiTi wires are prone to corrosion in the oral environment, leading to diminished mechanical stability, compromised aesthetics, and potential health concerns for patients.

Objective

There is a growing demand to augment the corrosion resistance and stability of orthodontic wires. Hence, this study aimed to address these issues. Herein, zirconium dioxide (ZrO) and oxidized ethylene glycol (OEG) films were deposited onto NiTi wires to improve the corrosion resistance and stability.

Methods

NiTi wires were modified by a two-step process involving electrodeposition of ZrO and oxidized ethylene glycol (OEG) film. The surface characterizations of coated material (OEG/ZrO/NiTi) were carried out by using Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Electron Microprobe Analysis (E-Map) to confirm the elemental composition of the coated NiTi wire.

Results

The OEG/ZrO/NiTi wire exhibited a potentiodynamic polarization resistance of 547037 Ω and higher stability than the bare NiTi wire (396421 Ω). The corrosion rate for OEG/ZrO/NiTi wire was found to be 0.040 mm/year, which was comparatively lower than a bare NiTi wire (0.069 mm/year). Due to the formation of OEG/ZrO film, NiTi wire became electrically insulative and showed a higher impedance than bare NiTi wire.

Conclusion

The bilayer coating of ZrO and OEG has proven to significantly improve the corrosion resistance and stability of the wires. Thus, these materials can be considered for coating orthodontic arch wires with improved corrosion stability.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137313324240723073001
2024-08-08
2025-11-02
Loading full text...

Full text loading...

References

  1. GraberL.W. VanarsdallR.L. VigK. Orthodontics: Current Principles & Techniques.7th EdElsevier2012
    [Google Scholar]
  2. MostfaM.A. GomaaH. OthmanI.M.M. AliG.A.M. Experimental and theoretical studies of a novel synthesized azopyrazole-benzenesulfonamide derivative as an efficient corrosion inhibitor for mild steel.J. Indian Chem. Soc.20211851231124110.1007/s13738‑020‑02106‑7
    [Google Scholar]
  3. BącelaJ. ŁabowskaM.B. DetynaJ. ZiętyA. MichalakI. Functional coatings for orthodontic archwires—A review.Materials (Basel)20201315325710.3390/ma1315325732707959
    [Google Scholar]
  4. TomsA.P. The corrosion of orthodontic wire.Eur. J. Orthod.1988102879710.1093/ejo/10.2.873164682
    [Google Scholar]
  5. NeumannP. BourauelC. JägerA. Corrosion and permanent fracture resistance of coated and conventional orthodontic wires.J. Mater. Sci. Mater. Med.200213214114710.1023/A:101383101124115348635
    [Google Scholar]
  6. CastroS.M. PoncesM.J. LopesJ.D. VasconcelosM. PollmannM.C.F. Orthodontic wires and its corrosion—The specific case of stainless steel and beta-titanium.J. Dent. Sci.20151011710.1016/j.jds.2014.07.002
    [Google Scholar]
  7. SunL. HongG. Surface modifications for zirconia dental implants: A review.Front. Dent. Med.2021273324210.3389/fdmed.2021.733242
    [Google Scholar]
  8. PalumboG. ŚwięchD. GórnyM. Guar gum as an Eco-friendly corrosion inhibitor for N80 carbon steel under sweet environment in saline solution: Electrochemical, surface, and spectroscopic studies.Int. J. Mol. Sci.202324151226910.3390/ijms24151226937569651
    [Google Scholar]
  9. KamalA.B. MostfaM.A. AshmawyA.M. El-GabyM.S.A. AliG.A.M. Corrosion inhibition behavior of the synthesized pyrazoline-sulfonamide hybrid of mild steel in aqueous solutions: experimental and quantum investigations.J. Chem. Sci.202213439010.1007/s12039‑022‑02086‑6
    [Google Scholar]
  10. HurlenT. HaugA.T. Corrosion and passive behaviour of aluminium in weakly alkaline solution.Electrochim. Acta19842981133113810.1016/0013‑4686(84)87167‑4
    [Google Scholar]
  11. ChaudhryA.U. MittalV. MishraB. Evaluation of iron nickel oxide nanopowder as corrosion inhibitor: Effect of metallic cations on carbon steel in aqueous NaCl.Corros. Sci. Technol.2016151131710.14773/cst.2016.15.1.13
    [Google Scholar]
  12. MahrossM.H. TaherM.A. MostfaM.A. ChongK.F. AliG.A.M. Experimental and quantum investigations of novel corrosion inhibitors based triazene derivatives for mild steel.J. Mol. Struct.2021124213083110.1016/j.molstruc.2021.130831
    [Google Scholar]
  13. AshmawyA.M. MostafaM.A. KamalA.B. AliG.A.M. El-GabyM.S.A. Corrosion inhibition of mild steel in 1 M HCl by pyrazolone-sulfonamide hybrids: synthesis, characterization, and evaluation.Sci. Rep.20231311855510.1038/s41598‑023‑45659‑237899374
    [Google Scholar]
  14. PourmahdaviM. ParvinN. Effects of anodic oxidation in ethylene glycol based electrolyte on the corrosion resistance and biocompatibility of NiTi shape memory alloy.Adv. Mat. Res.201382943143510.4028/www.scientific.net/AMR.829.431
    [Google Scholar]
  15. SelvarajA. GeorgeA.M. RajeshkumarS. Efficacy of zirconium oxide nanoparticles coated onvstainless steel and nickel titanium wires in orthodontic treatment.Bioinformation202117876076610.6026/9732063001776035540697
    [Google Scholar]
  16. ChopraD. GuoT. GulatiK. IvanovskiS. Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry.Dent. Mater.2023401e1e1710.1016/j.dental.2023.10.00737891132
    [Google Scholar]
  17. BapatR.A. YangH.J. ChaubalT.V. DharmadhikariS. AbdullaA.M. AroraS. RawalS. KesharwaniP. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry.RSC Advances20221220127731279310.1039/D2RA00006G35496329
    [Google Scholar]
  18. LiuJ. LouY. ZhangC. YinS. LiH. SunD. SunX. Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO 2 coating.RSC Advances2017769439384394910.1039/C7RA06960J
    [Google Scholar]
  19. OufA.M.A. IbrahimA.A. El-ShafeiA.A. Reactivity of the pt/WO3/GC electrode towards ethylene glycol oxidation in 0.1 M H2SO4.Electroanalysis20112381998200610.1002/elan.201100071
    [Google Scholar]
  20. MuruganR.V. MageshV. VijayalakshmiK. AtchudanR. AryaS. SundramoorthyA.K. Electrochemical sensing of Vitamin C using graphene/ poly-thionine composite film modified electrode.Micro Nanosyst.2024161576410.2174/0118764029290865240209072023
    [Google Scholar]
  21. KamalasekaranK. MageshV. AtchudanR. AryaS. SundramoorthyA.K. Development of electrochemical sensor using iron (III) phthalocyanine/gold nanoparticle/graphene hybrid film for highly selective determination of nicotine in human salivary samples, biosensors 13.Biosensors202313983910.3390/bios13090839
    [Google Scholar]
  22. RyśA. WróbelP. SamekL. Optimization of the energy dispersive x‐ray fluorescence spectrometer for determination of elemental composition of air particulate matter samples.XRay Spectrom.202352632332910.1002/xrs.3328
    [Google Scholar]
  23. MageshV. KothariV.S. GanapathyD. AtchudanR. AryaS. NallaswamyD. SundramoorthyA.K. Using sparfloxacin-capped gold nanoparticles to modify a screen-printed carbon electrode sensor for ethanol determination.Sensors20232319820110.3390/s2319820137837031
    [Google Scholar]
  24. MuruganR.V. SridharanG. AtchudanR. AryaS. NallaswamyD. SundramoorthyA. A facile synthesis of bimetallic copper-silver nanocomposite and their application in ascorbic acid detection.Curr. Nanosci.20242011010.2174/0115734137281377240103062220
    [Google Scholar]
  25. MahajanA. SidhuN. DevganS. Examination of hemocompatibility and corrosion resistance of electrical discharge-treated duplex stainlesss steel (DNITI-2205) for biomedical applicationsAppl Phys A: Mater Sci20201269737
    [Google Scholar]
  26. SridharanG. GodwinC.J.T. AtchudanR. AryaS. GovindasamyM. OsmanS.M. SundramoorthyA.K. Iron oxide decorated hexagonal boron nitride modified electrochemical sensor for the detection of nitrofurantoin in human urine samples.J. Taiwan Inst. Chem. Eng.202416310532010.1016/j.jtice.2023.105320
    [Google Scholar]
  27. GunnarsonA. BongardH.J. SchüthF. Insights into the ionomer distribution through elemental mapping of model catalysts mixed with nafion.J. Electrochem. Soc.20231701111450610.1149/1945‑7111/ad07a6
    [Google Scholar]
  28. MahajanA. SidhuS.S. Surface modification of metallic biomaterials for enhanced functionality: a review.Mater. Technol.20183329310510.1080/10667857.2017.1377971
    [Google Scholar]
  29. ChauhanN.L. JuvekarV.A. SarkarA. Oxidation of ethylene glycol: Unity of chemical and electrochemical catalysis.Electrochem. Sci. Adv.202226e210009210.1002/elsa.202100092
    [Google Scholar]
  30. TorshinV.B. PovorovA.A. KrotovaM.V. YakushevaA.A. MotyginaA.S. ProtasovaN.M. Electrochemical oxidation of ethylene glycol in aqueous media using lead dioxide titanium anode.Ecol. Indust. Russia2024285253310.18412/1816‑0395‑2024‑5‑25‑33
    [Google Scholar]
  31. SittaE. NagaoR. VarelaH. The electro-oxidation of ethylene glycol on platinum over a wide pH range: oscillations and temperature effects.PLoS One201389e7508610.1371/journal.pone.007508624058650
    [Google Scholar]
  32. Becerra AranedaA.A. KappesM.A. RodríguezM.A. CarranzaR.M. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions.Corros. Sci.202219811012110.1016/j.corsci.2022.110121
    [Google Scholar]
  33. SherifK.P. NarayanR. Electrochemical behaviour of aluminium in 1M NaCl solution: Part 1: Open circuit potential measurements.Br. Corros. J.198924319920310.1179/000705989798270018
    [Google Scholar]
  34. GhamsarizadeR. RamezanzadehB. MohammadlooH.E. Corrosion measurements in coatings and paintings. Electrochemical and Analytical Techniques for Sustainable Corrosion Monitoring.Chapter 12 AslamJ. VermaC. Mustansar HussainC. Elsevier202321726410.1016/B978‑0‑443‑15783‑7.00008‑6
    [Google Scholar]
  35. ZhangW. XiaW. ChenZ. ZhangG. QianS. LinZ. Comparison of the cathodic protection of epoxy resin coating/zinc-rich coatings on defective areas under atmospheric and immersion conditions: The secondary activation of zinc particles.Coatings202414333610.3390/coatings14030336
    [Google Scholar]
  36. SridharanG. BabuK.L. GanapathyD. AtchudanR. AryaS. SundramoorthyA.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract.Crystals202313458910.3390/cryst13040589
    [Google Scholar]
  37. BaluS. SundramoorthyA.K. Label-free immunosensors for the ultrasensitive detection of cancer biomarkers.Oral Oncol. Rep.20241010027310.1016/j.oor.2024.100273
    [Google Scholar]
  38. JanjuaA.N. AhmedA. SinghA. SundramoorthyA.K. YoungS.J. ChuY.L. AryaS. Synthesis, characterization, and implementation of BaNiO 3 perovskite nanoparticles as thin film supercapacitor electrode.Energy Storage202464e63010.1002/est2.630
    [Google Scholar]
  39. MuruganP. NagarajanR.D. SundramoorthyA.K. GanapathyD. AtchudanR. NallaswamyD. KhoslaA. Electrochemical detection of H2O2 using an activated glassy carbon electrode, ECS Sens.Plus20221034401
    [Google Scholar]
  40. MuruganP. SundramoorthyA.K. NagarajanR.D. AtchudanR. ShanmugamR. GanapathyD. AryaS. AlothmanA.A. OuladsmaneM. Electrochemical detection of H2O2 on graphene nanoribbons/cobalt oxide nanorods-modified electrode.J. Nanomater.20222022986611110.1155/2022/9866111
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137313324240723073001
Loading
/content/journals/cnano/10.2174/0115734137313324240723073001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test