Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction/Objective

Electronic packaging makes use of hybrid A356 aluminium alloy MMCs (matrix metal composites). Enhanced endurance limit, increased production and energy, low maintenance cost, and benefits to the environment, such as reduced noise and airborne pollutants, are among the features that are recommended to be evaluated. This study aimed to analyze the thermal properties of A356 aluminium alloy with graphite (Gr) and boron carbide (B4C) hybrid metal matrix composites. For this purpose, the A356 hybrid composite was primed by the stir casting process with the addition of 5 wt % and 10 wt % of Gr and B4C reinforcements. In general, A356 hybrid composite material thermal analysis is crucial for electrical equipment.

Methods

The liquid-in-filtration method was used to create the hybrid composites, which were then tested thermally for parameters, like melting point, thermal diffusivity, and thermal coefficient of expansion. The thermocouple sensor of a calorimeter was used to examine the disparity in the composites. A thermal analysis tool called TGA was used to visually represent the relationship between a material's weight and temperature.

Results

The temperature was found to be 300oC at the 0.411 W/g maximum heat flow rate. Thermal conductivity is the ratio of the temperature difference divided by the area of the heat transfer from one substance to another. The thermal coefficient of expansion illustrates how a material's dimensions and weight change as temperature increases.

Conclusion

The proportion of the weight of the hybrid composites was found to fall with a rise in the temperature. The melting point curve of the composites demonstrated a little increase in temperature to be accompanied by a sharp increase in heat flow.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230519111414
2023-07-03
2025-10-18
Loading full text...

Full text loading...

References

  1. MohamadigangarajJ. NourouziS. Jamshidi AvalH. The effect of heat treatment and cooling conditions on friction stir processing of A390-10 wt% SiC aluminium matrix composite.Mater. Chem. Phys.202126312442310.1016/j.matchemphys.2021.124423
    [Google Scholar]
  2. BhoiN.K. SinghH. PratapS. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review.J. Compos. Mater.202054681383310.1177/0021998319865307
    [Google Scholar]
  3. Senthil KumarB.R. Investigations on wear behavior of aluminium composites at elevated temperature.Advances in Materials Science and Engineering2022202210.1155/2022/9594798
    [Google Scholar]
  4. SaravananS. Godwin AntonyA. VijayanV. LoganathanM. BaskarS. Synthesis of SiO2 nano particles by using solgelroute.Inter J Mech Eng Techno20191785790
    [Google Scholar]
  5. PoovazhganL. VijayananthS. SivaganesanS. Optimizingultrasonic power on fabricating aluminum nanocompositesreinforced with boron carbide nanoparticles.Mater. Sci. Forum2020979283310.4028/www.scientific.net/MSF.979.28
    [Google Scholar]
  6. SureshV. HariharanN. VellingiriS. An investigation on the tensile properties and micro-structure of hybrid metal matrix composites.Int. J. Mater. Prod. Technol.2018561/2849410.1504/IJMPT.2018.089119
    [Google Scholar]
  7. KumaraswamyH.S. VishnuP. BharathV. Krishna RaoT. Microstructureand mechanical properties of sintered Al2024 hybridMMCs.J. Phys. Conf. Ser.20201455101202410.1088/1742‑6596/1455/1/012024
    [Google Scholar]
  8. AlizadehA. MalekiM. AbdollahiA. Preparation of super-high strength nanostructured B4 C reinforced Al-2Cu aluminum alloy matrix composites by mechanical milling and hot press method: Microstructural, mechanical and tribological characterization.Adv. Powder Technol.201728123274328710.1016/j.apt.2017.10.007
    [Google Scholar]
  9. AnoopJ. Vijay AnanthS. Fabrication process and characterizationof A356 aluminiumalloy reinforced with Gr-FE3O4-B4C hybrid nanoparticles manufactured by selectivelaser melting (SLM)4th International Conference onAdvances in Mechanical Engineering20227510499
    [Google Scholar]
  10. Nasr IsfahaniM.J. PayamiF. AsadabadM.A. ShokriA.A. Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites.J. Alloys Compd.20197971348135810.1016/j.jallcom.2019.05.188
    [Google Scholar]
  11. SureshV. VikramP. PalanivelR. LaubscherR.F. Mechanical and wear behavior of LM25 Aluminium matrix hybrid composite reinforced with Boron carbide, Graphite and Iron oxide.Mater. Today Proc.2018514278522786010.1016/j.matpr.2018.10.023
    [Google Scholar]
  12. UthayakumarM. AravindanS. RajkumarK. Wear performance of Al–SiC–B4C hybrid composites under dry sliding conditions.Mater. Des.20134745646410.1016/j.matdes.2012.11.059
    [Google Scholar]
  13. ShabaniM.O. MazaheryA. RahimipourM.R. RazaviM. “FEM and ANNinvestigation of A356 composites reinforced with B4C particulates”J King Saud Univ Eng Sci2012242107113
    [Google Scholar]
  14. FrancisE.D. SureshV. International Journal of Research2019VIIIVI20372042
    [Google Scholar]
  15. JiangQ.C. MaB.X. WangH.Y. WangY. DongY.P. Fabrication of steel matrix composites locally reinforced with in situ TiB2–TiC particulates using self-propagating high-temperature synthesis reaction of Al–Ti–B4C system during casting.Compos., Part A Appl. Sci. Manuf.200637113313810.1016/j.compositesa.2005.03.011
    [Google Scholar]
  16. MazaheryA. ShabaniM.O. Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys.Compos., Part B Eng.20124331302130810.1016/j.compositesb.2012.01.011
    [Google Scholar]
  17. PeramananA. PalaniP.K. DevadasanS.R. SureshV. Agility in small sized pump manufacturing companies - An exploration in an Indian scenario”, International Journal of Rapid Manufacturing, vol.8, issue no.1/2,pp. 77-94, 2019.doi:10.IJRAPIDM15042019097029
    [Google Scholar]
  18. BaradeswaranA. Elaya PerumalA. Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites.Compos., Part B Eng.20145646447110.1016/j.compositesb.2013.08.013
    [Google Scholar]
  19. Senthil KumarM. VanmathiM. SakthivelG. SiC reinforcementin the synthesis and characterization of A356/Al2O3/SiC/Gr reinforced composite-paving a way for the nextgeneration of aircraft applications.Silicon20211382737274410.1007/s12633‑020‑00625‑9
    [Google Scholar]
  20. DasS. MC. SamantaS. KayaroganamP. JP.D. Fabrication and tribological study of AA6061 hybrid metal matrix composites reinforced with SiC/B 4 C nanoparticles.Ind. Lubr. Tribol.2019711839310.1108/ILT‑05‑2018‑0166
    [Google Scholar]
  21. ArifS. JamilB. ShaikhM.B.N. AzizT. AnsariA.H. Characterization of surface morphology, wear performanceand modelling of graphite reinforced aluminiumhybrid composites.Inter J Eng Sci Technol2019233674690
    [Google Scholar]
  22. RavichandranM. Naveen SaitA. AnandakrishnanV. Al–TiO2–Gr powder metallurgy hybrid composites with cold upset forging.Rare Met.201433668669610.1007/s12598‑014‑0239‑x
    [Google Scholar]
  23. SainiS. GuptaA. MehtaA.J. PramanikS. Rice husk-extracted silica reinforced graphite/aluminium matrix hybrid composite.J. Therm. Anal. Calorim.202214721157116610.1007/s10973‑020‑10404‑8
    [Google Scholar]
  24. ZhangJ. LiuQ. YangS. ChenZ. LiuQ. JiangZ. Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy.Prog. Nat. Sci.202030219219910.1016/j.pnsc.2020.01.024
    [Google Scholar]
  25. AlanemeK.K. FajemisinA.V. MalediN.B. Development of aluminium-based composites reinforced with steel and graphite particles: structural, mechanical and wear characterization.J. Mater. Res. Technol.20198167068210.1016/j.jmrt.2018.04.019
    [Google Scholar]
  26. VellingiriS. An experimental and investigation on the micro-structure hardness and tensile properties of Al-GrFe3O4 hybrid metal matrix composites.FME Transactions201947351151710.5937/fmet1903511S
    [Google Scholar]
  27. SadounA.M. NajjarI.M.R. Abd-ElwahedM.S. MeselhyA. Experimental study on properties of Al–Al2O3 nanocomposite hybridized by graphene nanosheets.J. Mater. Res. Technol.202096147081471710.1016/j.jmrt.2020.10.011
    [Google Scholar]
  28. SadounA.M. NajjarI.R. AlsorujiG.S. Abd-ElwahedM.S. ElazizM.A. FathyA. Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method.Mathematics2022108126610.3390/math10081266
    [Google Scholar]
  29. ShaatM. FathyA. WagihA. Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals.Mech. Mater.202014310332110.1016/j.mechmat.2020.103321
    [Google Scholar]
  30. Abd-ElwahedM.S. IbrahimA.F. RedaM.M. Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite.J. Mater. Res. Technol.2020948528853410.1016/j.jmrt.2020.05.021
    [Google Scholar]
  31. MohamedA. MohammedM.M. IbrahimA.F. El-KadyO.A. Effect of nano Al 2 O 3 coated Ag reinforced Cu matrix nanocomposites on mechanical and tribological behavior synthesis by P/M technique.J. Compos. Mater.202054304921492810.1177/0021998320934860
    [Google Scholar]
  32. GuD. WangH. DaiD. YuanP. MeinersW. and Poprawe R. “Rapid fabrication of Al-based bulk-form nanocompositeswith novel reinforcement and enhanced performanceby selective laser melting,”.Scr. Mater.201596252810.1016/j.scriptamat.2014.10.011
    [Google Scholar]
  33. ZhangY. SunJ. VilarR. Characterization of (TiB+TiC)/TC4 in situ titanium matrix composites prepared by laser direct deposition.J. Mater. Process. Technol.2011211459760110.1016/j.jmatprotec.2010.11.009
    [Google Scholar]
  34. RavindranP. ManisekarK. NarayanasamyP. SelvakumarN. NarayanasamyR. Application of factorial techniques to study the wear of Al hybrid composites with graphite addition.Mater. Des.201239425410.1016/j.matdes.2012.02.013
    [Google Scholar]
  35. JadhavP.R. SridharB.R. NagaralM. HartiJ.I. Mechanical behavior and fractography of graphite and boron carbide particulates reinforced A356 alloy hybrid metal matrix composites.Adv. Compos. Hybrid Mater.20203111411910.1007/s42114‑020‑00143‑7
    [Google Scholar]
  36. VermaN. VettivelS.C. Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite.J. Alloys Compd.201874198199810.1016/j.jallcom.2018.01.185
    [Google Scholar]
  37. SivaR. AnishM. YuvarajaS. MathiselvanG. Experimental investigation ofstitched and unstitched bamboo fiber using sugarcane powder.Int. J. Mech.Prod. Eng. Res. Develop.2018821095110410.24247/ijmperdapr2018126
    [Google Scholar]
  38. Sunil Kumar ReddyK. KannanM. KarthikeyanR. LaxmanB. Evaluation of thermal and mechanical properties of Al7475 alloy reinforced with SiC and graphite.Mater. Today Proc.2020262691269610.1016/j.matpr.2020.02.566
    [Google Scholar]
  39. BandhuD. ThakurA. PurohitR. VermaR.K. AbhishekK. Characterization & evaluation of Al7075 MMCs reinforced with ceramic particulates and influence of age hardening on their tensile behavior.J. Mech. Sci. Technol.20183273123312810.1007/s12206‑018‑0615‑9
    [Google Scholar]
  40. MoradiM.M. Jamshidi AvalH. JamaatiR. Effect of pre and post welding heat treatment in SiC-fortified dissimilar AA6061-AA2024 FSW butt joint.J. Manuf. Process.2017309710510.1016/j.jmapro.2017.08.014
    [Google Scholar]
  41. MohamedA. SamuelF. A review on the heat treatmentof Al-Si-Cu/Mg casting alloys.Heat Treatment-Conventionaland Novel Appl201215572
    [Google Scholar]
  42. JawaidM. ThariqM. Handbook Sustainable Compositesfor Aerospace Applications.CambridgeWoodhead Publishing2018
    [Google Scholar]
  43. DirisenapuG. DumpalaL. ReddyS.P. The influence of B4 C and BN nanoparticles on Al 7010 hybrid metal matrix nanocomposites.Emerg Mater Res20209355856310.1680/jemmr.19.00080
    [Google Scholar]
  44. ChandrasekaranS. LuR. LandinghamR. CahillJ.T. ThornleyL. Du FraneW. WorsleyM.A. KuntzJ.D. Additive manufacturing of graded B4C-Al cermets with complex shapes.Mater. Des.202018810851610.1016/j.matdes.2020.108516
    [Google Scholar]
  45. SureshV. HariharanN. Tribologicalbehaviour of aluminium/boron carbide (B4C)/graphite (Gr) hybrid metal matrixcomposite under dry sliding motion by using ANOVA.Int J Mater Prod Technol2016533-4204217
    [Google Scholar]
  46. GuntreddiB. GhoshA. Anti-frictional role of diamond and graphite suspended bio-oil based nano-aerosols at sliding interface of Al-SiCp and WC-6Co.Tribol. Int.202115310659610.1016/j.triboint.2020.106596
    [Google Scholar]
  47. MohamadS. LizaS. YaakobY. Strengthening of the mechanical and tribological properties of composite oxide film formed on aluminum alloy with the addition of graphite.Surf. Coat. Tech.202040312643510.1016/j.surfcoat.2020.126435
    [Google Scholar]
  48. AshrafiN. AriffA.H.M. SarrafM. SulaimanS. HongT.S. Microstructural, thermal, electrical, and magnetic properties of optimized Fe3O4–SiC hybrid nano filler reinforced aluminium matrix composite.Mater. Chem. Phys.202125812389510.1016/j.matchemphys.2020.123895
    [Google Scholar]
  49. FereiduniE. MovahediM. BaghdadchiA. Ultrahigh-strength friction stir spot welds of aluminium alloy obtained by Fe 3 O 4 nanoparticles.Sci. Technol. Weld. Join.2018231637010.1080/13621718.2017.1356031
    [Google Scholar]
  50. CabezaM. FeijooI. MerinoP. PenaG. PérezM.C. CruzS. ReyP. Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite.Powder Technol.2017321314310.1016/j.powtec.2017.07.089
    [Google Scholar]
  51. BeheraM.P. DoughertyT. SingamneniS. Conventionaland additive manufacturing with metal matrix composites:a perspective.Procedia Manuf.20193015916610.1016/j.promfg.2019.02.023
    [Google Scholar]
  52. MartinJ.H. YahataB.D. HundleyJ.M. MayerJ.A. SchaedlerT.A. PollockT.M. 3D printing of high-strength aluminium alloys.Nature2017549767236536910.1038/nature2389428933439
    [Google Scholar]
  53. ChelladuraiS.J.S. MurugesanT. RajamaniT. AnandS. AsokS.J.P. KumaravelS. Investigation on mechanical properties and tribological behaviour of stir cast LM13 aluminium alloy based particulate hybrid composites.Materialwiss. Werkstofftech.201950786487410.1002/mawe.201800116
    [Google Scholar]
  54. VigneshkumarN. VenkatasudhaharM. Manoj KumarP. RameshA. SubbiahR. Michael Joseph StalinP. SureshV. Naresh KumarM. MonithS. Manoj kumarR. KriuthikeswaranM. Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM).Mater. Today Proc.2021475233523810.1016/j.matpr.2021.05.562
    [Google Scholar]
  55. Madeva N, Shivananda K, Virupaxi A, Shivaputrappa AK. Mechanical characterization of ceramic nano B4C-Al2618 alloy composites synthesized bysemi solid-state processing. Trans Indian Ceram Soc201877314614910.1080/0371750X.2018.1506363
    [Google Scholar]
  56. SureshS. G. HarinathGowd, and MLS Deva Kumar. “Mechanical and wear characterization ofAl/nano-SiC NMMCs by liquid state process.”.J. Bio Tribocorros.2019524310.1007/s40735‑019‑0232‑x
    [Google Scholar]
  57. RoyPratip SinghSubhash PalKaushik Enhancement of mechanical and tribologicalproperties of SiC-and CB-reinforced aluminium 7075 hybrid composites through friction stirprocessing.Adv Comp Mater201928118
    [Google Scholar]
  58. VasanthaseelanS. Manoj KumarP. AnandkumarR. Hari RamK. SubbiahR. SureshV. AbishekA.S. AnithR. AravinthP. BalajiS.V. Investigation on solar water heater with different types of turbulators.Mater. Today Proc.2021475203520810.1016/j.matpr.2021.05.530
    [Google Scholar]
  59. AnandV. AkshayM.N. AbhilashS. DeepakG. Recent Advances in the Development ofAluminium Matrix Composites (AMCs).Emerging Trends in Mechanical Engineering.SingaporeSpringer202061962610.1007/978‑981‑32‑9931‑3_60
    [Google Scholar]
  60. ChelladuraiS.J.S. ArthanariR. KrishnamoorthyK. SelvarajK.S. GovindanP. Effect of copper coating andreinforcement orientation on mechanical properties of LM6aluminium alloy composites reinforced with steel mesh bysqueeze casting.Trans. Indian Inst. Met.20187151041104810.1007/s12666‑017‑1235‑2
    [Google Scholar]
  61. CasatiR. VedaniM. Metal matrix composites reinforced by nano-particles—areview.Metals (Basel)201441658310.3390/met4010065
    [Google Scholar]
  62. KarC. SurekhaB. Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud.Mater. Res. Innov.202025419
    [Google Scholar]
  63. SrivastavaAshish DixitAmit Rai TiwariSandeep a review on fabrication andcharacterization of aluminium metal matrix composite (AMMC).Inter J Adv Res Innov201422516521
    [Google Scholar]
  64. JiangB. ZhenglongL. XiC. PengL. NannanL. YanbinC. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition.Ceram. Int.20194555680569210.1016/j.ceramint.2018.12.033
    [Google Scholar]
  65. DadbakhshS. MertensR. HaoL. Van HumbeeckJ. KruthJ-P. andJ.-P. Kruth, “Selective laser melting to manufacture “in situ”metal matrix composites: a review.Adv. Eng. Mater.2019213180124410.1002/adem.201801244
    [Google Scholar]
  66. SercombeT.B. LiX. Selective laser melting of aluminiumand aluminium metal matrix composites: review.Mater Technol20151–9
    [Google Scholar]
  67. El-KadyE.S.Y. MahmoudT.S. AliA.A.A. On the electrical and thermal conductivities of Cast A356/Al2O3 metal matrix nanocompositesMater Sci Appl2011291180118710.4236/msa.2011.29159
    [Google Scholar]
  68. Preetkanwal Singh BainsH.S. Analysis of coefficient of thermal expansion and thermal conductivity of bi-model SIC/A356 composites fabricated via powder metallurgy route.Proceedings of ASME 2017 Summer Heat Transfer Conference182017
    [Google Scholar]
  69. JayakumarK. Jose MathewM.A. Joseph, R. Suresh Kumar, A. K. Shukla, and M. G. Samuel, Synthesis and Characterization of A356-Sicp Composite Produced through Vacuum Hot Pressing.Mater. Manuf. Process.201328991998
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230519111414
Loading
/content/journals/cms/10.2174/2666145416666230519111414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test